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The basic Density Functional Theory (DFT) was described, and the most common density functionals were listed.

The performance of ab initio and DFT methods in calculating the geometric parameters and vibrational frequencies

was analyzed. The accuracy of the results in the isolated state, as well as in the solid state was shown in the IR and

Raman spectra. To correct the calculated frequencies, several scaling procedures were described in detail. A

comprehensive compendium of the mainly scale factors available to date for a good accurate prediction of the frequencies

was also shown. Examples of each case were presented, with special attention to the benzene and uracil molecules

and to some of their derivatives. © Anita Publications. All rights reserved.

1. Introduction

Density functional theory (DFT) has become very popular in recent years. This is justified based

on the pragmatic observation that it is less computationally intensive than other methods with similar

accuracy, or even better in some cases, such as the theoretical prediction of vibrational spectra. The most

accurate of the quantum chemical methods are still too expensive and cumbersome to apply as routine

research. For this reason, we show in the present paper an overview of the description and advantages in

the use of DFT methods in vibrational spectroscopy.

The last decade has been highly productive in the interpretation of vibrational experimental spectra

by means of quantum chemical methods, in especial by DFT methods. The theoretical prediction of

vibrational spectra has been of practical importance for the identification of known and unknown compounds,

and has become an important part of spectrochemical and quantum chemical investigations. The reliable

prediction of the vibrational spectra, particularly in synthetic and natural product chemistry, can be used to

calculate the expected spectra of proposed structures, confirming the identity of a product or of a completely

new molecule.

DFT methods can also be used to help in the assignment of the bands of the spectra. Until recently,

chemical spectroscopists have attempted to interpret the vibrational spectra of more complex molecules by

a transposition of the results of normal coordinate analysis of simpler molecules, often aided by qualitative

comparisons of the spectra of isotopically substituted species, and the polarizations of the Raman bands.

Thus, it has become an accepted practice to include tables of these "vibrational assignments" in publications

on the infrared and Raman spectra of larger molecules. However, to make such "assignments" for all the

bands in the spectra is risky, owing to the fact that while some of the assignments may be credible, other

can be highly speculative. Further, the modes assigned to these vibrations are often grossly oversimplified

in an attempt to describe them as group wavenumbers in localized bond systems. The use of adequate DFT

quantum-chemical methods and scaling procedures, remarkably reduce the risk in the assignment and can

accurately determine the contribution of the different modes in an observed band. Now this procedure

appears to be used extensively in the journals of vibrational spectroscopy.
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The computation of the vibrational spectrum of a polyatomic molecule of even modest size is

lengthy. In spite of the tremendous advances made both in theoretical methods, in special with DFT methods

and computer hardware. One may be forced to work at a low level, and consequently, one must expect a

large overestimation of the calculated vibrational wavenumbers. This overestimation (which may be due to

many different factors that are usually not even considered in the theory, such as anharmonicity, errors in

the computed geometry, Fermi resonance, solvent effects, etc) can be remarkably reduced with the use of

transferable empirical parameters for the force fields, or for the calculated wavenumbers. The scale factor is

therefore designed to correct the calculated harmonic wavenumbers to be compared with the anharmonic

wavenumbers found by the experiment. The scale factor is a consequence of the deficiency of the theoretical

approach and potentially allows vibrational wavenumbers (and thermochemical information) of useful

accuracy to be obtained from procedures of modest computational cost only. Widespread application to

molecules of moderate size is then possible.

One of the goals of the present work was try to resume the different procedures used for scaling

and the accuracy reached with them. As examples, we show the results with several benzene and uracil

derivatives.

2. Basic DFT theory

The premise behind DFT is that the energy of a molecule can be determined from the electron

density instead of a wave function. This theory originated with a theorem by Hoenburg and Kohn that

stated this was possible. A practical application of this theory was developed by Kohn and Sham who

formulated a method similar in structure to the Hartree-Fock method1-4.

In this formulation, the electron density is expressed as a linear combination of basis functions

similar in mathematical form to HF orbitals. A determinant is then formed from these functions, called Kohn-

Sham orbitals. It is the electron density from this determinant of orbitals that is used to compute the energy.

This procedure is necessary because Fermion systems can only have electron densities that arise from an

antisymmetric wave function. There has been some debate over the interpretation of Kohn-Sham orbitals.

It is certain that they are not mathematical equivalent to either HF orbitals or natural orbitals from correlated

calculations. However, Kohn-Sham orbitals do describe the behavior of electron in a molecule, just as the

other orbitals mentioned do. DFT orbitals eigenvalues do not match the energies obtained from photoelectron

spectroscopy experiments as well as HF orbitals energies do. The questions still being debated are how to

assign similarities and how to physically interpret the differences.

In DFT the exact exchange (HF) for a single determinant is replaced by a more general expression,

the exchange-correlation functional, which can include terms accounting for both exchange energy and the

electron correlation, which is omitted from Hartree-Fock theory. The energy has the form:

Eks = V + <hP> + ½ <PJ(P)> + Ex[P] + Ec[P]

where the terms have the following meanings:

V is the nuclear repulsion energy, P is the density matrix, <hP> is the one-electron (kinetic plus

potential) energy, ½ <PJ(P)> is the classical coulomb repulsion of the electrons, Ex[P] is the exchange

functional, and Ec[P] is the correlation functional.

A density functional is then used to obtain the energy from the electron density1. A functional is

a function of a function, in this case, the electron density. The exact density functional is not known.

Therefore, there is a whole list of different functionals that may have advantages or disadvantages. Some

of these functionals were developed from fundamental quantum mechanics and some were developed by
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parameterizing functions to best reproduce experimental results. Thus, there are in essence ab initio and

semiempirical versions of DFT. Thus, DFT tends to be classified either as an ab initio method or in a class

by itself.

The advantage of using electron density is that the integrals for Coulomb repulsion need be done

only over the electron density, which is a three-dimensional function, thus scaling as N3. Furthermore, at

least some electron correlation can be included in the calculation. This results in faster calculations than

HF calculations (which scale as N4) and computations that are a bit more accurate as well. The better DFT

functionals give results with accuracy similar to that of an MP2 calculation.

Density functionals can be broken down into several classes. The simplest is called the X method.

This type of calculation includes electron exchange but not correlation. It was introduced by J.C. Slater,

who in attempting to make an approximation to Hartree-Fock unwittingly discovered the simplest form of

DFT. The X method is similar in accuracy to HF and sometimes better.

The simplest approximation to the complete problem is one based only on the electron density,

called a local density approximation (LDA). For high-spin systems, this is called the local spin density

approximation (LSDA). LDA calculations have been widely used for band structure calculations. Their

performance is less impressive for molecular calculations, where both qualitative and quantitative errors are

encountered. For example, bonds tend to be too short and too strong. LDA, LSDA, and VWN (the Vosko,

Wilks, and Nusair functional) have become synonymous in the literature.

A more complex set of functionals utilizes the electron density and its gradient. These are called

gradient-corrected methods. There are also hybrid methods that combine functionals from other methods

with pieces of a Hartree-Fock calculation, usually the exchange integrals.

In general, gradient-corrected or hybrid calculations give the most accurate results. However, there

are a few cases where X and LDA do quite well. LDA is known to give less accurate geometries and

predicts binding energies significantly too large. The current generation of hybrid functionals is a bit more

accurate than the gradient-corrected techniques. Some of the more widely used functionals are listed in

Table 1.

Table 1. The most common Density functionals used today.

Acronyms Name Type 

X 

HFS 

VWN 

BLYP 

 

B3LYP 

PW91 

G96 

P86 

B96 

B3P86 

B3PW91 

X-alpha 

Hartree-Fock Slater 

Vosko, Wilks, and Nusair 

Becke correlational functional with Lee, Yang, Parr exchange 

Becke 3 term with Lee, Yang, Parr exchange 

Perdue and Wang 1991 

Gill 1996 

Perdew 1986 

Becke 1996 

Becke exchange, Perdew correlation 

Becke exchange, Perdew and Wang correlation 

Exchange only 

HF with LDA exchange 

LDA 

Gradient-corrected 

 

Hybrid 

Gradient-corrected 

Exchange 

Gradient-corrected 

Gradient-corrected 

Hybrid 

Hybrid 

 

DFT is generally faster than Hartree-Fock for systems with more than 10-15 non-hydrogen atoms1,

depending on the numeric integral accuracy and basis set. DFT calculations must use a basis set. Most
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DFT calculations today are being done with HF-optimized GTO basis sets. The accuracy of results tends

to degrade significantly with the use of very small basis sets. For accuracy considerations, the smallest

basis set used is generally 6-31G* or the equivalent. Interestingly, there is only a small increase in accuracy

obtained by using very large basis sets. This is probably due to the fact that the density functional is

limiting accuracy more than the basis set limitations.

The accuracy of results from DFT calculations can be poor to fairly good, depending on the choice

of basis set and density functional1. The choice of density functional is made more difficult because creating

new functionals is still an active area of research. In DFT methods, the most prominent are B-LYP and B3-

LYP. B-LYP uses a combination of the Becke exchange functional5 (B) coupled with the correlational functional

of Lee, Yang and Parr6 (LYP), while the hybrid B3-LYP procedure uses Becke’s three-parameter exchange

functional7 (B3), in combination with the LYP correlation functional. The B and B3 exchange functional can

be used with other correlation functionals8,9 such as P86 and PW91 to compute vibrational frequencies,

although they have received less attention in the recent literature. The B3LYP hybrid functional (also called

Becke3LYP) was the most widely used for molecular calculations by a fairly large margin. This is due to the

accuracy of the B3LYP results obtained for a large range of compounds, particularly organic molecules.

Due to the newness of DFT, its performance is not completely known and continues to change

with the development of new functionals. At the present time, DFT results have been very good for organic

molecules, particularly those with closed shells. Results have not been so encouraging for heavy elements,

highly charged systems, or systems known to be very sensitive to electron correlation. Also, the functionals

listed in Table 1 do not perform well for problems dominated by dispersion forces. Unfortunately, there is

no systematic way to improve DFT calculations, thus making them unusable for very-high-accuracy work.

3. Basis Set

A basis set is a set of functions used to describe the shape of the orbitals in an atom. Molecular

orbitals and entire wave functions are created by taking linear combinations of basis functions and angular

functions. Most semiempirical methods use a predefined basis set. When ab initio or DFT calculations are

done, a basis set must be specified. Although it is possible to create a basis set from scratch, most

calculations are done using existing basis sets. The type of calculation performed and basis set chosen are

the two biggest factors in determining the accuracy of results1.

There are several types of basis functions. Over the past several decades, most basis sets have

been optimized to describe individual atoms at the HF level of theory. There have been a few basis sets

optimized for use with DFT calculations, but these give little if any increase in efficiency over using HF

optimized basis set. In general, DFT calculations do well with moderate-size HF basis sets and show a

significant decrease in accuracy when a minimal basis set is used. Also, DFT calculations show only a

slight improvement in results when large basis sets are used. This seems to be due to the approximate

nature of the DFT limiting accuracy more than the lack of a complete basis set1.

Several basis schemes are used for very high accuracy calculations. The highest accuracy HF

calculations use numerical basis sets, usually a cubic spline method. For high accuracy correlated

calculations with an optimal amount of computing effort, correlation-consistent basis sets have mostly

replaced Atomic Natural Orbital (ANO) basis sets. Complete basis set, or CBS, calculations go a step beyond

this in estimating the infinite basis set limit.

Below is a listing of some of the commonly used basis sets:

- STO-nG (n = 2-6) n primitives per shell per occupied angular momentum (s,p,d). It is the most widely

used minimal basis set.

M Alcolea Palafox, V K Rastogi and Kaushal Rani
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- 6-31G Pople sets, particularly 6-31G and 6-311G. They are the most popular for quantitative results

in organic molecules. Available in general for H(4s) through Ar (16s10p).

- Dunning-Hay sets. They are in general available for H(4s) through Ne.

- cc-pVnZ (n = D, T, Q, 5, 6) Correlation-consistent basis sets that always include polarization

functions. They are in general available for H through Ar. The various sets describe H with from

(2s1p) to (5s4p3d2f1g) primitives. One to four diffuse functions are denoted with the notation aug

or n-aug, where n = d, t, q.

- cc-pCVnZ (n = D, T, Q, 5) Correlation-consistent basis sets designed to describe the correlation of

the core electrons as well as the valence electrons. Available for H through Ne. These basis sets

were created from the cc-pVnZ sets by adding from 2 to 14 additional primitives starting at the

inner shells.

- CBS-n (n = 4, Lq, Q, APNO) For estimating the infinite basis set limit. This implies a series of

calculations with different basis sets, some of which are large sets. The CBS and G2 methods are

becoming popular for very-high accuracy results. Available for H through Ne.

- DZVP, DZVP2, TZVP. DFT-optimized functions. Available for H through Xe.

- Hay. The larger set is popular for transition metal calculations. Available for Sc through Cu(12s6p4d)

and (14s9p5d).

- Wachters. Often used for transition metals. Available for K through Zn(14s9p5d).

There are many more basis set developed, some of them were the work of many different authors

and later improved. This sometimes results in different programs using the same name for two slightly

different sets. It is also possible to combine basis sets of modify them, which can result in either poor or

excellent results, depending on how expertly it is done.

4. Frequency Calculation

Because of the nature of the computations involved, frequency calculations are valid only at

stationary points on the potential energy surface. Thus, they must be performed on optimized structures.

For this reason, it is necessary to run a geometry optimization prior to making a frequency calculation. To

ensure that a real minimum is located on the potential energy surface, imaginary values should not appear

among the calculated harmonic frequencies.

A frequency job must use the same theoretical model and basis set as employed in the optimized

geometry. Frequencies computed with different basis sets or procedures have no validity. A frequency job

begins by computing the energy of the input structure. It then goes on to minimize this energy and recalculate

a new geometry. The process is successively repeated until the change in the forces and in the displacements

of the atoms of the molecule, is lower than a certain fixed threshold. When it is reached, the geometry

corresponds to an optimum structure and then the frequencies can be computed. The frequencies, intensities,

Raman depolarization ratios and scattering activities for each spectral line are therefore predicted. However,

calculated values of the intensities should not be taken too literally, due to the high error in their computation,

although relative values of the intensities for each frequency may be reliably compared.

In addition to the frequencies and intensities, the output of the free and commercial quantum

chemical programs also displays the atomic displacements for each computed frequency. These displacements

are presented as XYZ coordinates, in the standard orientation, which can be plotted to identify each

vibration10.
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5. Error in the geometric parameters

Previously to the frequency calculations it is necessary a full optimization of the molecule. As

example, in Table 2 is shown the calculated bond lengths of benzene and aniline molecules by different ab

initio and DFT methods, that can be compared to the experimental data reported by x-ray, microwave (MW)

and electron diffraction (ED). This last technique gives the molecular structure in the gas phase, which are

more close to our calculated values than x-ray or MW. Thus, when ED data are available, the comparison

of the theoretical values should be carried out with this technique. Can be seen the close value of the DFT

results to the experimental ones, especially by B3LYP. The accuracy is almost similar to that by MP2.

Table 2. Optimum bond lengths in A for the benzene and aniline molecules

 

Methods 

benzene aniline 

 

C-C 

 

C-H 

C1-C2 

(C1-C6) 

C2-C3 

(C5-C6) 

C3-C4 

(C4-C5) 

 

C1-N 

C2-H 

(C6-H) 

C3-H 

(C5-H) 

 

C4-H 

 

N-H 

SCF and Post-SCF methods 

   HF/6-31Ga 

   HF/6-31G* 

   HF/6-31G** 

   HF/6-31++G** 

   MP2/6-31G* 

   MP2/6-31G** 

   MP2/6-31G(2d,p) 

   MP2/6-311G(2d,p) 

 

Density functiona l methods 

   BP86/6-31G** 

   BP86/6-311G(2d,p) 

   BLYP/6-31G** 

   B3P86/6-31G* 

   B3P86/6-31G** 

   B3LYP/6-31G* 

   B3LYP/6-31G** 

   B3LYP/6-311G(2d,p) 

   B3LYP/6-311+G(2d,p) 

   B3LYP/6-311++G(2df,2p) 

     B3LYP/6-311++G(3df,pd) 

     B3PW91/6-31G** 

 

Experimental 

      x-rayb 

      MWc 

      EDd 

 

1.3862 

1.3859 

1.3883 

 

1.3963 

1.3979 

 

 

 

 

1.4044 

1.3992 

1.4065 

1.3932 

1.3929 

1.3964 

1.3963 

1.3911 

1.3914 

 

 

1.3945 

 

 

1.3920e 

   

 

1.0756 

1.0760 

1.0758 

 

1.0827 

1.0832 

 

 

 

 

1.0952 

1.0929 

1.0934 

1.0867 

1.0860 

1.0866 

1.0863 

1.0838 

1.0836 

 

 

1.0868 

 

 

1.0862e 

   

 

1.395 

1.393 

1.3928 

1.3939 

1.4023 

1.4019 

1.4021 

1.4003 

 

 

1.4145 

1.4091 

1.4163 

1.4021 

1.4022 

1.4052 

1.4054 

1.4000 

1.3996 

1.3994 

1.3990 

1.4038 

 

 

1.404 (6) 

1.397 (3) 

1.403 (3) 

 

1.389 

1.383 

1.3831 

1.3852 

1.3942 

1.3937 

1.3953 

1.3928 

 

 

1.4004 

1.3954 

1.4026 

1.3897 

1.3893 

1.3931 

1.3928 

1.3877 

1.3887 

1.3878 

1.3875 

1.3908 

 

 

1.380 (7) 

1.394 (4) 

1.3933(1) 

 

1.389 

1.386 

1.3853 

1.3873 

1.3963 

1.3958 

1.3972 

1.3948 

 

 

1.4045 

1.3994 

1.4065 

1.3931 

1.3929 

1.3965 

1.3962 

1.3911 

1.3918 

1.3912 

1.3907 

1.3943 

 

 

1.386 (7) 

1.396 (2) 

1.3955(1) 

 

1.401 

1.397 

1.3947 

1.3953 

1.4067 

1.4056 

1.4081 

1.4057 

 

 

1.4021 

1.4028 

1.4091 

1.3925 

1.3902 

1.4004 

1.3981 

1.3988 

1.3997 

1.3951 

1.3954 

1.3920 

 

 

1.398 (6) 

1.402 (2) 

1.4057(1) 

 

1.072 

1.077 

1.0768 

1.0767 

1.0889 

1.0842 

1.0847 

1.0870 

 

 

1.0965 

1.0944 

1.0945 

1.0879 

1.0872 

1.0881 

1.0875 

1.0851 

1.0850 

1.0832 

1.0841 

1.0878 

 

 

1.03 (3) 

1.082 (4) 

1.099 (3) 

 

1.072 

1.076 

1.0763 

1.0761 

1.0877 

1.0829 

1.0834 

1.0855 

 

 

1.0954 

1.0931 

1.0936 

1.0869 

1.0863 

1.0872 

1.0866 

1.0841 

1.0840 

1.0821 

1.0831 

1.0869 

 

 

0.95 (4) 

1.083 (2) 

1.099 (3) 

 

1.070 

1.075 

1.0750 

1.0748 

1.0866 

1.0819 

1.0823 

1.0845 

 

 

1.0940 

1.0917 

1.0923 

1.0856 

1.0849 

1.0860 

1.0853 

1.0827 

1.0827 

1.0808 

1.0818 

1.0856 

 

 

1.05 (5) 

1.080 (2) 

1.099 (3) 

 

0.997 

0.997 

0.9956 

0.9959 

1.0151 

1.0103 

1.0108 

1.0125 

 

 

1.0194 

1.0190 

1.0197 

1.0111 

1.0092 

1.0129 

1.0866 

1.0102 

1.0098 

1.0067 

1.0089 

1.0094 

 

 

1.07 (5) 

1.001(10) 

1.021 (1) 

 aFrom ref. 12. bFrom ref. 13 cFrom ref. 14. dFrom ref. 15 erm value, refs. [16].

Table 3 shows the calculated bond angles and torsional angles in the aniline molecule by different

ab initio and DFT methods. Also can be seen the low errors obtained using DFT methods.
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6. Error in the calculated frequencies

The vibrational frequencies are usually calculated using the simple harmonic oscillator model.

Therefore, they are typically larger than the fundamentals observed experimentally9. The possible reasons

for the deficiency of simple HF-calculations are:

- The ZPVE (Zero Point Vibrational Energy).

- Anharmonicity in the vibrational potential energy surface.

- Basis sets are too small.

- Neglect of electron correlation.

- The Hartree-Fock potential is too steep and therefore frequencies are too high.

In general, the calculated ab initio frequencies are overestimated, at the Hartree-Fock level by about

10-20%, and at the MP2 level by about 5-10%. This overestimation in the frequencies also depends on the

type of vibrational mode and on the frequency range, varying between 1 and 12%. Thus for modes that

appear at high frequency, the difference between the harmonic oscillator prediction and the exact or Morse

potential like behavior is about 10%. However at a very low frequency, below a few hundred wave numbers,

this difference can be off by a large amount.

Several results reported with ab initio and DFT methods are collected in Table 4. The third column is

the mean percentage deviation of theoretical harmonic frequencies from experimental fundamentals. The fourth

column refers to the ratio vexp./ th. between the experimental and calculated frequencies, i.e. the scale factor.

Table 4. Errors obtained in the calculated frequencies at several ab initio levels
 

            level 

 

no. molecules 

 

% error 

 

scale factor, λ 

 

ref. 

HF/3-21G 

HF/6-31G* 

MP2-fu/6-31G* 

 

 

B-LYP/6-31G* 

B3-LYP/6-31G* 

38 

36 

36 

 

 

20 

12 

13 

7 

 

 

26a 

19a 

0.89 

0.8929 

0.921 

0.96
b
 

0 .94c 

0.990 

0.963 

31 

32 

32 

33 

33 

34 

34 

 arms deviation, in cm–1. bFor the first-row molecules. cFor the second-row molecules.

In benzene molecule, the error with the different DFT and ab initio levels can be observed in Fig.

2. The errors in aniline molecule are shown in Fig. 3 and in Table 5. The values are listed in Table 5. It is

noted that the calculations at the HF level, fail to give the observed experimental pattern. Inclusion of

electron correlation slightly improves the computed frequencies. Only with density functional methods the

frequencies are close to the experimental. However, these results have not adequately reproduced all the

experimental pattern of frequencies and intensities. The use of scale factors, solves this problem.

The relative accuracy of the results obtained, at some chosen computational level, is better than

the absolute accuracy11. On this basis, Fig. 1 sketches the error in some one kind of parameter (e.g. a

vibrational mode), as computed in a variety of molecular environments, with different methods and sized

basis sets. The vertical axis shows the difference between the true value in a given molecule of some particular

vibrational mode, and the value computed with different methods and various sizes of SCF basis sets. The

errors in computing the chosen vibrational mode in many different molecules are found to fall within the

shaded area of the diagram. The HF convergence limit, approached by very large basis sets, still differs

from the true value, but this residual error has been found empirically to be remarkably constant for a given

parameter, and is very nearly independent of the molecule studied. The calculations can be done efficiently11

at the point marked “X” in Fig. 1, and this residual error can be removed with the use of scale factors, and

therefore give rise to an accurate predicted frequency.
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Fig. 1. Schematic representation of the error in calculating a chosen vibrational mode of a molecule in a

variety of molecular environments. For wide families of systems, the error is expected to fail within the

shaded area.

Fig. 2. Error obtained by the different methods and levels in the calculated wavenumbers of the ring

modes and in their scaled wavenumbers using a scaling equation.
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Fig. 3. Error obtained by the different methods and levels in the calculated wavenumbers of the ring

modes and in their scaled wavenumbers using an overall scale factor, a scaling equation, and specific

scaled facrtors for each mode.

7. Scaling Procedures for the Frequencies

The values of the frequencies are close among similar molecules and characteristic groups. Based on

this assumption, three kind of procedures are used for an accurate scaling of the calculated frequencies.18-20

7.1 With a single overall scale factor for the calculated level

With this procedure all the computed frequencies of a molecule at a specific level of theory are

scaled with a unique scale factor (or correction factor), which is common for all the molecules with the same

level of calculation. The correction factors are different for distinct levels of theory, and with low level of

calculations, it is necessary to use scale factors far from the value 1.

The procedure to determine this scale factor is complicated, because the scaling factor depends

upon not only the basis set or theoretical method used but also the group of molecules used for comparison

and whether or not the comparisons are made with only harmonic frequencies or with all fundamentals. The

procedure for calculating the scale factor21 is as follows: With a full set of theoretical frequencies i
th. for

different molecules, and with their corresponding experimental fundamental frequencies, vi
expt., the scaling

factors  are those that minimize the residuals.

 =  (  i
th. - vi

expt.)2 and thus,  =  i
th. vi

expt.   ( i
th.)2.

Therefore, for the different levels of theory, the scale factors of the 2nd and 5th columns of Table

6 have been reported21 from a dataset containing 122 molecules and 1066 frequencies.

To minimize the large errors in frequencies at the low end of the frequency range, an inverse

frequency scaling factor, ’, is used to minimize the residual, 3rd and 6th columns of Table 6. With these two

scale factors, for high and low frequency ranges, have been calculated in the aniline ring modes22: the root-

mean-square (RMS) errors for the frequencies, the mean absolute deviation (MAD), the standard deviation

(Std. Dev.), and the greatest positive and negative deviations from experiment, the 7th to 11th columns,

respectively, of Table 5 at different methods and levels.
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Table 6. Scale factors at different levels

 

Level of theory 

 

Scale factor 

Level of theory 

 

Scale factor 

λ λ´a  λ λ´a 

HF/ 3-21G 

HF/ 6-31G* 

HF/6-31+G* 

HF/6-31G** 

HF/6-311G** 

HF/6-31G(df,p) 

 

MP2-fu/ 6-31G* 

MP2-fc/ 6-31G* 

MP2-fc/6-31G** 

MP2-fc/6-311G** 

0.9085 

0.8953 

0.8970 

0.8992 

0.9051 

0.9054 

 

0.9427 

0.9434 

0.9370 

0.9496 

1.0075 

0.9061 

0.9131 

0.9089 

0.9110 

0.9085 

 

1.0214 

1.0485 

1.0229 

1.0127 

QCISD-fc/6-31G* 

 

SVWN/ 6-31G* 

B-LYP/ 6-31G* 

B-LYP/6-311G(df,p) 

B-P86/6-31G* 

B3-LYP/ 6-31G* 

B3-P86/6-31G* 

B3-PW91/6-31G* 

 

0.9538 

 

0.9833 

0.9945 

0.9986 

0.9914 

0.9614 

0.9558 

0.9573 

1.0147 

 

1.0079 

1.0620 

1.0667 

1.0512 

1.0013 

0.9923 

0.9930 

 aSuitable for the prediction of low-frequency vibrations 1/.

An analysis of Table 6 give rises to the following conclusions: In the fundamental frequencies, the

most cost-effective procedures found for predicting vibrational frequencies are the B3-based/6-31G* DFT

procedures, with the lowest rms values. The B-based DFT procedures are not performing quite as well as

the corresponding B3-based procedures, and for this reason, they were omitted in Table 5. MP2/6-31G*

does not appear to offer a significant improvement in performance over HF/6-31G* and occasionally shows

a high degree of error. While the QCISD method yields frequencies (not shown in Table 5) that are more

reliably predicted than those computed at the MP2 level, the improvement comes at a significant additional

computational cost and, the results are generally not better than those for the much less expensive

B3-based DFT procedures.

With low-frequency vibrations the DFT methods also yield to the lowest errors, while HF performs

slightly worse.

An overall conclusion is that B3-based DFT procedures provide a very cost-effective means of

determining harmonic vibrational frequencies and derived thermochemical quantities. They show fewer poorer

cases than do HF- and MP2-based procedures. With ab initio methods, although the error is remarkable

reduced using a single overall scale factor, as compared to the calculated frequencies, in several ring modes

of the aniline molecule the error is very large yet. With DFT procedures, however, the errors are in general

very small and can be used efficiently a single overall scale factor.

7.2 With a scaling equation

This procedure uses a scaling equation to correct the computed frequencies of a molecule at a

specific level of theory. Therefore slightly improved in the predicted frequencies should be expected,

especially in the low-frequency region, than when a unique scale factor is used. The scaling equation can

also refer to a group or to a kind of molecules for a specific level of theory, which greatly improves the

accuracy in the predicted frequencies.

Fig 4 is an example with the benzene ring modes. By fitting, the scaling equation is obtained. Table

7 collects the calculated scaling equations obtained in the benzene23 and uracil24 molecules, as well as in

the amino modes.
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Fig. 4. Calculated frequencies by B3LYP/6-31G** versus experimental ones in benzene molecule.

Table 7. Scaling equations scaled =  a + b · calculated for the ring modes of benzene and uracil derivatives

Methods benzene uracil amino modes 

 a b  a b a b 

HF/6-31G* 

HF/6-31G** 

HF/6-31++G** 

MP2/6-31G** 

MP2/6-311G** 

    

BP86/6-31G** 

BP86/6-311G(2d,p) 

BLYP/6-31G** 

B3P86/6-31G* 

B3P86/6-31G** 

B3LYP/6-31G* 

B3LYP/6-31G** 

B3LYP/6-311G(2d,p) 

B3LYP/6-311+G(2d,p) 

B3LYP/6-311++G(2d,p) 

B3LYP/6-311++G(3df,pd) 

B3LYP/aug-cc-pVDZ 

B3LYP/DGDZVP 

B3PW91/6-31G** 

B3PW91/6-311+G(2d,p) 

MPW1PW91/6-311+G(2d,p) 

-4 .0 

-8 .6 

-6 .2 

83.4 

97.3 

 

32.7 

28.8 

27.2 

25.0 

27.2 

23.3 

22.1 

18.6 

20.8 

28.5 

 

 

 

24.8 

25.2 

24.6 

0.9103 

0.9162 

0.9153 

0.9088 

0.9156 

 

0.9752 

0.9819 

0.9791 

0.9473 

0.9476 

0.9519 

0.9543 

0.9616 

0.9601 

0.9574 

 

 

 

0.9501 

0.9554 

0.9499 

4.6 

5.7 

10.5 

 

 

 

46.0 

 

46.4 

29.9 

34.1 

30.8 

34.6 

 

30.8 

 

31.9 

28.6 

39.2 

34.9 

 

0.8924 

0.8867 

0.8938 

 

 

 

0.9678 

 

0.9718 

0.9412 

0.9389 

0.9468 

0.9447 

 

0.9538 

 

0.9512 

0.9543 

0.9472 

0.9393 

 

 

22.7 

40.3 

45.9 

 

 

 

44.3 

 

31.3 

33.0 

57.4 

21.3 

44.5 

24.5 

45.0 

45.6 

 

 

 

56.8 

 

0.8934 

0.8846 

0.8833 

 

 

 

0.9699 

 

0.9791 

0.9434 

0.9318 

0.9555 

0.9441 

0.9572 

0.9484 

0.9482 

 

 

 

0.9325 
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With these equations have been calculated in the aniline ring modes the RMS errors, the MAD

and the Std. Dev. for the frequencies, and the greatest positive and negative deviations from experiment,

the 12th to 16th columns, respectively, of Table 5 at different methods and levels.

A significant improvement is reached in DFT methods with a reduction of 33% the error over the

use of the overall scale factor (rms of 24.3 at HF/6-31G** level versus 11.2 at B3LYP/6-31G**).

With the use of the scaling equation approach, the low wavenumber vibrations are usually predicted

fairly accurate while stretching wavenumbers appear someone overestimated. By dividing the wavenumber

range into two parts, and using one scaling equation for the 0-2000 cm–1 range and another one for the

2000-4000 cm–1 range, the error in the stretching region is slightly reduced.

7.3 With a specific scale factor for each mode

It is well known that in organic molecules many of the vibrational modes are localized and that

many functional groups have characteristic frequencies that do not vary much between different molecules.

Therefore, considering groups of similar molecules can be calculated correction factors (or scaling factors)

 = vexp./ th. (or ’ = th./vexp.)

that brings the computed frequencies in line with the available experimental data. That is, the procedure is

based on the assumption that the ratios between experimental and computed frequencies are fairly constant

for each type of characteristic frequency, such as C-H stretch, C-Cl stretch, NH2 torsion, etc. It is then

possible to derive for known experimental spectra a correction factor for each characteristic frequency by

taking the average of the ratios between the experimental and computed frequencies, , and to use them for

predicting or assigning unknown spectra.

The introduction of different scale factors for distinct types of vibrational modes remarkably

improves the accuracy of the predicted frequencies. The introduction of a scaling factor for a single

characteristic frequency is capable of accounting for all the deficiencies of the quantum chemical methods

and leads to a more precise prediction for specific characteristic frequencies that are of special interest.

It should be noted that certain types of vibrational modes are much more readily identified than

others, e.g. the stretchings. On the other hand, many of the torsion and out-of-plane modes are delocalized

throughout a wide low-frequency range, and it is difficult to identify these modes or to differentiate between

them. Thus, the scale factors obtained with these modes produce many errors, and should be considered

with caution.

Table 8 collects the calculated specific scale factors obtained in the benzene23 molecule, while

Table 9 lists the values obtained in uracil24 modes. With the specific scale factors of Table 8 have been

calculated in the aniline ring modes the RMS errors, the MAD and the Std. Dev. for the frequencies, and

the greatest positive and negative deviations from experiment, the last five columns of Table 5, at different

methods and levels.

In Fig. 5 can be seen in graphical forms the differences in the scaled frequencies with the three

scaling procedures described above. DFT methods always give the best results. The errors with the scaling

equation procedure are slightly lower than with the overall factor procedure, especially in DFT methods.

MP2 frequencies give the worst results and they should not be scaled with these procedures. Finally, the

specific factor lead to the best results, although it requires much more effort, and a previous assignment of

the calculated bands.
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Table 8. Calculated specific scale factors, exp./ cal., for each normal mode of the

benzene molecule, and at some of the levels considered

Ring mode 

Wilson no. 

HF/ 

6-31G** 

MP2/ 

6-31G** 

B3LYP/6

-31G* 

B3LYP/6

-31G** 

B3LYP/ 

6-311+G(2d,p) 

B3PW91/6-

31G** 

B3PW91/ 

6-311+G(2d,p) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

0.9169 

0.9113 

0.8994 

0.9088 

0.8715 

0.9145 

0.9147 

0.8919 

0.9144 

0.8814 

0.8821 

0.9216 

0.9178 

0.9699 

0.9637 

0.8786 

0.8775 

0.9116 

0.9016 

0.9117 

0.9660 

0.9363 

0.9670 

1.4140 

1.0772 

0.9841 

0.9382 

0.9558 

0.9623 

0.9920 

0.9782 

0.9902 

0.9412 

0.8925 

0.9573 

1.0076 

1.0556 

0.9596 

0.9630 

0.9360 

0.9726 

0.9564 

0.9733 

0.9846 

0.9802 

0.9777 

0.9591 

0.9662 

0.9750 

0.9804 

0.9725 

0.9902 

0.9619 

0.9642 

0.9702 

0.9590 

0.9979 

0.9712 

0.9693 

0.9567 

0.9736 

0.9582 

0.9775 

0.9846 

0.9773 

0.9792 

0.9609 

0.9780 

0.9790 

0.9793 

0.9712 

0.9922 

0.9638 

0.9656 

0.9743 

0.9590 

0.9929 

0.9730 

0.9731 

0.9585 

0.9825 

0.9638 

0.9715 

0.9905 

0.9857 

0.9739 

0.9659 

0.9807 

0.9822 

0.9850 

0.9839 

0.9802 

0.9688 

0.9847 

0.9778 

0.9660 

0.9891 

0.9812 

0.9782 

0.9638 

0.9679 

0.9552 

0.9818 

0.9833 

0.9754 

0.9840 

0.9576 

0.9621 

0.9790 

0.9782 

0.9711 

0.9970 

0.9607 

0.9502 

0.9760 

0.9660 

0.9888 

0.9694 

0.9737 

0.9552 

0.9741 

0.9606 

0.9788 

0.9910 

0.9870 

0.9821 

0.9628 

0.9729 

0.9839 

0.9857 

0.9861 

0.9869 

0.9660 

0.9683 

0.9810 

0.9750 

0.9896 

0.9768 

0.9792 

0.9605 

 

Fig. 5. Experimental IR and scaled IR spectra of halothane molecule.
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Table 9. Calculated specific scale factors, exp./ cal., for each normal mode of the uracil

molecule, and at some of the levels considered

Ring mode MP2/ 

6-31G* 

B3P86/ 

6-31G** 

B3LYP/ 

6-31G* 

B3LYP/ 

6-31G** 

B3PW91/6-31G** 

2 

3 

4 

5 

6 

7 

8 

9 

 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

1.1491 

1.0209 

1.0422 

0.9884 

0.9908 

0.9982 

0.9629 

0.9456 

 

0.9169 

1.0485 

1.0596 

1.0037 

0.9616 

1.0452 

0.9910 

0.9641 

0.9482 

0.9324 

 

0.9597 

0.9659 

0.9662 

0.9512 

0.9585 

0.9534 

0.9400 

0.9427 

0.9455 

0.9513 

0.9529 

1.0819 

1.0156 

0.9950 

0.9865 

0.9871 

0.9982 

0.9545 

0.9524 

 

0.9795 

0.9960 

1.0013 

0.9853 

0.9764 

1.0010 

0.9960 

0.9772 

0.9686 

0.9573 

 

0.9769 

0.9788 

0.9804 

0.9612 

0.9630 

0.9514 

0.9400 

0.9511 

0.9521 

0.9432 

0.9462 

1.0882 

1.0156 

1.0000 

0.9865 

0.9889 

1.0000 

0.9715 

0.9579 

 

0.9822 

1.0066 

1.0116 

0.9865 

0.9835 

1.0031 

0.9980 

0.9799 

0.9742 

0.9588 

 

0.9755 

0.9809 

0.9790 

0.9663 

0.9699 

0.9624 

0.9512 

0.9529 

0.9556 

0.9536 

0.9571 

1.0882 

1.0156 

0.9975 

0.9865 

0.9908 

1.0018 

0.9680 

0.9607 

 

0 .9835 

1.0066 

1.0129 

0.9865 

0.9865 

1.0021 

1.0000 

0.9835 

0.9783 

0.9643 

 

0 .9812 

0.9858 

0.9845 

0.9701 

0.9710 

0.9629 

0.9518 

0.9550 

0.9571 

0.9492 

0.9524 

1.0819 

1.0156 

0.9975 

0.9884 

0.9889 

1.0000 

0.9561 

0.9538 

 

0.9808 

0.9974 

1.0038 

0.9853 

0.9814 

0.9990 

0.9970 

0.9781 

0.9694 

0.9596 

 

0.9776 

0.9802 

0.9818 

0.9624 

0.9647 

0.9534 

0.9421 

0.9520 

0.9530 

0.9434 

0.9465 

 
8. Comparison of the different methods

The majority of the published works with ab initio methods use a single overall correction value

for the frequencies, with no consideration for the different modes. Sometimes a simplification is used with

only two or three scale factors for the modes, e.g., 0.9 for stretches and bends and 1.0 for torsion. However

the best accuracy is obtained if a specific scale factor is used for each mode and level of calculation, although

it requires slightly more effort. The only scale factors reported with this procedure, to our knowledge, are

for tertiary amines25, and for toluene molecule26.
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However, the scale factors reported for toluene, are not enough detailed as the calculations carried

out by us on the benzene molecule, and listed in Table 8, with a specific scale factor for each ring mode,

numbered according to Wilson notation23.

DFT methods and at 6-31G** level, shows a more reliable prediction for the calculated frequencies

(with scale factors more close to the unit) than with more expensive HF and MP2 methods. Table 10 lists

our calculated results in several benzene derivatives, as well as in uracil derivatives. A detailed description

of these results can be seen in the following references: benzene23, aniline22, benzoic acid27, 1,4-

dicyanobenzene and 2,4-difluorobenzonitrile [28], uracil [24], 5-fluorouracil 29], 5-bromouracil, 5-methyluracil

(thymine)30, 2-thiouracil31. Also different halo-uracil derivatives32 and 5-aminouracil molecule33 have been

studied using the scaling equation procedure.

Table 10. RMS errors obtained in the calculated and scaled wavenumbers of several

benzene and uracil derivatives at the B3LYP/6-31G** level.

Molecules (a) (b) (c) (d) 

benzene 

aniline 

benzoic acid 

phenylsilane 

p-aminobenzoic acid 

p-methoxybenzoic acid 

1,4-dicyanobenzene 

2,4-difluorobenzonitrile 

Phenothiazine 

62 

60 

55.9 

60.1 

47.8 

46.3 

56.5 

64.1 

75.0 

17 

19 

19.7 

17.0 

19.3 

18.6 

23.1 

20.2 

24.2 

8.8 

12.4 

13.9 

10.7 

13.7 

13.4 

17.7 

16.5 

17.6 

- 

11.0 

10.7 

10.5 

11.3 

12.5 

13.4 

14.2 

17.1 

uracil 

5-fluorouracil 

5-bromouracil 

5-methyluracil 

5-nitrouracil 

1-methyluracil 

2-thiouracil 

3-methyluracil 

1,3-dimethyluracil 

66.4 

70.3 

76.2 

59.8 

71.7 

69.2 

79.0 

63.2 

49.4 

21.4 

29.8 

29.2 

21.5 

26.1 

27.0 

26.5 

22.8 

23.1 

13.8 

23.5 

18.5 

18.4 

16.5 

17.9 

15.5 

15.6 

16.5 

- 

14.7 

13.7 

13.1 

13.0  

15.8 

11.5 

11.0 

12.1 

 When the comparisons theory-experiment are carried out with experimental values in the gas phase,

the concordance is very high. Fig. 5 shows as example the experimental IR spectrum in gas phase of the

general anesthetic halothane versus the scaled IR spectrum.34 Can be seen that the concordance appear in

the scaled frequency values, as well as in the calculated IR intensities of the bands.

However, in the solid state the differences are higher. Fig. 6 shows as example the experimental

Raman spectra of 5-bromouracil molecule35. Although the scaled frequencies appear close to the experimental

ones, however, the calculated intensities of the bands are very different of those in the experimental spectrum.

This happen when the intermolecular H-bonds in the crystal have some relevance. In these cases, the solid

state should be better simulated. One approach is through a dimer, trimer or tetramer forms, according to

that observed by x-ray.
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Fig. 6. Comparison of the experimental Raman spectrum of 5-bromouracil in the solid state with those

spectra simulated (calculated and scaled theoretically) at the B3LYP/6-311+G(2d,p) level. The scaled

spectrum was carried out with the two-scaling equation procedure.

An example of this simulation is presented in Fig. 7, which shows the results in 5-iodouracil molecule,

in its monomer36 and tetramer37 forms. Three kinds of tetramer forms were simulated trying to reproduce

the unit cell. The pattern of the scaled IR spectrum with the tetramer forms appears much more close to the

experimental spectrum than with its monomer form. For clarity, in the figure was also included the assignment

of the most intense IR bands. The numbers refers to the notation used for the uracil ring modes24.

9. Conclusions

The procedure selected for scaling depends on the size of the organic molecule and the accuracy

required for the predicted frequencies.

Among the procedures for scaling the frequency, the CCD, CCSD(T) and QCISD methods and

large basis sets give rise to almost corrected harmonic frequencies. Thus it is not necessary to use scaling

procedures. However, these methods are very expensive in time and memory computer consuming, and are

limited to molecules with less than 4 atoms.

With larger organic molecules, but less than 20 carbon atoms, HF, MP2 and DFT methods and

large basis sets can be used for calculating frequencies. If the accuracy required is not very high (the

errors in the predicted frequencies could be between 0-4%), then the use of a unique scale factor with the

calculated frequencies (or two, for the high and for the low-frequencies vibrations), is the simplest and
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easiest procedure. In this case, among the HF, MP2 and DFT methods, the most cost-effective are the HF/

6-31G* and the B3-based/6-31G*. If the accuracy required is high, then, at the same level, previous scale

factors should be calculated for each mode from related and simpler molecules.

Fig. 7. Comparison of the experimental IR spectrum of 5-iodouracil in the solid state with those spectra

simulated (scaled theoretically) considering a monomer (isolated stated) and a tetramer form, at the B3LYP/

DGDZVP level. Three kind of tetramer forms were simulated, named A, B and C.

In Benzene, the predicted frequencies for the ring modes using DFT methods leads to very small

errors. Thus in this molecule and in small derivatives, the DFT methods should be used.

With molecules between 20–40 carbon atoms, HF and DFT methods can be used for calculating

frequencies. However, the cost/effective ratio with HF is higher than with DFT methods. Thus, DFT methods

should be only used. With very large molecules, higher than 40 carbon atoms, semiempirical methods are

recommended to be used, in special AM1. With these methods, the specific scale factor procedure for each

mode should be used, which gives good predicted frequencies, with error lower than 5%.
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