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A non-orthogonal cylindrical doublet is equivalent to a virtual orthogonal doublet, rotated an angle φ with regard to 
the original coordinate axes. This angle is a function of the angle α between the cylinder axes of the original doublet 
and of its focal lengths, as well as of the original orientation of the doublet. Likewise, the focal lengths of the virtual 
doublet depend on the focal lengths of the original doublet and on the angle α. This property can be used to deal with 
an anamorphic Lohmann’s irst -type system (propagation –lens – propagation), where the cylindrical doublet is placed 
at the same distance from the input and the output planes to obtain a fractional Fourier transform. In this paper, as an 

application, we propose to use two such systems in cascade to perform double random phase encryption. To introduce 
different fractional orders in two orthogonal directions and at the same time a rotation of the equivalent system, we 
only need to rotate one lens of the non-orthogonal doublet in each sub-system. Simulations have been carried out to 

substantiate the feasibility of the proposed encryption system. Results when angular errors are introduced in each of 
the sub-systems are shown. © Anita Publications. All rights reserved.

Keywords: Cylindrical doublet,  Orthogonal doublet Random phase encryption.

1 Introduction

 Sharing information among groups of persons with common interest has been always very important. 
In many occasions, the information transmitted by different methods must be known only by a restricted 
number of persons. To do it, researchers have relied on the use of codes. With the passing of time, methods 

with increasing security are more and more demanded in the last years in several and different areas.
 The inherent capability of optical systems for parallel processing is specially itted for information 
encoding, in particular for 2D complex data. The information can be encoded using the different parameters 

that characterize the optical wave. As an additional element of security, Françon and May [1] proposed to use 

a diffuser in the optical system, which introduces random phase changes. Since then, many optical techniques 
have been proposed using random masks, either in amplitude or in phase. The results obtained with only 
one mask didn’t reach the level of security expected in principle. Thus, in a pioneering paper, Réfrégier and 
Javidi proposed the method known as double random phase encryption (DRPE) [2]. Nowadays, this article 
is the base for a great number of encoding techniques. In DRPE, using a 4f architecture optical system, 

the input data are encoded into a stationary white noise by using two statistically independent white noise 
random phase masks (RPM). The irst RPM is introduced in the input plane and the second in the Fourier 
plane. For the decryption, we must generate the complex conjugates of the two RPMs. In the case that the 
input data are of amplitude, for the decoding only the complex conjugate of the mask placed in the Fourier 
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 plane is needed, while with complex data the complex conjugates of both RPMs are necessary. Thus, the 
method is based on the use of random masks as the encryption keys. 

 Different modiications of the method were introduced by Javidi et al [3-8] to improve the results, 

just after the publication of that pioneering paper. In [3] the images are represented by phase-only versions, 

and shows that this nonlinear encryption is more secure than a linear one (amplitude encryption). In [4], 

digital phase-shifting interferometry is used for eficient recording of amplitude and phase information. The 
technique can be adapted to encrypt either the Fraunhofer or the Fresnel diffraction pattern of the input. 

Using a binary spatial light modulator (SLM), in [5] a binary key code is presented to perform shift-invariant 

encryption and decryption. Encrypted optical storage with wavelength-key is presented in [6] as well as with 
angular multiplexing in [7]. In [8] fully phase encryption is used to obtain a secure holographic memory.

They proposed also to employ digital holography to encrypt three-dimensional information [9], as well as 
the use of a joint transform correlator (JTC) architecture [10]. Concerning the use of digital holography, 

recently it has been reported a novel technique for personal authentication [11] in which ingerprint images 
are captured using an optical encryption method similar to that in Ref [9]. Concerning the JTC architecture, 

the interest is based on its robustness and on the fact that it does not require an accurate optical alignment. In 

the context of optical encryption, to record fully complex information, it is necessary to employ holographic 

methods, so it is necessary to introduce a reference wave. A classical arrangement could be a Mach-Zehnder 
interferometer with the JTC in one arm and the reference in the other. Nevertheless, recently it has been 
published an article where the external reference wave is avoided [12].

 In order to increase the security, Unnikrishnan et al [13,14] proposed to perform the encryption 

with fractional Fourier systems adding more keys in the form of fractional orders. Since then, the fractional 
Fourier transform (FRFT) [15-25] is usually applied in image encryption. For the decryption is now necessary 
to know the correct fractional order besides the conjugates of the RPMs. The optical implementation has 
been performed with either Lohmann’s irst-type or Lohmann’s second-type systems [15,20].

 After the introduction of fractional Fourier systems, methods based on iterative fractional Fourier 

transform have been proposed [26,27], as well as encoding in the Fresnel domain [28]. Many papers have 

been published since then in the ield following these ideas. For instance, encryption obtained by combining 
digital holography and the joint transform correlator architecture [29] or double image encryption combining 

fractional Fourier domain and pixel scrambling technique [30] or linear blend operation [31]. In a recent 

review paper [32], the authors describe a good number of the optical image encryption techniques proposed 

in the literature. They also provide a great number of related references.

 As next step, the use of anamorphic fractional Fourier transformers [33-36] in the DRPE provides 

the encoding of a 2D image with two different fractional orders in two orthogonal directions [37], using 

cylindrical lenses in Lohmann’s bulk systems. As a way to add some more security, Kumar et al  [38]

proposed to use as anamorphic system two Lohmann’s second type in cascade, where the spherical lenses 
have been replaced by pairs of orthogonally aligned cylindrical lenses, adding an in-plane rotation of the pairs 

of cylindrical lenses between the input plane and the Fourier plane, an another in-plane rotation, which can 
be different from the previous one, between the Fourier plane and the inal plane. These rotations constitute 
extra encryption keys. However, the experimental setup looks not to be very robust and versatile due to 
the eight cylindrical lenses and the additional constraint of rotating the two parts of the system: losing the 
alignment could result in uncorrected decryption.

 In this paper, we propose the use of an anamorphic Lohmann’s irst-type system (propagation-lens-
propagation) with a non-orthogonal cylindrical doublet placed at the same distance from the input and the 
output planes in each of the two FRFT subsystems. Each non-orthogonal doublet is equivalent to a virtual 
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orthogonal doublet, rotated an angle φ  with regard to the original coordinate axes [39,40]. This angle is a 

function of the angle α  between the cylinder axes of the original doublet and of its focal lengths, as well 
as of the original orientation of the doublet. Likewise, the focal lengths of the virtual equivalent doublet 
depend on those focal lengths and on the angle α. To introduce different fractional orders and at the same 
time a rotation of the equivalent system, we only need to rotate one lens of the non-orthogonal doublet in 
each sub-system.

 In Section 2, we present the mathematical analysis, in matrix formalism, of both the anamorphic 
Lohmann’s irst type system with a non-orthogonal cylindrical doublet to obtain the FRFT of an input image 
and the system that we propose for optical encryption based on DRPE method. Section 3 gives computer 
simulation results to verify the feasibility of the system and its lexibility. Finally, Section 4 contains the 
main conclusions of the work.

2 Mathematical Analysis

2.1 Anamorphic Lohmann’s type I system with a non-orthogonal cylindrical doublet.

 Shorter after the initial works on FRFT with grin lenses, Lohmann [15] proposed two bulk systems 
producing FRFT, nowadays known as Lohmann’s type I and type II systems. The irst type system consists of 
a free propagation of distance d, a converging spherical lens of focal length f ', and a second free propagation 

of distance  d, as shown in Fig 1(a).

 In matrix notation [25], this system can be described by

 

1 21 0
1 1 ' '

1
10 1 0 1 1

' 1
' '

LohI

d dd
d d f f

M
df

f f

  
− −           = =      −     − −    

 

 (1)

 We compare this matrix with the general matrix of an optical system performing a FRFT, of order p

 ( )
1

1

cos sin

sin
cosFRFT

f
M p

f

Φ Φ 
 = Φ − Φ 
 

 (2)

where the fractional order p is given by the angle (φ – pπ / 2).The parameter  f1 acts as a scaling factor. 

Sometimes, this parameter is referred to as the standard or generalized focal length, although we note that 
the focal length of the FRFT system is given by f' = f1 / sin φ.  

 From Eqs (1) and (2), we see that 

 cos 1
'

d
f

Φ = −  (3a)

 1 sin 2
'

df d
f

 
Φ = − 

 
 (3b)

 1'
sin

ff =
Φ

 (3c)
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Fig 1. Schemes of Lohmann’s irst type fractional Fourier transform systems: (a) spherical lens coniguration 
and (b) anamorphic with a non-orthogonal cylindrical doublet architecture. 

The application of the Collins formula [25] to this ray matrix provides the output FRFT ield, 
g2 (x2, y2), as a function of the input ield, g1 (x1, y1):

 

( ) ( )

( )

2 2

2 2
2 2 2 1 1 1

2 2

1 1 1 2 1 2
1 1 1 1 1

1
, , exp ·

sin

, exp exp 2

p x yg x y FRFT g x y j
j T

x y x x y yg x y j j dx dy
T S

π
λ

π π

 +
= =     Φ  

 +  +  −       
∫∫

 (4)

where: 
1 sinS fλ= Φ  (5a) and 

1 tanT fλ= Φ  (5b) 

 The generalization to an anamorphic system, where the spherical lens has been replaced by a pair 
of orthogonal cylindrical lenses, with focal lengths x

f ′  and yf ′ , aligned with the coordinate axes x and y is 

straightforward. The ray matrix becomes now a 4 × 4 matrix.

 

1 2 0 0

1
1 0 0

0 0 1 2

1
0 0 1

x x

x x

y y

y y

d dd
f f

d
f f

d dd
f f

d
f f

  
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 

− − ′ ′ 

 (6)

 And the FRFT is given by

 

( ) ( ) ( )
2 2

2 1
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2 2
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exp exp 2
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An x y
x
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x xg x y FRFT FRFT g x y g x y j
T
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T S S

π

π π
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∫∫
 (7)
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 1 sin
x x x

S fλ= Φ  (8a)

 1 tan
x x x

T fλ= Φ  (8b)

 2
x x

p
π

Φ =
 (8c)

 1 siny y yS fλ= Φ  (9a)

 1 tany y yT fλ= Φ  (9b)

 2
y yp

π
Φ =

 (9c)

 In this article, we propose to replace the spherical lens of the orthogonal Lohmann’s type I system 
by a non-orthogonal cylindrical doublet of focal lengths f1'  and f2', the cylinder axes making the anglesa1 

and a2 with the x-coordinate axis, respectively, as shown in Fig 1(b). If we call a = a2 – a1, such a non-

orthogonal doublet, as was established by Long for the dioptric power matrix [39] and by Macukow and 
Arsenault [40] for the ray matrix, is equivalent to an orthogonal doublet of focal lengths fA'  and fB', given 

by

 ( )
2 2

1 2 1 2 1 2

2cos 21 1 1 1 1 1

2 2 2
A

f f f f f f f
α

= + + + +
′ ′ ′ ′ ′ ′ ′

 (10a)

 ( )
2 2

1 2 1 2 1 2

2cos 21 1 1 1 1 1

2 2 2Bf f f f f f f
α

= + − + +
′ ′ ′ ′ ′ ′ ′

 (10b)

and rotated an angle ϕ  with regard to the x-axis, given by

 ( ) ( )
( ) ( )

1 2 2 1 1 2

2 1 1 2

cos 2 cos 2
tan

sin 2 sin 2

Cf f f f
f f

α α
ϕ

α α
′ ′ ′ ′− −

=
′ ′+

 (11a)

 ( )
1

2

2 2

1 2 1 2

2cos 21 1
C

f f f f
α 

= ± + + ′ ′ ′ ′ 

1/2

         (11b)

 When the cylinder axis of one of the lenses of the doublet is aligned with a coordinate axis, Eq 

(11a) simpliies to 

 ( ) ( )
( )

1

2 1

sin 2
tan 2

cos 2

f
f f

α
ϕ

α
′

=
′ ′+

 (11c)

 The ray matrix of this virtual doublet referred to the x- and y-axes is no longer a diagonal block 

matrix as that given by Eq (6), so in the anti-diagonal blocks some elements are different from zero and 

the system cannot be treated as two independent systems in the x- and y-directions. But if we refer to a 
new coordinate system rotated an angle ϕ , the corresponding matrix becomes a diagonal block matrix in 

the directions given by φ and (φ + π/2). Thus, the system performs an FRFT of the input object rotated an 
angle – φ. In any case, we get the anamorphic FRFT of the input with fractional orders which are functions 
of the focal lengths of the virtual doublet. Moreover, a change in the angle a results in a new virtual doublet 
and new fractional orders.
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 Let us call ( ),
i i

x yϕ ϕ , i = 1, 2, the new coordinates after the rotation of angle φ,

 cos sin

sin cos

i i

i i

x x

y y
ϕ

ϕ

ϕ ϕ
ϕ ϕ

    
=    −   

 (12)

and let us represent by ( )1 1 1,g x yϕ ϕ′  the input object referred to the rotated axes and by ( )2 2 2,
An

g x yϕ ϕ′  the 

amplitude distribution at the anamorphic FRFT plane. Let us represent by pϕ  and 
2

p πϕ +
 the respective 

fractional orders.

 The new ray matrix is

 

1 2 0 0

1
1 0 0

0 0 1 2

1
0 0 1

A A

A A

B B

B B

d dd
f f

d
f f

d dd
f f

d
f f

  
− −  ′ ′  

 
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′ ′ 
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 
 − − ′ ′ 

 (13)

 And after generalized Collins formula [25, 41] 
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∫∫

2 2

1 1 1 12
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x y
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d dd d
f f

ϕ ϕ
ϕ ϕ ϕ ϕπ

λ λ

  
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  − +      − −     ′ ′      

 (14)

 As could be expected, this equation coincides with the result obtained by direct calculation through 
Fresnel propagation.
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π π
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+

+
+

+ +

 
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∫∫ 1yϕ

 (15)

 1 sin
2

A
S f pϕ ϕ

πλ   =     
 (16a) 
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1 tan

2
A

T f pϕ ϕ
πλ   =     

 (16b)

 
2

pϕ ϕ
π Φ =  

 
 (16c)

 1

2 2

sin
2

BS f pπ πϕ ϕ

πλ
+ +

  =   
  

 (17a)

 1

2 2

tan
2

BT f pπ πϕ ϕ

πλ
+ +

  =   
  

 (17b)

 
2 2

2
pπ πϕ ϕ

π
+ +

 Φ =  
 

 (17c)

 If we compare Eqs (14) and (15), we obtain

 
( ) ( )1

2
tan

A

A

A

d f d
T f

f dϕ ϕ

λ
λ

′ −
= = Φ

′ −  (18a)

 
( ) ( )1

2
sin

A

A

A

d f d
S f

fϕ ϕ

λ
λ

′ −
= = Φ

′  (18b)

 
( )

1

2 2

2
tan

B
B

B

d f d
T f

f dπ πϕ ϕ

λ
λ

+ +

′  −
= = Φ ′ −  

 (19a)

 ( )
1

2 2

2
sin

B
B

B

d f d
S f

fπ πϕ ϕ

λ
λ

+ +

′  −
= = Φ ′  

 (19b)

 After some calculations, we have,

 ( )1 2
A A

f d f d′= −
 (20a)

 ( )1 2B Bf d f d′= −
 (20b)

 So,

 ( ) 1tan A

A

f
f dϕΦ =
′ −

 (21a)

 1

2

tan B

B

f
f dπϕ +

 
Φ =  ′ − 

 (21b)

 ( ) 1sin
A A

f fϕ ′Φ =  (22a)

 1

2

sin B Bf fπϕ +

 
′Φ = 

 
 (22b)

2.2 Encryption system

 The optical setup that we propose consists in two anamorphic fractional Fourier transformers 
Lohmann’s type I in cascade. Each of them is composed of a non-orthogonal cylindrical doublet, the axes 
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of the cylindrical lenses making a given angle, not necessarily the same in each subsystem. A scheme of 

the system is shown in Fig 2. The input function to be encoded is g'1 (xφ1, yφ1) that can be either real-valued 

or complex-valued; g'2An (xφ2 , yφ2) represents the anamorphic fractional Fourier transforms displayed in the 

output plane of the irst subsystem, with fractional orders p1  and  p2 ; g'ψ3 (xψ3, yψ3) represents the output 

anamorphic fractional Fourier transform of the second subsystem, with fractional orders p2 and p4. The 

sub-index ψ indicates the angle that the second virtual doublet makes with the coordinate axes, owing to a 
possible change of the angle between the cylindrical axes of the doublet with respect to the irst one. We 
also denote by M1  and M2  the phase functions that are placed at the input plane and at the output plane 

of the irst subsystem, respectively. They can be written as 

 M1 (xφ1 , yφ1) = exp[ j2πa(xφ1 , yφ1)] (23)

 M2 (xφ2 , yφ2) = exp[j2πb (xφ2, yφ2)] (24)

Fig 2. Proposed optical layout for image encryption/decryption based on two anamorphic fractional Fourier 
transformers Lohmann’s type I in cascade.

a(xφ1 , yφ1) and b(xφ2 , yφ2)  represent two statistically independent white sequences uniformly distributed 
in the interval [0,1]. In the irst subsystem, the input object is multiplied by the mask M1. We expect that 

the action of the mask is to provide a white noise image at the irst fractional Fourier plane. But owing 
to the limited bandwidth of the phase mask, we don’t obtain that result [38, 14]. Thus, the second mask  

M2 is introduced in the fractional Fourier plane. The irst virtual orthogonal doublet, equivalent to the irst 
actual subsystem (the cylindrical lenses making an angle a1), provides the anamorphic FRFT of orders p1  

and p2 of the complex distribution in the input plane, in the two orthogonal directions given by φ and (φ 
+ π/2); i.e.

 ( ) ( ) ( )1 2

2 2 2 1 1 1 1 1 1

2

, , ,
p p

An
g x y FRFT FRFT g x y M x yϕ ϕ ϕ π ϕ ϕ ϕ ϕϕ +

 ′ ′=    (25)

 This complex distribution multiplied by M2 acts as input image for the second fractional Fourier 

transformer. If the angle between the cylindrical lenses of the actual doublet is now a2, the equivalent virtual 

doublet provides the anamorphic Fourier transforms, of orders p3  and p4, in the orthogonal directions given 

by ψ  and (ψ + π/2)  , calculated from Eqs (10a), (10b) and (11). The inal encrypted image distribution is 

 ( ) ( ) ( )3 4

3 3 3 2 2 2 2 2 2

2

, , ,
p p

An An
g x y FRFT FRFT g x y M x yψ ψ ψ π ϕ ϕ ϕ ϕψ +

 ′ ′=    (26)
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 The encryption keys are the four fractional orders and the two phase masks. The advantage of this 
system is that with only one change in the angle made by the cylindrical axes of the two lenses in each 
doublet, we get different fractional orders and, at the same time, we introduce a rotation of the coordinate 
systems in each of the subsystems. The original angle of the anamorphic cylindrical doublet with regard to 
the coordinate axes acts as an important additional key too.

 For the decryption process we can use the same system as for the encryption but in reverse order 
and using the conjugates of the masks. The distribution given by Eq (26) is introduced as input image in the 

second system exchanging the input and output planes and a similar procedure is done in the irst system. 
At the inal output plane we obtain the recovered image.
 The all-optical experimental implementation of the encryption and the decryption can be carried 

out by some of the methods proposed in the literature. The phase masks are introduced with spatial light 
modulators (SLMs). But also, the encrypted image can be obtained digitally and carry out the decryption 
optically. In that case, the main problem comes from the adjustments of pixelates of the SLMs and that of 
the digitally encrypted image. However, in this paper we only present computer simulation results to verify 
the feasibility of the proposed system.

3 Computer simulations

3.1 Orthogonal anamorphic doublets.

 To perform the simulation, we assume that our encryption system is like that shown in Fig 3. 

In order to clarify the behavior of the system, let us begin with orthogonal doublets. The irst doublet is 
composed of two cylindrical lenses, of focal lengths f '11 = 300mm and f '12 = 500mm ; we represent by α11 

(named as ANGINI1 in simulations) and α12 = α11 + 90º  the initial angles that the cylinder axes of such 

lenses make with regard to the x-coordinate axis. The propagation distance is represented d1 = 300mm. 

The focal lengths of the second doublet are f '21= 200 mm and f '22 = 450mm, the angles with the x-axis are 

represented by α21 (named as ANGINI2 in simulations) and α11 = α21 + 90º, and the propagation distance d2 

= 250mm. When the doublets are aligned with the coordinate axis (α11 = α21 = 0) , the fractional orders in 

the irst system are p1X = 1 and p1Y = 0.738, and in the second p2X = 1.161 and  p2Y = 0.707. These values 

maintain along the cylinder axes independently of the orientation of the orthogonal doublet.

 The two images to be encrypted and later recovered are shown in Fig 3(a), a picture of the real 

life, and in Fig 3(b), aone-dimensional (1D) resolution target to check, at least from a qualitative point of 

view, the loose of resolution in the process.

Fig 3. Selected images for simulations: (a) picture of the real life and (b) 1D resolution test target.

 We consider that the encryption has been done with angles a11 = a21 = 15°. These angles together 

with the fractional orders of each system are the keys for the decryption process. The encrypted images 
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have no features of the original images. To check the performance of the system, we make the decryption 
in two cases: a) in the irst system, we assume that the correct angle a11 = 15° is used and, in the second, 

a21 varies in an interval of ±10° around the correct value; and b) in the second system we assume that 
the correct angle a21 = 15° is used and, in the irst, a11 varies in an interval of ±10°. The deviation angle, 

b, constitutes in both cases the error of the system in the decryption. When the correct keys are used in 

the decryption process, we recover the original images, as shown in the center of rows 1 and 3 in Fig 4, 

corresponding to the value b = 0°. The decryption sensitivity with respect to the changes introduced by the 
angle error b can be measured, as usual, by means of the mean squared error (MSE) between the decrypted 
and the original images. The MSE is given by:

 2

1 1

1
( , ) ( , )

M N

o d
i j

MSE I i j I i j
M N = =

= −
× ∑∑  (26)

I0 (i, j) denotes the original image and Id (i, j) the decrypted one. M and N are the number of pixels along 

the x and y axes, respectively.

Fig 4. Calculated normalized MSE against the values of the angle b (second row) and decrypted images 
for determined values of b when an error has been made either in the decryption angle in the irst system 
(continuous line and upper row, respectively) or in the decryption angle in the second system (dashed line 
and lower row, respectively). For b = 0, the decryption angles are a11 = a21 = 15° .

 Figure 4, row 2, shows the normalized calculated MSE against the values of the angle b, when the 
error is made in system 2 (dashed line) and in system 1 (continuous line). These plots, as well as the rest of 
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plots in this section, have been obtained in steps of 0.25°. Row 1 shows the aspect of the decrypted images 
with the error made in system 1, and row 3 when the error is made in system 2, for determined values of 
b in order to compare the degradation of the images.

Fig 5. Calculated normalized MSE against the values of the angle b (second row) and decrypted images 
for determined values of b when an error has been made either in the decryption angle in the irst system 
(continuous line and upper row, respectively) or in the decryption angle in the second system (dashed 
line and lower row, respectively). Moreover, for b = 0, there is also an initial error either of 1° in the irst 
system (initial decryption angle a11 = 16°) or of 0.5° (initial decryption angle a21 = 15.5°).

 Looking at the two plots of MSE, we realize that the encryption system is more sensitive to errors 
in the orientation of the second anamorphic system than to errors in the irst one. For instance, an error of 
0.5° in the second system gives rise to a similar degradation of the images than an error of 1° in the irst 
one, in agreement with the values of the normalized MSE. Moreover, for values greater than 2° in the second 
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system, there is no decryption, whereas the same error, and even greater, in the irst system permits at least 
a partial decryption. It is worthy to note that the plots of MSE are almost the same for the two images.
 Taking into account the different sensitivity of the decryption process to errors in systems 1 and 

2, row 2 in Fig 5 displays similar plots to those shown in Fig 4, but the continuous line corresponds to 

the case in which  a permanent error of ±1° has been made in the value of a11 in the decryption process, 

whereas the dashed line corresponds to the case in which a permanent error of ±0.5° has been introduced 
in the value of a21. As before, rows 1 and 3 show the aspect of the decrypted images for determined values 
of the angle error b. Owing to the permanent error either in a11 or in a21 in any case a correct decryption 

is obtained. 

 In both curves, for b = 0, the normalized MSE takes approximately the value 0.4 and increasing 

values when b differs from zero. Increasing values of MSE implies a greater degradation of the inal 
image.

Fig 6. Calculated normalized MSE against the values of the angle b when an error has been made either in the 
decryption angle in the irst system (continuous line) or in the decryption angle in the second system (dashed 
line). For b = 0, the decryption angles a11 and a21 take the correct values in each case. Encryption angles:  

(a) a11 = a21 = 85°; (b) a11 = a21 = 145°;  (c) a11 = a21 = 55° 
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 To study the behavior of the normalized MSE, that is, the degradation of the image, we have 
considered other values of the angle a11 in two cases, (a) when a11 = a21, and (b) when a11 ≠ a21. Figure 

6(a) shows the plot of the normalized MSE against b when a11 = a21= 85° and the decryption is made with 
correct initial angles. Figure 6(b) and Fig 6(c) show analogous plots when a11 = a21= 145° and a11 = a21= 

55°, respectively.

 As it can be seen, depending on the value of the encryption angles, the curves have different widths, 
that is, they degrade more in one case than in another, although they are rather similar. For completeness, in 

Fig 7 we plot the semi-angle deviation around the initial angle necessary to get the 40% of the normalized 
MSE as a function of its values between 0° and 0180°. As in the previous igures, the continuous line 
corresponds to variations of a11 when the correct value of a21 is introduced and the dashed line to variations 

of a21 when the correct value of a11 is used. The degradation is quicker when the value of a11 = a21 is around 

90° and slower around 45°. 

Fig 7. Plot of the semi-angle deviation around the initial angle to obtain 40% of the normalized MSE as a function 
of the initial angle. The continuous line corresponds to errors in the decryption angle in the subsystem and the 

dashed line to errors in the second subsystem.

 In case that a11 ≠ a21, we obtain similar plots of the normalized MSE against the deviation angle b, 

but with greater differences in the behavior between the two curves for the different cases selected. Figure 

8 shows the plots when: (a) a11 = 15°, a21 = 55°, (b) a11 = 15°, a21 = 85°; (c) a11 = 15°, a21 = 140°; (d)  

a11 = 45°, a21 = 140°; and (e) a11 = 45°, a21 = 80° . The behavior of the two subsystems is quite different, 
the degradation being greater for determined pairs of  a11 and a21 values.

 In Fig 9(a) and Fig 9(b) we plot the semi-angle deviation around the initial angle necessary to 
get the 40% of the normalized MSE as a function of its values between 0° and 180° for the two pairs of 
values of encryption angles (a11, a21 = a11 + 15°) and (a11, a21 = a11 + 45°). As in the previous igures, the 
continuous line corresponds to variations of a11 when the correct value of a21 is introduced and the dashed 

line to variations of a21 when the correct value of a11 is used.
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Fig 8. Calculated normalized MSE against the values of the angle b when an error has been made either in the 
decryption angle in the irst system (continuous line) or in the decryption angle in the second system (dashed line).  
For b = 0, the decryption angles a11 and a21 take the correct values in each case. Encryption angles: (a) a11= 15°, a21= 

55° ; (b) a11 = 15°, a21 = 85°; (c) a11= 15°, a21 = 140°; (d) a11 = 45°, a21 = 140°; (e) a11= 45°, a21 = 80° .
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Fig 9. Plot of the semi-angle deviation around the initial angle to obtain 40% of the normalized MSE as a function 
of the initial angle. The continuous line corresponds to errors in the decryption angle in the irst subsystem and 
the dashed line to errors in the second subsystem. In (a) α21 = α11 + 15º; in (b) α21 = α11 + 45º  

 Looking at Fig 9, it can be seen that there is a maximum difference between the curves for the pair 
(α11 = 45º, α21 = 90º). This means that meanwhile the subsystem two degrades very quickly, the subsystem 
one does it slowly, as shown in Fig 10(a). On the contrary, the minimum difference between the two curves 
appears for the pair (α11 = 85º, α21 = 130º) as shown in Fig 10(b). Now, the two subsystems degrade in a 
close way.
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Fig 10. Calculated normalized MSE against the values of the angle b when an error has been made either in the 
decryption angle in the irst system (continuous line) or in the decryption angle in the second system (dashed 
line).  For b = 0, the decryption angles a11 and  a21 take the correct values in each case.  Encryption angles: (a) 
a11 = 45º, α21  = 90º;  (b) a11 = 85º, α21  = 130º.

 To check the behavior we consider the following cases:

3.2.1 The image is encrypted with a11 = α21  = 15º and,  d1 = d2 = – 10º. According to Table 1, the irst 
virtual doublet has the following parameters:
 fA1

' = 288mm,   fB1
'  = 537mm,  φ1 = 27.36º 

Table 1.Values of the parameters of the equivalent orthogonal system 1 and the corresponding fractional orders 

for selected values of a11 and d1.

11α (°)
1δ (°) ( )1A

f mm′ ( )1Bf mm′ ( )1 ºϕ ( )1d mm 1pϕ 1 /2pϕ π+

0 0 300 500 0 300 1.0 0.738

0 –10 288 537 8.94 300 1.026 0.709

15 –10 288 537 27.36 300 1.026 0.709

30 –10 288 537 42.46 300 1.026 0.709

0 –30 243 824 18.29 300 1.151 0.561

15 –30 243 824 33.30 300 1.151 0.561

30 –30 243 824 48.29 300 1.151 0.561

0 –60 200 3000 10.89 300 1.333 0.287

15 –60 200 3000 25.87 300 1.333 0.287

30 –60 200 3000 40,89 300 1.333 0.287



Anamorphic Lohmann’s irst type system with a non-orthogonalcylindrical doublet. Application... 1695

 

 The values of the fractional orders are 1 1.026pϕ =  and 
1

2

0.709p πϕ +
= .

 From Table 2, the parameters of the second doublet are:

 2 198
A

f mm′ =
  

 2 460Bf mm′ =
  

 2 19.10ºϕ =

 The values of the fractional orders are 
2 1.169pϕ =  and  2

2

0.698p πϕ +
=

Fig 11. Non-orthogonal doublets. Calculated normalized MSE against the values of the angle b (second row) 
and decrypted images for determined values of b when an error has been made either in the decryption angle 
in the irst system (continuous line and upper row, respectively) or in the decryption angle in the second system 
(dashed line and lower row, respectively). For b = 0, the decryption angles are α11= α21 = 15º. The deviations 

from orthogonality are d1 = d2= – 10º.
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Table 2. Values of the parameters of the equivalent orthogonal system 2 and the corresponding fractional orders 

for selected values of a21 and d2. 

21α 2δ ( )º ( )2A
f mm′ ( )2Bf mm′ ( )2 ºϕ ( )2d mm 2pϕ 2 /2pϕ π+

0 0 200 450 0 250 1.161 0.707

0 –10 198 460 7.31 250 1.167 0.698

15 –10 198 460 19.10 250 1.167 0.698

30 –10 198 460 35.59 250 1.167 0.698

0 –30 185 498 13.17 250 1.229 0.668

15 –30 185 498 18.22 250 1.229 0.668

30 –30 185 498 42.08 250 1.229 0.668

0 –60 147 2457 8.74 250 1.494 0.290

15 –60 147 2457 23.74 250 1.494 0.290

30 –60 147 2457 38.74 250 1.494 0.290

 We assume that the only change to be done is the variation of the angle between the two cylindrical 
lenses in both doublets. Figure 11, row 2, shows the normalized calculated MSE against the values of the 
angle b, when the error is made in system 2 (dashed line) and in system 1 (continuous line). Row 1 shows 
the aspect of the decrypted images with the error made in system 1, and row 3 when the error is made in 
system 2, for determined values of b in order to compare the degradation of the images. For b = 0º, that is, 

when all the correct keys have been used in the decryption process,  correct decrypted images are obtained.
As in the case of orthogonal doublets, we realize that the system is more sensitive to angular errors in the 
second system than in the irst one.
3.2.2 The image is encrypted with α11= α21= 15º, and d1 = d2= – 60º. According to Table 1, the irst virtual 
doublet has the following parameters: 
 fA1' = 200mm

           fB1' = 3000mm  

            φ1 = 25.87º

 The values of the fractional orders are 1 1.333pϕ =  and 1
2

0.287p πϕ +
= .

 From Table 2, the parameters of the second doublet are:
 fA2' = 147mm

           fB1' = 2457mm  

            φ1 = 23.74º

 The values of the fractional orders are 2 1.494pϕ =  and 
2

2

0.290p πϕ +
=

 As in the previous igure, Fig 12 shows the plot of the normalized MSE against b and recovered 

images for selected values of b.

 Looking at the plot of the normalized MSE, we realize that when we start with subsystems with 
great deviations from the orthogonality, the system sensitivity to angular errors in the subsystems is greater 

than in case of small deviations from the orthogonality.
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Fig 12. Non-orthogonal doublets. Calculated normalized MSE against the values of the angle b (second row) 
and decrypted images for determined values of b when an error has been made either in the decryption angle 
in the irst system (continuous line and upper row, respectively) or in the decryption angle in the second system 
(dashed line and lower row, respectively). For b = 0, the decryption angles are α11 = α21 = 15º. The deviations 

from orthogonality are d1 = d2 = – 60º.

3.2.3 We consider now the behavior of the system for given values of the initial angles (ANGINI) when 
the errors have been made in the deviations from orthogonality, that is, in d1 and d2. Figure 13 shows the 
plot of the normalized MSE against d1 and d2 when they vary ±10° around the values used for encryption. 
The continuous line corresponds to the case in which d1 varies and the correct value of d2 is taken, and the 

dashed line corresponds to variations of d2 when the correct value of d1 is used. In (a), d1 = d2 = – 10º; in 

(b), d1 = d2 = – 30º; in (c), d1 = d2 = – 60º; and in (d), d1 = d2 = – 90º. In all cases, α11 = α21 = 15º.

 Looking at Fig 13, we realize that depending on the values of the initial deviations from 
orthogonality, d1 and d2, there is a different tolerance in the response of the system to the deviations with 
regard to the encryption angles in the decryption process. We can see that the tolerance reaches a maximum 

value and then starts to decrease (for d1 = d2 = – 30º the tolerance is lower than for d1 = d2 = – 60º and for 

d1 = d2 = – 90º becomes again lower than for d1 = d2 = – 60º ). Moreover, there is almost no difference in 

the response of the whole system when errors are made either in one or other of the two subsystems. In 
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order to see the behavior for different deviations angles from orthogonality, we have plotted (see Fig 14) the 

angular value for which the 40% of the normalized MSE is reached for deviation angles from orthogonality 
ranging in the interval, δ1 = δ2 ∈  [– 90º, 90º]. Since the response is almost the same in both sub-systems, 

we have only included a single graph representative of the average from the curves incoming from both 
sub-systems. Comparing Figs 13 and 14 we can see as the maximum tolerance is reached for –60º and +30º 
while the minimum is obtained for –15º and 75º, the separation in both cases being 90º. 

Fig 13.  Non-orthogonal doublets. Calculated normalized MSE against the values of d1 and d2 when they vary ± 10º around 
the values used for encryption. The continuous line corresponds to the case in which d1 varies and the correct value of d2 

is taken, and the dashed line corresponds to variations of d2 when the correct value of d1 is used. In (a), d1 = d2= – 10º; 
in (b), d1 = d2 = – 30º ; in (c), d1 = d 2 = – 60º; in (d), d1 = d2 = – 90º. In the four cases, α11 = α21 = 15º.
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Fig 14. Plot of the angular value for which the 40% of the normalized MSE is reached for deviation angles 
from orthogonality ranging in the interval [ ]1 2 90º ,90ºδ δ= ∈ − . 

 Figure 15 considers the case where the initial angles are different (α11 = 125º, α21 = 55º) and the 

deviation from orthogonality the same. In (a) δ1 = δ2 = –10º ; in (b) δ1 = δ2 = –60º. And Fig 16 shows the 
plot of normalized MSE when both the initial angles and the deviations from orthogonality are different. 
In this case, still α11 = 125º. α21 = 55º, but δ1 =  –60º, δ2 =  –10º.

Fig 15. Non-orthogonal doublets. Calculated normalized MSE against the values of d1 and d2 when they vary 
± 10º around the values used for encryption. The continuous line corresponds to the case in which d1 varies 

and the correct value of d2 is taken, and the dashed line corresponds to variations of d2 when the correct 
value of d1 is used.  In (a), d1 = d2= – 10º ; in (b) d1 = d2 = – 60º. In both cases, α11= 125º, α21 = 55º  
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Fig. 16. Non-orthogonal doublets. Calculated normalized MSE against the values of d1 and d2 when they 
vary ± 10º  around the values used for encryption. The continuous line corresponds to the case in which 
d1 varies and the correct value of d2 is taken, and the dashed line corresponds to variations of d2 when the 
correct value of d1 is used. δ1 = –60º, δ2 = –10º and α11= 125º, α11= 55º.

4 Conclusions

 Taking into account that a non-orthogonal cylindrical doublet is equivalent to a virtual orthogonal 

one but rotated with regard to the original coordinate axes, it can be used to build a lexible anamorphic 
Lohmann’s irst-type fractional Fourier transformer. The orientation and the focal lengths of the virtual 

doublet can be changed by simply rotating the angle of one of the cylindrical lenses of the doublet with 
respect to the other. Notice that this rotation also changes the fractional orders of the virtual doublet. We 

have analyzed theoretically this behavior.

 As an application, we propose the coupling in cascade of two such anamorphic fractional Fourier 
transformers to perform double random phase encryption. Several layouts of this type can be found in the 

bibliography but without the lexibility of our proposed system: a simple rotation of one lens is enough to 
change the fractional orders and, at the same time, to introduce an in-plane rotation of the system.

 We present only numerical simulations to substantiate the feasibility of the system. As the non-

orthogonal doublet is equivalent to an orthogonal one, we irst present results when the encryption and 
decryption have been performed with systems based on orthogonal doublets. We study the degradation of 
the decrypted images based on the values of MSE, as usual. We compare the results when angular errors 
are introduced in each of the sub-systems in the decryption process. In general, the degradation is greater 

when the errors are made in the second sub-system.
 We have also considered the performance as a function of the deviation from orthogonality for 

systems based on non-orthogonal doublets. In this case, the decryption sensitivity to errors in the irst and 
second systems is quite similar but it depends on the values of the initial angles (ANGINIs) and strongly 

on the values of the deviation from orthogonality employed to encrypt the images.
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