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Fringe pattern denoising is a crucial pre-processing operation in the fringe analysis procedure for obtaining reliable 
quantitative measurements in an optical interferometric setup. A convolutional neural network based fringe denoising 
algorithm is proposed considering a simple model architecture. The network training is performed using fringe patterns 
generated with random phase profiles. The corresponding noisy fringe patterns are generated using multiplicative 
speckle noise model in order to simulate the practical fringe pattern recording process. The algorithm is designed 
such that arbitrary sized fringe pattern denoising can be performed. Simulation and experimental results are provided 
for performance comparison of the proposed algorithm with some representative State-of-Art techniques. The results 
substantiate the effectiveness of the proposed algorithm in practical applications. © Anita Publications. All rights reserved.
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1 Introduction

	 Optical interferometric techniques such as holographic interferometry, electronic speckle pattern 
interferometry (ESPI), and shearography are used in precision measurement applications [1-3]. In these 
techniques, the information on the measurand is recorded in the form of a fringe pattern which basically 
represents sinusoidal variations in the intensity of the interference field. Although the spatial variation in the 
measurand can be observed using the fringe pattern, it is only possible in a qualitative manner. Consequently, 
fringe pattern demodulation is essential for extracting the quantitative information on the measurand. Over 
the years, a number of fringe demodulation techniques have been proposed in the literature. In general, fringe 
patterns are severely corrupted by speckle noise, which is multiplicative in nature, on account of the coherent 
light source used in the interferometric setup. The presence of speckle noise is a major impediment in the 
fringe pattern demodulation process. Therefore, fringe pattern denoising is an essential pre-processing step 
for reliable fringe pattern demodulation. 
	 A number of fringe denoising algorithms have been reported, for example, techniques based on 
moving average/median filter, spin filter [4,5], partial differential equations (PDEs) [6-8] and transform based 
techniques such as Fourier transform [9], wavelet transform [10-12], and windowed Fourier transform [13], 
dimensionality reduction [14], empirical mode decomposition [15], and non-local filter [16]. Performance 
comparison of different fringe denoising techniques have also been provided in [17,18]. 
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	 Recently, machine learning algorithms have been applied for the fringe pattern analysis. For example, 
fringe denoising methods based on convolutional neural networks have been reported in [19-23]. In this 
paper, we propose a fringe denoising algorithm based on convolutional neural network (CNN) considering a 
simple model architecture. 

2 Theory

	 Let us consider the generation of fringe patterns in a typical optical interferometric setup. Initially, 
an intensity of the interference between the reference light beam and the light beam associated with the object 
under investigation is recorded. A typical intensity pattern corresponding to reference state of the object can 
be represented as
	 I1(x, y) = a(x, y) + b(x, y) cos[ϕ(x, y)],
where, (x, y) represents pixel coordinates; a(x, y), b(x, y) and ϕ(x, y) represent the background intensity (sum 
of individual intensities of reference and object beam), interference term amplitude and phase difference 
between the reference and object beam, respectively. In the case of optically rough objects, the phase values 
are uniformly distributed in the range of (–π, π). As a result, an intensity pattern contains randomly distributed 
speckles. Upon external excitation, the object changes its reference state, which results in a deterministic 
change in the phase distribution. Let us represent the intensity pattern corresponding to the changed state of 
the object as
	 I2(x, y) = a(x, y) + b(x, y)cos[ϕ(x, y) + Δϕ(x, y)],
where, Δϕ(x, y) represents the deterministic change in the phase. A fringe pattern corresponding to the 
measurement of change in the object state is calculated as the absolute difference between the two intensity 
patterns as
	 I(x, y) = | I1 (x, y) – I2 (x, y) |

	         = 2|b(x, y)sin[2ϕ(x, y) + Δϕ(x, y)/2]sin[Δϕ(x, y)/2]|
	 It can be observed that the second sinusoidal component of the fringe pattern corresponds to the 
deterministic Δϕ(x, y) and the first sinusoidal component of the fringe pattern acts as multiplicative noise 
source due to random nature of ϕ(x, y). In order to reliably extract the phase Δϕ(x, y) from the fringe pattern, 
the fringe pattern contribution of the multiplicative noise component needs to be minimized. In the following, 
we describe the proposed CNN architecture designed for the purpose of fringe pattern denoising.
2.1 Model
	 In the proposed method, a simple CNN architecture is used with four convolution layers as shown 
in Fig 1. Whereas the first three layers generate 64 feature maps individually, the last convolution layer 
generates a single channel output. The convolution layers are followed by the BatchNorm (BN) operation 
and a nonlinear activation of LeakyReLU (negative slope = 0.01). The second and third convolution layers 
are followed by a 20% dropout operation. Each Conv2d layer has a Kernel size = (3, 3), stride = (1, 1) and 
padding = (1,1). A skip connection is given between the input layer and output of the fourth convolution layer 
to improve the flow of gradients. Kaiming weight from normal distribution is used for weight initialization of 
the network and bias was set to 0.01 for each layer. We utilize the most widely used loss function for image 
denoising operation based on mean-squared error (MSE) loss,

	 MSE = 1
N

 ∑ |If – I' |2

where N represents no. of pixels. In each example of the training set, a speckle noise corrupted fringe pattern 
(I ) is generated which is fed as an input of the network. The final output of the network (If ) is compared 
pixel-wise against the ground-truth speckle-free image (I'  ).
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Fig 1. Convolutional neural network architecture considered in the proposed fringe pattern denoising approach.

2.2 Training and Model Output
	 The training data set consists of 5000 grayscale pairs of fringe patterns (noise-free and noisy) each 
of size 512×512 pixels. The validation set consists of 500 grayscale pairs of fringe patterns (each clean 
and noisy) of size 512×512 pixels. The fringe patterns were converted into tensors using pytorch's inbuilt 
transforms. The model is trained is performed with a learning rate of 0.01, a batch size of 1 and for 5 epochs 
(25,000 iterations). Adam optimizer is used for the optimization task of the model with the values of β1 = 0.9, 
β2 = 0.999, ϵ=10–8 . In order to operate with arbitrary sized speckle images, they are divided into patched of 
512×512. Subsequently, the denoising procedure is applied to each patch. Finally, the noise-filtered outputs 
of the patches are combined together to generate an output image of the same size as that of the input image. 
It is important to note that no up-sampling or down-sampling operation of the image is performed in the 
entire model, thus eliminating any possible adverse effects associated with these operations. 

3 Simulation and Experimental Results

	 Figure 2 shows three representative examples of noise-free fringe patterns in the first row and the 
associated speckle noise corrupted fringe patterns in the second row. Total 5000 number of such pairs are 
generated for the purpose of training the network. The network training was performed using the Google 
Colab platform. The training of the network approximately takes four hours with the desktop computer. 
	 The denoising performance of the proposed method is compared with three fringe denoising 
techniques based on nonlinear PDE [6], windowed Fourier filtering (WFF) [13], and dimensionality reduction 
(DR) [14]. Two simulated speckle noise corrupted fringe patterns examples shown in Figs 3 (a) and 3 (b) are 
considered for the purpose of comparison. Figures 4 and 5 provide visual comparison of denoising results 
corresponding to Figs 3 (a) and 3 (b), respectively. It can be noted that the proposed algorithm provides 
improved denoising performed compared to other State-of-Art methods. For the quantitative comparison of 
these techniques, we consider two performance metrics defined in [10]. First metric, image fidelity (IF), is 
defined as

	 IF = 1 – 
∑(I – If )2

∑I 2

and second metric, speckle index (SI) as,

	 SI = ∑ 
σIf (x,y)

μIf (x,y)

where, σIf (x,y) and μIf (x,y) represent local standard deviation and mean of the fringe image computed within 
for example, 5×5 windows, respectively. The speckle index basically indicates the local smoothness of the 
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filtered fringe pattern. That is, a lower speckle index corresponds to a higher amount of speckle denoising and 
vice - versa. Table 1 provides quantitative comparison of denoising algorithms corresponding to the fringe 
patterns given in Figs 3 (a) and 3 (b). The proposed algorithm provided highest image fidelity and lowest 
speckle index for both the examples. The performance with respect to speckle index can be improved with 
increased network complexity and number of training examples.

 Fig 2. Network training data set: first row: noise-free fringe patterns; second row: noisy fringe patterns.

(a) (b) (c)

Fig 3. (a) and (b) Simulated speckle noise corrupted fringe patterns and (c) experimentally recorded fringe pattern in 
an ESPI setup corresponding to the in-plane displacement of an aluminium plate.

Table 1. Fringe denoising performance metrics: image fidelity and speckle index
IF/SI

PDE WFF DR Proposed

Fig 3 (a) 0.3572/0.1013 0.3710/0.1318 0.3674/0.1204 0.9242/0.3446
Fig 3 (b) 0.3993/0.0877 0.4032/0.1175 0.3803/0.0637 0.9788/0.2388
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Fig 4. Denoising results obtained using PDE, WFF, DR, and the proposed technique for the fringe pattern 
example given in Fig 3 (a).

Fig 5. Denoising results obtained using PDE, WFF, DR, and the proposed technique for the fringe pattern 
example given in Fig 3 (b).
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Fig 6. Denoising results obtained using PDE, WFF, DR, and the proposed technique for the fringe pattern shown 
in Fig 3 (c).

	 Experimental validation of the proposed algorithm is performed using the fringe pattern recorded in 
an ESPI setup corresponding to the in-plane displacement of an aluminium plate shown in Fig 3 (c). It can 
be deduced from the result given in Fig 6 that the proposed algorithm is capable of providing satisfactory 
performance in the fringe denoising.

4 Conclusion	

	 An appropriately trained CNN architecture is found to provide acceptable fringe denoising 
performance even with a simple model architecture. Since the proposed fringe denoising algorithm does 
not consider any assumption on the fringe frequencies, it can prove to be a powerful candidate for fringe 
denoising in the practical applications. It can be expected that further increase in the model complexity may 
improve the denoising performance especially in the context of local fringe smoothing.
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