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In this work, an automated, portable, optimized, tabletop, low cost, and full field of view (FFOV) 3D scanning system 
based on fringe projection profilometry (FPP) using off-the-shelf components is constructed. A graphical user interface 
(GUI) to control, automate, and synchronize the whole FFOV-FPP system is developed. The constructed system is 
equipped with different recording and reconstruction capabilities depending on the user’s constraints of accuracy, speed, 
and portability. A detailed comparative analysis and complete discussion of all the different steps of the recording 
and reconstruction process of the FFOV-FPP imaging system is conducted. Specifically, fringe analysis, phase error 
compensation methods, and spatial and temporal phase unwrapping is discussed in details. Two dimensional image 
registration is used to attach the real texture to the computed height profile and a 3D image fusion using an iterative closest 
point (ICP) algorithm for a FFOV reconstruction will also be developed as part of this work. Experimental results at each 
step of the process will be shown and the accuracy of the system is discussed. © Anita Publications. All rights reserved.

Keywords: Instrumentation measurement and Metrology, Three-dimensional sensing, Three-dimensional image 
acquisition, Fringe Projection, Structured lighting.

1 Introduction 

 Due to the fast and growing demand from the manufacturing industry (reverse engineering of 
prototypes) [1, 2], academia [3], medical industry (dental imaging, prosthetics, surgery, artificial organs, 
plastic surgery) [4], entertainment industry (3D photography and 3D movies) [5,6], fashion industry (3D 
body scanning and 3D printed clothing) [7], military (range finding, laser scanning for mines, surveillance) 
[8, 9], surveying (3D topography) [10], and forensic science (3D face recognition, impressions on fired bullets, 
accident and crime scene reconstruction) [11], the last three decades have witnessed a plethora of research 
and new techniques to obtain high resolution, high speed, high dynamic range (depth), large field of view 
(FOV), portable, user friendly, and above all low cost 3D imaging techniques. Three dimensional imaging 
technologies can be classified depending on many criteria such as the methodology (triangulation, time 
delay, or monocular), active or passive, contact or noncontact, direct or indirect [12,13]. Fringe projection 
profilometry (FPP) technique discussed here is noncontact, active, direct, and based on triangulation [14]. All 
of these 3D technologies have advantages and disadvantages. FPP technique which is a subset of structured 
light technology has been an active area of research for three decades [14]. State-of-the-Art FPP systems 
have  many advantages such as portability, high-speed, high-resolution, medium range, immunity to motion, 
compactness, large FOV, reliability in performance, and relatively low cost.
 The proposed work has two motivations. Firstly, is to build a flexible, automated, portable, full field 
of view (FOV), and low cost FPP scanning system with off-the-shelf components: a portable projector, a 
portable CMOS camera, an Arduino microcontroller, and a stepper motor controlling a rotating stage. The 
system will be automated by a MATLAB® based GUI to control and synchronize the different components. 
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Secondly, is to conduct a detailed comparative analysis of all the different steps of the recording and 
reconstruction process of the FFOV-FPP 3D imaging system. In this work, we emphasize on the fringe 
analysis, phase error compensation techniques, and spatial and temporal phase unwrapping. A texture will 
be attached to the height profile using 2D image registration and a 3D image fusion using an iterative closest 
point (ICP) algorithm for a FFOV reconstruction will also be implemented. The constructed FPP system 
will be equipped with different recording and reconstruction capabilities depending on the user’s constraints 
of accuracy and speed. Experimental results are shown at each step of the process and the accuracy of the 
system is discussed.

2 Detailed description of the proposed FPP system: Calibration, recording, and reconstruction steps

 The FPP optical setup is shown in Fig 1 (a) and the calibration, recording, and reconstruction steps 
are shown in Fig 1(b). In the first step, camera calibration aims at finding the intrinsic and extrinsic camera 
parameters and correcting the lens aberrations and distortions. 

(a)                (b)

Fig 1. (a) Optical system setup. The off-the-shelf components: a projector, a CMOS camera, an Arduino board, a 
stepper motor and a rotating stage, a laptop running the GUI, and a cardboard screen behind the object, (b) Flow 
chart of the recording and reconstruction steps of the FPP system.

 In the second step, sinusoidal fringe patterns with varying phase shift and frequency created by the 
developed GUI are projected on the object to be scanned at several angle of the stepper motor. The patterns 
that are modified by the object’s topography are captured by the CMOS camera and relayed to the GUI for 
analysis. The rotation stage is driven by an Arduino board which is controlled by the GUI. The GUI ensures 
the synchronization between the captured images and the projected patterns. In the third step, the projector 
and CMOS camera nonlinearity are corrected by using phase error compensation, resulting in a wrapped 
phase map which is indirectly proportional to the object depth. Phase unwrapping is performed in the fourth 
step resulting in a phase map directly proportional to the object depth. System calibration performed in the 
fifth step converts the depth phase map in radians to real depth map in meters. Two-dimensional registration 
is performed in step number six to attach a texture to the height map. In the last step, 3D image registration 
using iterative closest point (ICP) algorithm is performed to obtain a full field-of-view 3D image. Complete 
details of each of these steps are described in the following subsections.            



Comparative analysis and implementation of a low cost, portable, and full field of view fringe............. 97

 

2.1 Estimation of the intrinsic, extrinsic, and nonlinear distortion camera parameters 

 As shown in Fig 2, the first step in any FPP technique is to perform camera calibration based 
on the pinhole model to estimate the intrinsic and extrinsic camera parameters. To obtain the extrinsic 
camera parameters, the rotation and translation coefficients that relate the real world coordinates to camera 
coordinates have to be determined. This is described as [15,16]:

 
xc

yc

zc  = (R, T) 
xw

yw

zw , 
r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3  

xw

yw

zw

1  (1)

where (xc, yc, zc)
T is the camera coordinate system of an arbitrary point, (xw, yw, zw)T is the corresponding 

real world coordinate system of that point, and T = [ti]
T, R = [rij]

 are the unknown translation and rotation 
matrices, respectively. The rij and the ti parameters are the unknown extrinsic camera parameters. The 
transformation from camera coordinates (xc, yc, zc) to camera pixel coordinates (u,υ)  is done according to 
the following equation:

 zc 
u
υ
1  = 

a b u0

0 b v0

0 0 1  
xc

yc

zc  (2)

where a = fu su, b = fυ sυ, fu sυ are the horizontal and vertical focal lengths of the camera, respectively, su, 
sυ are scale factors,γ describes the skewness of the image axes, and u0, and υ0 are the principal points of 
the camera. These parameters are the unknown intrinsic camera parameters.

Fig 2. The linear camera model showing the labeling of the different axes of the lens and image plane of the camera [18].

 The total transformation based on Eqs (1) and (2) becomes:

 zc 
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υ
1  = 
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 The camera coordinate system (xc, yc, zc)
T can be normalized to a transverse system (xcn, ycn)

T as 
described in the following equation [17]:
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1  (4a)

 Equation (4a) leads to the relation between the normalized camera transverse coordinate system 
and the real word coordinate system according to the following equation:
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xcn

ycn  = 
r11 r12 r13 t1
r21 r22 r23 t2  

xw/S
yw/S
zw/S

1  (4b)

where S = r31 xw + r32 yw + r33 zw + t3
 There are two types of distortions in the practical and simplified camera model: radial distortion 
and tangential distortion. These distortions can be described as [15,17]:

 δr = (k1rcn
2 + k2rcn

4) 
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Where δr and δt are the radial distortion and tangential distortion, respectively, k1, k2, k3, and k4, are the 
distortion coefficients, and rcn = xcn

2 + ycn
2  is the normalized radial distance. Therefore, the normalized camera 

transvers coordinates system after accounting for distortion is described as
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 Accounting for lens distortion, and according to Eq (4a), the modified pixel coordinates off the 
camera are related to the normalized camera transvers coordinates by the following equation 
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1  (7)

 The lens distortion model discussed above causes significant distortion in the pixels located far 
away from the principal points and leads to incorrect unwrapped phase retrieval if not compensated for. The 
camera calibration problem can be solved by using images of a checkerboard with different orientations 
and having pre-determined sizes. Since the size of each square of the checkerboard is known, capturing the 
images provides experimental camera coordinates: (ud, exp, υd, exp) and (xw, yw, zw). The intrinsic, extrinsic, and 
distortion coefficients can be estimated by nonlinearly minimizing the following function using Levenberg-
Marquardt algorithm:

 min(k1, k2, k3, k4, α, β, γ, u0, υ0, rkl, t1, 2, 3)  ∑M
i = 1 ∑N

j = 1 [(ud – ud, exp)
2 + (υd – υd, exp)

2]  (8)

 The initial guess for the camera parameters can be obtained by neglecting the nonlinear parameters 
using Eq (3) (See Appendix a for complete derivation). 

2.2 Fringe projection and acquisition method

 In the FPP system discussed in this paper, sinusoidal fringes with varying frequencies and phase 
shifts are generated using a MATLAB® based GUI and then projected using a DLP projector to a screen 
behind the test object (See Fig 1 (a)). A CMOS camera is used to capture the deformed sinusoidal fringes 
due to the test object’s structure. In the proposed setup, the projected fringe patterns’ parameters such as, 
field of view, number of phase shifts, pitch, and angle, can be controlled by the developed GUI. These 
parameters affect the speed, the resolution, and the size of the reconstructed 3D object. While other types of 
fringe patterns like the binary coding pattern are robust to noise [19] and do not suffer from nonlinear effects 
of the projector and the camera, sinusoidal patterns are better in terms of high-resolution measurements. To 
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obtain high accuracy in the 3D reconstruction while maintaining high-speed measurement, sinusoidal fringe 
patterns with nonlinear intensity correction is adopted. The initial generated intensity I0n at the (x, y) pixel 
coordinates of the nth phase shifted sinusoidal fringe pattern before nonlinear correction can be described 
as [20]: 

 I0n (x, y) = Im 1 + cos 2πf 
x cos (a)

W
  + 

y sin (a)

H  + δn , (9)

where Im is the intensity modulation amplitude, f is the frequency of the pattern, δn = 2π (n – 1)/N is the nth 
phase shift with N is the maximum number of phase-shift steps (minimum number is 3), a is the angle of 
the fringe patterns, and W and H are the width and height of the fringe patterns, respectively. Since both the 
camera and projector introduce nonlinear luminance distortion, the captured intensity can be written as

 Icn (u, v) = a(u, v) + ∑M
m = 1 bm (u, v) cos {m[φw (u, v) + δn]}, (10)

where Icn(u, υ) is the captured intensity of the nth fringe pattern using camera coordinate, ϕw is the wrapped 
phase to be computed, a(u, υ) is the background intensity, and bm (u, υ) is the intensity modulation of the 
mth order harmonic which is due to the nonlinearity of the camera and projector. Starting with a generated 
fringe pattern intensity I0 as described in Eq (9), the captured intensity due to nonlinearity of the system is 
Ic as shown in the block diagram in Fig 3, where fp and fc denote the transfer functions of the projector and 
the camera, respectively. As shown in Eq (10), the nonlinearity is described by the higher order harmonics 
which can be mitigated by increasing the number of phase-shifting steps: N ≥ (M + 2). Figure 4 shows a typical 

nonlinear response function f = fc (fp( . )) of the system. Section 2.3 describes the phase error compensation 
mechanism adopted for the developed FPP system. 

Fig 3. Block diagram describing the relation between the intensity of the projected and captured fringe patterns due 
to the nonlinear luminance distortion caused by the projector and camera.

Fig 4. Typical nonlinear response function: f = fc (fp ( . )) of the system.

 



100 Anh Thai, Dat Tran, Thanh Nguyen, and George Nehmetallah

2.3 Fringe analysis and phase error compensation methods

 Different approaches have been developed to retrieve full-field wrapped phase distribution for FPP 
systems. These approaches are mainly divided into two categories: (a) Transform based schemes and (b) 
phase shifting based schemes. The former uses different transforms such as wavelet transform or Hilbert 
transform toovercome the nonlinear distortion of the system; however, they lack the ability to measure 
objects with complex shapes or multiple objects at the same time [21]. The latter category is based on phase 
shifting and has the ability to measure multiple objects with complex shapes with a reduced computational 
cost [20]. In this paper, the wrapped phase is obtained from the fringe patterns using a combination of 
phase shifting and phase-error compensation technique. There is always a trade-off between high accuracy 
and computational cost (high-speed measurement) using this combined technique. A generalized full-field 
phase retrieval can be described as [20]:

 φw (u, υ) = arctan 
–∑N

n = 1 sin (δn) Icn (u, υ)

∑N
n = 1 cos (δn) Icn (u, υ) 

, (11a)

where Icn(u, υ) is the captured intensity of the nth fringe pattern using camera coordinate, ϕw is the unknown 
wrapped phase. Since ϕw is distorted by the nonlinear response of the CCD and projector a phase-error 
compensation method is necessary to compensate for this nonlinearity. For the case of N = 3 intensity 
patterns, Eq (11a) can be written as 

 φw (u, υ) = arctan 3  (Ic1 (u, υ) – Ic3 (u, υ))

2Ic2 (u, υ) – Ic1 (u, υ) – Ic3 (u, υ) 
, (11b)

 As for phase error compensation, a phase error look-up table (LUT) compensation method to enhance 
the accuracy of the system was proposed in Ref [22]. While this method is simple to implement by directly 
analyzing the captured image of a flat board, it only gives accurate results when the pitch of the pattern is 
large enough. Also, this method is not compatible with multiple frequency phase-shifting method, making 
the system unsuitable of measuring multiple complex shape objects. Moreover, this method is sensitive to 
the configuration and measurement conditions of the system [20]. Other approaches use gamma correction 
to compensate for the nonlinear effect. The nonlinearity of the projector is roughly a power function of 
gamma coefficient which can be described as [21].

 Ici = aI
γ
 
0i

 + b (12)

where Ici is the output at the ith grayscale intensity value for a given grayscale input value I0i, a and b are 
constants, and γ is the unknown constant to be estimated using least squares method, statistical methods, or 
directly by comparing with the ideal phase map to analyze the phase error [21]. Many researchers introduced 
different gamma estimation strategies for structured light 3D based system where the gamma value is 
estimated based on a specific pitch pattern [20]. In these techniques, the phase error is compensated by 
applying an inverse gamma function to the input fringe patterns (Imi = I 

1/ γ
oi 

  ⇒ Ioi = I 
γ

    mi
  ) before being projected 

onto the object, where Imi stands for the modified input ith grayscale intensity of the fringe pattern.

 However, with the development of the image enhancing circuitry in various projectors nowadays, 
the gamma model described in Eq (12) is not valid anymore. In this study, the system is modeled using a 
polynomial of order P which describes the relationship between generated intensity and captured intensity 
which can be written as [21]

 Ici = ∑P
k = 0 ck I

k
0i,                     (13)

where ck = {1, 2, 3} are coefficients to be calculated and Ici are the captured images. In this method, the 
initial intensity fringe patterns are predistored before projection. Hence, the inverse function to Eq (13) 
can be fitted as
 I0i = ∑P

k = 0 akI
k
ci (14)
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where ak = {1, 2, 3} are the unknown coefficients of the polynomial of order P. Let Imi be the modified 
projected input intensity pattern for a desired captured intensity pattern: Î0i

 The objective is to recover the sinusoidal fringe pattern by finding the inverse of the transfer 
function of the system f = fc (fp (.)) as illustrated in Fig 5. 

Fig 5. Phase-error compensation block diagram relating modified input to the desired captured fringe patterns

 Thus, a sequence of L – l + 1 uniform grayscale intensity images I  are projected on a flat screen. 
To avoid saturation, the grayscale intensities range between I = [l, L], which is in the linear region of the 
projector. The ith image captured by the camera is labeled: Î0i . The  modified ith projected input grayscale 
intensity image can then be written as

 Imi = ∑P
k = 0 akÎk

0i .   (15a)

where Îk
0i  is the average of the kth power of the ith grayscale captured image. In matrix notation this can 

be rewritten as

 Im = Î0a , (15b)

where Î0  is an (L – l + 1× P + 1) matrix containing the average of the kth power of all the grayscale captured 
images, a is an (8×1), Im is an (L – l + 1 × 1) vector containing the estimate of the modified projected 
images. Equation (15b) can be written as:

 ⎣⎢⎢
⎢⎢⎡1 𝐼�0𝑙��� 𝐼�

0𝑙2��� 𝐼�
0𝑙3��� 𝐼�

0𝑙4��� 𝐼�
0𝑙5��� … 𝐼�

0𝑙𝑃���⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 𝐼�0𝑖��� 𝐼�0𝑖2��� 𝐼�0𝑖3��� 𝐼�0𝑖4��� 𝐼�0𝑖5��� … 𝐼�0𝑖𝑃���⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 𝐼�0𝐿���� 𝐼�0𝐿2���� 𝐼�0𝐿3���� 𝐼�0𝐿4���� 𝐼�0𝐿5���� … 𝐼�0𝐿𝑃����⎦⎥⎥

⎥⎥⎤
⎣⎢⎢
⎢⎢⎢
⎢⎡𝑎0𝑎1𝑎2𝑎3𝑎4𝑎5⋮𝑎𝑃⎦⎥⎥

⎥⎥⎥
⎥⎤
=

⎣⎢⎢
⎢⎢⎢
⎡ 𝐼𝑚𝑙𝐼𝑚𝑙+1⋮𝐼𝑚𝑖⋮𝐼𝑚𝐿−1𝐼𝑚𝐿 ⎦⎥⎥

⎥⎥⎥
⎤
  
 (15c)

 Equation (15) is an over determined least squares problem and can be solved by minimizing the 
least square error of the objective function:

 min
a
  {S} = min

a
  {∑L

i = l [∑P
k = 0 akÎk

0i  – Imi]
2}, (16)

where the unknown coefficients ak are estimated by minimizing the least square error by solving:              
∂s/∂ak = 0,∀k. Figure 6 shows the experimental nonlinear gamma error compensation curve of the system 
using polynomial fitting where P = 7. 

 This gamma correction technique was applied to the system and the periodic phase error was 
significantly reduced. The wrapped phase map is then estimated by the following equation [20]:

 φ^w (u, v) = arctan 
–∑N

n = 1 sin (δn) Î0 (u, υ)

∑N
n = 1 cos (δn) Î0 (u, υ) 

, (17)
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(a)

(b)

Fig 6. Nonlinear gamma error compensation curve using polynomial fitting where P = 7. (a) Nonlinear gamma 
curve (blue squares) and fitted polynomial curve (solid red line); (b) Desired (solid blue line), distorted (dashed red 
line), and calibrated (solid black line) sinusoidal wave with nonlinear polynomial correction.

2.4 Spatial and temporal phase unwrapping techniques

 In the previous section, the wrapped phase ϕ^ w (u, υ) with 2π ambiguity was computed. In order 
to evaluate the absolute phase height of the scanned object, the wrapped phase must be converted to 
continuous phase through an unwrapping process. Phase unwrapping techniques can be divided into two 
main categories (a) spatial unwrapping and (b) temporal unwrapping [23]. Spatial unwrapping techniques 
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perform well with relatively smooth surfaces but often lack high accuracy with surfaces that have sharp 
step-height variations with multiple objects which need special hierarchical unwrapping algorithms [24]. On 
the other hand, temporal unwrapping techniques perform well with complex shapes and with the presence 
of isolated areas with sharp step-height variations. However, this high accuracy of temporal techniques need 
high processing speed because of the requirement of using multiple frequency with multiple phase shifting 
steps to retrieve the unwrapped phase of the object. Both of these techniques are briefly discussed in this 
work and can be selected in the developed GUI depending on the application requirements.

2.4.1 Spatial phase unwrapping techniques

 Spatial phase unwrapping is used to decipher wrapped phase maps computed by the arctan function 
which are in the interval between –π and π in order to derive the absolute phase, or equivalently, the depth 
information. Spatial unwrapping techniques require only one single wrapped phase which make them 
suitable in high-speed 3D reconstruction. Many techniques have been proposed for this purpose [24]. Most 
of these techniques compute the measured gradient of the phase field, which is subsequently integrated to 
recover the unwrapped phase. One of the earliest approaches is the residue identification and cuts to limit 
the possible integration paths [25], while another class of approaches use least-squares techniques [26]. The 
techniques that rely on the residue-cut algorithms are quite accurate but do not produce good estimates 
in regions of moderate phase noise [27]. The least-squares methods yield complete coverage of the phase 
but at the cost of distortion in the recovered phase field. Another synthesis approach, combining the two 
approaches, offers greater spatial coverage with less distortion in many instances [27]. In FPP 3D based 
systems, the quality of the measurement is based on the frequency of the projected fringe pattern. By using 
spatial phase unwrapping method, one wrapped phase measurement of high frequency fringe pattern (i.e. 
8 pixels per fringe) is enough to unwrap the phase map. 

 In this Section, we implemented a fast 2D unwrapping method based on reliability function that 
does not follow a continuous path [28]. The unwrapped phase obtained, contain both information about the 
object’s phase (shape) and carrier-frequency related phase [29]. Reference-subtraction, which is based on 
measuring the object and the reference separately, is one of the techniques used to eliminate the phase due 
to the carrier-frequency. The phase that corresponds to the object’s shape is obtained by digitally subtracting 
unwrapped phase of the reference plane from the unwrapped phase of the object. The equation to acquire 
the phase that corresponds to the object’s shape can be described as 

 ϕ0
uw (u, υ) = ϕ(0, r)

uw (u, υ) – ϕr
uw (u, υ) (18)

where u and υ are the position in pixels in the image plane, ϕ0
uw holds the information about the unwrapped 

phase related to the object’s shape alone, ϕ(0, r)
uw is the unwrapped phase of the object with the background 

tilt and ϕr
uw is the unwrapped phase of the reference plane (tilt due to carrier). This method is easy to 

implement and it works very well in removing linear and nonlinear carrier phases. The drawbacks of this 
method are that two separate measurements are needed hence is not suitable for high-speed systems and 
the phase measurement uncertainty is magnified as shown in the following equation [30]:

  ϕ(0, r)
uw (u, υ) = ϕs (u, υ) + ϕc(u, υ) + ϕe(u, υ)  (19a)

  ϕr
uw (u, υ) = ϕc (u, υ) ± ϕe(u, υ),  (19b)

where, ϕs, ϕc and ϕe are object shape-related phase, carrier phase, and phase error, respectively.  Consequently, 
the overall uncertainty is increased over the phase map and Eq (18) becomes

  ϕ0
uw (u, υ) = ϕ(0, r)

uw (u, υ) – ϕr
uw (u, υ) = ϕs (u, υ) ± 2 ϕe(u, υ)                                    (20) 

 The technique implemented in this paper is based on polynomial fitting of the carrier. The phase 
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due to the carrier can be approximated as a biquadratic polynomial

  ϕc (u, υ ) = a1 + a2u + a3υ + a4uυ + a5 u
2+ a6 υ2, (21)

where the unknown ak parameters are obtained by minimizing the least square error:

 min
a
  {E} = min

a
  {ΣM

m = 1 [ϕc, p(u, υ) – ϕc(u, υ)]2}, (22)

where the phase data ϕc, p are chosen from the flat regions where there is no object. The error function E is 
minimized using M data points, and the unknown ak parameters can be estimated accurately. Experimental 
results are discussed in Section 3.1.

2.4.2 Temporal phase unwrapping techniques

 Temporal phase unwrapping techniques are often used to acquire the 3D phase of complex shaped 
objects having isolated areas and sharp-height variations with high accuracy. Several sets of phase-shifted 
fringes having different frequencies (pitch) are needed to retrieve the fully unwrapped phase in a multi-phase 
shift multi-frequency iterative temporal phase unwrapping technique. In this technique, the pitch of each set 
of shifted fringe patterns varies over time; hence, the name temporal phase unwrapping. The initial (1st set) 
pitch is chosen in such a way to display a single fringe period covering the entire scanned object, to provide 
a continuous phase map, and to compute integer offset for higher order frequencies. At each ith step (fringe 
pattern’s frequency fi), the unwrapped phase map depends on the (i – 1)th unwrapped phase map  and the 
ith wrapped phase map which was obtained from Eq (17).The multi-phase shift multi-frequency iterative 
temporal phase unwrapping technique can be expressed as [31]

 φi
uw (u, υ) = φi

w (u, υ) + 2π × round 
(k ×φuw

i – 1(u, υ) – φi
w (u, υ)

2π , for i = 2,3,…,n (23)

where round is the rounding operator to the nearest integer and k = fi /fi – 1 is the ratio between two adjacent 
frequencies (k ~3 for high accuracy). The simplicity of Eq (23) reduces the computational cost of the 
reconstruction process. It is worth noting that the higher the n is, the higher the accuracy is at  the expense 
of more computational processing. Hence, a trade-off between computational complexity and speed exist 
using this technique.

2.5 System Calibration 

 System calibration is a necessary step to extract the real height profile of the scanned object from 
the unwrapped phase map obtained in Eq (23). This step involves determining the actual lateral dimensions 
of the object using the camera calibration parameters obtained in Section 2.1. Generally speaking, there are 
two main approaches of unwrapped phase to real height profile conversion. The first approach converts the 
unwrapped phase to height directly using a specific system setup, while the second one performs phase to 
height conversion for an arbitrary setup. Both of these approaches are discusses here and the comparison 
between their performances is determined experimentally.

2.5.1. Phase to height conversion using a specific system setup

 Using a specific system setup as shown in Fig 7, a quick and easy calibration step can be conducted 
to establish the relationship between height of the object and its phase map. Since the CCD is parallel to 
reference plane there is a direct proportionality relationship between the phase map and the object’s surface 
height which can be described as [18]

 z(u, υ ) = Kuw (u, υ)                                                                                               (24)
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where K is a constant. This constant can be crudely computed using = pl/2πd, where p is the fringe pitch on 
the reference plane, and d and l are the distances between the projector and CCD and the distance between 
CCD and the reference plane, respectively as shown in Fig 7. A more precise method to estimate the K 
parameter is through mounting multiple known-height gauge blocks attached to the reference plane. The 
linear-least square error between the phase map and the object’s surface height can be defined as 

 S = ΣM
m = 1 [Kϕuυ (u, υ) – z(u, υ)]2, (25)

where M is the number of data points and z(u, υ) is the height at the point of transverse coordinates (u, 
υ). This method is limited by these conditions: (a) the reference plane must be exactly parallel to the CCD 
and/or the projector which is difficult to insure in practical laboratory conditions, (b) the projected fringe 
patterns must be distributed uniformly on the reference plane, and (c) the distortion due to the optical devices 
(lenses) or sensor noise is considered very small.

Fig 7. Phase-to-height conversion using a specific system setup [18].

2.5.2 Phase to height conversion using arbitrary system setup

 For an arbitrary camera-projector setup shown in Fig 8, a generalization of Eq (24) needs to be 
derived. A more general biquadratic phase to out-of-plane height conversion relation for an arbitrary setup 
can be described as [32]:

 z(u, υ) = fc / fd, (26)

where, fc = ∑17
i = 1(ci + ci + 1 φuw) uk υl, fd = ∑17

i = 1 (di + di + 1 φuw) uk υl, k, l = 0,1,2, and ϕuw is the unwrapped 

phase computed by Eq (23), u, υ are camera pixel coordinates defined in Eq (2), and the ci, di parameters 
can be determined by performing the non-linear least square error defined as [32]

  S = ∑M
m = 1 [z(u, υ) – zm(u, υ)]2, (27)

where M is the total number of data points and zm(u, υ) is the height at each point (u, υ). The least squares 

criteria requires, ∂s/∂ci = ∂s/∂dj = 0, for i, j = 1,…,17.
 It is important to note that the coefficients are solved using nonlinear iterative techniques, and 
without good initial conditions (values), non-linear approaches usually get trapped in local minima and 
yield inaccurate results. The least square solution used to find the initial values of the coefficients, to be 
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later used in Eq (27), can be calculated using a linearized version of Eq (27).

 S =∑M
m = 1[fc – fd zm (u, υ)]2. (28)

Fig 8. 3 D schematic illustration of a generalized FPP setup showing all labeled coordinates [18].

 It is worth noting that this equation converts directly the unwrapped phase of the object to out-
of-plane height. To account for the presence of the distortion of optical devices, the equation also includes 
second order terms to enhance the accuracy of the system. Because this method relies directly on the 
unwrapped phase of the object, it does not require carrier removal step or reference plane subtraction in 
real measurement.

2.5.3 Phase to real world coordinate conversion

 The last step in the calibration process is to use the computed out-of-plane height profile of the 
object’s surface in Eq (27) to compute the in-plane real world lateral coordinates x and y using the following 
equations [17]

  x(u, υ) = p1(u, υ) + p2(u, υ) × z(u, υ) (29a)

  y(u, υ) = p3(u, υ) + p4(u, υ) × z(u, υ) (29b)

 {p1(u, υ) = f1(rij, tij) and p2(u, υ) = f2(rij, tij)

 {p3(u, υ) = f3(rij, tij) and p4(u, υ) = f4(rij, tij)  (29c)

where p1, p2, p3, and p4, are constants at each pixel, and f1, 2, 3, 4 are functions of the rotation and translation 
coefficients (See Appendix B) [17]. Equations (29a-c) show that the real world lateral coordinates x( u,  υ) 
and y(u, υ), depend on the computed height variable z(u, υ). Hence, the accuracy of x and y depends on 
the accuracy of the computed out-of-plane height profile of the object at that pixel.

3 Experimental setup and results of the portable FPP system with off-the-shelf components 

 Figure 9 shows the laboratory system set up. A calibration board and several calibration cubes with 
different sizes were custom fabricated and used for the calibration of the 3D FPP scanning system. The 
camera used in the experiments is a DFK 42BUC03 camera with 8-bit dynamic range. All the experimental 
results obtained are based on this configuration. The optical devices are arranged based on the triangulation 
theory. The contrast and brightness levels of the projector are adjusted in order to maximize the monotonic 
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region of the intensity transfer function, as discussed in details in Section 2.3. 

Fig 9. A simple 3D scanning system.

3.1 3D Reconstruction using a specific system setup and spatial unwrapping 

 In this first set of experiments, the unwrapped phase is obtained by using spatial unwrapping 
method and the non-linear carrier removal method as discussed in Section 2.4.1 to obtain the unwrapped 
phase map. Figure 10(a) shows the real 2D image of “President Lincoln” test object, Fig 10(b) shows the 
3D point cloud height profile without texture, and Fig 10(c) shows the 3D point cloud height profile with 
texture. Using Eq (22), the carrier phase is estimated by surface-fitting of the region where actual object 
height is close to zero. The constant K from Eq (24) is pre-determined by using several precision known-
height gauge blocks. Fig 11 is similar to Fig 10 but the “Lion Statue” test object is used. 
 In practical measurement, it is difficult to satisfy all of the conditions of this method. Therefore, 
some noise still remains in the reconstructed 3D image since the height of the reference plane is not uniform 
due to shadow noise. We also noticed that spatial unwrapping method fails to measure multiple complex 
objects with large and sharp height variation at the same time without phase ambiguity. Hence, the accuracy 
of this method is lower than the temporal phase unwrapping technique discussed in the following section.

  

   (a)      (b)    (c)

Fig 10. (a) Real 2D image of the test object; (b) 3D point cloud height profile without texture; (c) 3D point cloud 
height profile with texture.
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        (a)      (b)    (c)

Fig 11. (a) Real 2D image of the test object; (b) 3D point cloud height profile without texture; (c) 3D point cloud 
height profile with texture.

3.2. 3D Reconstruction using multiple frequencies and temporal phase unwrapping

 In the second set of experiments, the unwrapped phase is obtained by using multi-frequency phase 
unwrapping algorithm as discussed in Section 2.4.2. A study relating the depth-variation sensitivity to the 
direction of the fringes was performed and horizontal fringes rendered the best results. As mentioned in 
Section 2.4.2, fringe patterns with multiple frequencies were used to reduce the noise influence on the results 
which lead to high accuracy for the unwrapped-phase distribution. Also in order to achieve high accuracy, 
and as mentioned in Sections 2.1 and 2.3, lens and gamma distortion have been reduced significantly 
before computing the unwrapped phase of the object. In order to verify the performance of the FPP system, 
different complex shape objects have been used. A set of five fringe patterns (1, 4, 16, 64, and 128), a ten-
step phase shifting algorithm, lens distortion, and gamma correction have been used in these experiments. 
All the necessary reconstruction coefficients are estimated by using the techniques described in Section 2. 
Seven gauge blocks with different heights have been used in the calibration process. Holes were drilled on 
the top surfaces of the gauge blocks are used to verify the accuracy of the algorithm. The height precision 
for a set of 4 frequencies was determined to be 200 µm. Other experiments with higher set of frequencies 
gave better performance of the system on the expense of slower reconstruction. Figure 12(a) shows the 
real image of the gauge blocks used in calibration process, Fig 12(b) shows the 3D point cloud height 
profile without texture, and Fig12(c) shows the 3D point cloud height profile with texture. Figures 13(a) 
and (c) show the real images of the Lincoln and lion statues, Figs 13(b) and (e) show the 3D point cloud 
height profile without texture, and Figs 13(c) and (f) show the 3D point cloud height profile with rendered 
texture.

  
  (a)       (b)     (c)

Fig 12. (a) Real image of the gauge blocks used in calibration process, (b) 3D point cloud height profile without 
texture, and (c) 3D point cloud height profile with texture.
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  (a)     (b)    (c)

  (d)     (e)   (f)

Fig13. 3D reconstruction of test objects: (a,d) Real images, (b,e) 3D point cloud height profile without texture, and 
(c,f) 3D point cloud height profile with rendered texture.

4 MATLAB® based graphical user interface (GUI) 

 A MATLAB GUI was created to calibrate and control the fringe projection profilometry system. The 
interface allows users to directly change the inputs of the projected fringes such as: frequency, amplitude, 
the pattern of the fringe (horizontal or vertical), and number of fringe shifting steps. Also, the interface 
allows us to perform camera and system calibration, wrapped and unwrapped phase reconstruction, phase 
compensation, phase to height conversion, and texture rendering using 2D image registration. The final result 
will be a point cloud 3D image of the object. The process can be repeated automatically from different 
angles using a rotation stage controlled by Arduino through the GUI to acquire different point clouds from 
different perspectives.
 A block diagram in Fig 14 gives a brief description of the operation of the MATLAB® interface 
(GUI). The interface is divided into two main parts: (a) Calibration part (Set-up) and (b) the Processing 
part. Firstly, the input parameters such as phase steps, amplitude modulation, fringe frequencies, and fringe 
orientation need to be set. In the second step, camera calibration using the checkerboard (See Fig 15(a)) is 
performed to obtain the intrinsic, extrinsic, and nonlinear distortion parameters followed by system calibration 
using calibration blocks with known dimensions to obtain the phase to height conversion parameters. This 
is shown in Fig 15(b). Also, in this step gamma correction is performed. After the calibration process is 
done, users don’t need to calibrate the system again for 3D reconstruction of other objects unless the camera 
and/or the projector are moved. 



110 Anh Thai, Dat Tran, Thanh Nguyen, and George Nehmetallah

Fig 14. Detailed block Diagram of the GUI.

    (a)   (b)

Fig 15. (a) The checker board used in camera calibration and (b) several cubes with varying dimension used in 
system calibration.

 A graphical user interface (GUI) has also been developed to control, synchronize, and automate 
the whole process. A sample view of the GUI is shown in Fig 16. As in Fig 16, the interface gives the 
reconstruction result of the objects in various modalities for better visualization. The GUI computes the 
wrapped and unwrapped phases of the image and provides the depth information of the object as a depth 
image and simultaneously as a point cloud image. The interface is capable of merging point cloud images 
to create full 360 degrees 3-`D point cloud image. 

5 Image fusion using 3D registration

 Iterative Closest Point (ICP) is an efficient and noise-resistant algorithm used to align partially 
overlapping point clouds to create a full view 3D object. Given two different point clouds, by using one as 
the reference Pref (fixed) and the other Pmov as the source (moving), we can use ICP algorithm to find the 
translation and rotation matrices needed to align the two point clouds together through the minimization of 
the mean-square error (MSE). 
 The process is repeated until the error is sufficiently small. The algorithm is as follows:
 (a) For each point in the source point cloud Pmov, find the closest point in the reference point cloud 
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Pref

 min (1/M) ∑M
m = 1 [υ – match Pref (υ)]2 (30)

Fig 16. Developed graphical user interface (GUI) showing the Lincoln statue object.

 The initial guess for the algorithm depends on the variation of the ICP method used. Some common 
choices are based on Euclidean distance, or curvature at a point, etc. The MSE function can be minimized 
by recursive algorithms such as gradient descent, Newton’s method, conjugate gradient, or Levenberg-
Marquardt algorithm [33].
 (b) Reject outliers: Outliers are points that do not have a good corresponding point in the other 
point cloud, these points will negatively affect the result; therefore, they need to be removed first. To remove 
outliers, each matching pair will be assigned a weight based on the points’ distances. Pairs whose weights 
satisfy a given condition will be discarded. The condition will vary depending on the algorithm used. Some 
algorithms set a fixed threshold for the weight while other may depend on the standard deviation.
 (c) The algorithm will then try to estimate the best affine transformation S (combination of rotation 
R and translation T) to minimize the MSE cost function that will best align each source point to its match 
found in the previous step:
  min (1/M) ∑M

 m = 1 [matchPref
 (υ) – (S × υ)]2 (31)

 The optimization method is the same as in the first step. The initial guess can be provided if 
additional information is available.
 (d) Transform the source points using the obtained transformation:

 Pref = S × Pmov, (32)
 (e) Iterate: The above 4 steps will be repeated until the chosen error metric meets certain predefined 
condition. Both the error metric and the condition will vary based on the algorithm. After the algorithm 
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converges, the final result is the one that provides the best transformation matrix that will align the moving 
point cloud with the fixed point cloud.
 The 3D scanning system outputs n different denoised point clouds Pk, k = 1 … n, where consecutive 
point clouds are obtained from slightly different views. The full 3D point cloud model of the object can be 
obtained using the following equation

 P = ∪n
k = 1  Ak Pk= ∪n

k = 1  (∏k
i = 1 Si) Pk, (33)

where P is the combined point cloud, Pk is the kth point cloud, n is the total number of point clouds, Ak is 

the cumulative transformation matrix, Si  is the affine transformation matrix to align Pi  with Pi – 1 when 

i >1, and Si  is the identity matrix when i = 1. Typical full-field-of-view results for the Lion Statue object 
are shown in Fig 17.

 (a)                         (b)                  (c)                        (d)

 (d)                         (e)                        (f)                        (g)
Fig 17. Full-field-of-view results using ICP algorithm: (a) 3D point clouds without texture and (b) 3D point clouds 
with texture.

6 Conclusion and Future Work 

 In this work, we constructed an automated, portable, tabletop, low cost, full field of view, 3D 
FPP scanning system from off-the-shelf components. A thorough comparative analysis of the various steps 
and techniques of a 3D imaging system based on FPP was conducted. Also, camera calibration, system 
calibration, several phase error compensation techniques, and phase unwrapping techniques, were discussed 
in details. Three-dimensional image fusion and point cloud registration was performed using an iterative 
closest point algorithm for a full field of view reconstruction. AMATLAB® based GUI was developed to 
control, automate, and synchronize the whole system. The GUI is equipped with different recording and 
reconstruction capabilities depending on the user’s constraints of accuracy and speed. The experimental 
results at each step of the process were shown and the accuracy of the system was discussed. The FPP 3D 
imaging technology is still an area of active research due to all the advantages mentioned above. Future 
work will aim at increasing accuracy through the development of other nonlinear phase error compensation 
techniques. Finally, more robust and automatic image fusion techniques are currently under development. 
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Appendix A

 In this section, we explain how the initial guess for the camera parameters can be obtained. Equation 
(3) above relates the camera pixel coordinates to real world coordinates as in the following equation:

  zc 
u
υ
1  = 

a γ u0

0 b υ0

0 0 1  
r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3 

xw
yw
zw

1  (A.1) 
 

which can be written in matrix format as:

  zc 
u
υ
1  = K × [R,T] 

xw
yw
zw

1  (A.2) 

 Multiplying the matrices of the intrinsic and extrinsic parameters, Eq (A 2) can be written as 

  zc 
u
υ
1  = 

q11 q12 q13 q14

q21 q22 q23 q24

q31 q32 q33 q34  
xw
yw
zw

1  (A.3) 

Where Q = K × [R, T]. Expanding Eq (A 3) we arrive at the following system of linear equations

  


 

u = 
xwq11 + ywq12 + zwq13 + q14

zc

v = 
xwq21 + ywq22 + zwq23 + q24

zc
zc = xwq31 + ywq32 + zwq33 + q34

 
(A.4) 

 

 Notice that the unknowns are the twelve qij parameters. Measuring twelve pairs of u,  υ, xw, υw, 
and zw, Eq (A.3) can be written as: 

 
xw1

yw1
zw1

1 0 0 0 0 –xw1
u1 –yw1

u1 –zw1
u1 –u1

0 0 0 0 xw1
yw1

zw1
1 –xw1

v1 –yw1
υ1 –zw1

υ1 –υ1… … … … … … … … … … … …

xwi
ywi

zwi
1 0 0 0 0 –xw1

ui –yw1
ui –zw1

ui –ui

0 0 0 0 xwi
ywi

zwi
1 xw1

υi –yw1
υi –zw1

υi –υi… … … … … … … … … … … …

xw12
yw12

zw12
1 0 0 0 0 –xw12

u12 –yw12
u12 –zw12

u12 –u12

0 0 0 0 xw12
yw12

zw12
1 –xw12

υ12 –yw12
υ12 –zw12

υ12 –υ12  
q11

q12

q13…
…

…
…

q34 = 0 (A.5a)

 

 

Eq (A 5a) can be written in matrix format as 

 Aq = 0,  (A .5b)

where A is a (24 × 12) matrix, and q is a (12 × 1) linearized version of Q matrix from Eq (A.3). The linear 
least square method is used to solve for the (24 × 12) q matrix. The next step is to find the intrinsic and 
then the extrinsic parameters from the qij parameters. Let the matrix M be defined as:

 M = K × R = 
q11 q12 q13
q21 q22 q23
q31 q32 q33 .   (A.6)

 Let us define the matrix B = M × MT. Since R is an orthogonal matrix, R × RT = I. B can be 
written as
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 B = K × R × RT × KT = K × KT = 
α2+ γ2+ u0

2 γβ + u0υ0 u0

γβ + u0v0 β2 + υ0
2 υ0

u0 υ0 1  = 
b11 b12 b13
b21 b22 b23
b31 b32 b33   (A.7)

 Since the bij parameters are computed from the qij parameters, the intrinsic camera parameters are 
computed as follows:

 

u0 = b13,
υ0 = b23,

β = b22 – υ0
2

γ = 
b12 – u0υ0

β

α = b11 – γ2– u0
2  (A.8)

 This means the intrinsic camera parameters defined in the K matrix are computed. The following 
step is to find the reflection part of the extrinsic parameters from Eq (A.6):
 R = K– 1 × M (A.9)

 The transmission part of the extrinsic parameters is found from Eq (A.3) using the following 
equation:

 T = K–1 × 
q14

q24

q34   
   (A10)

Appendix B

 The following equations are derived to define the constants used in Eq (29) to compute the in-plane 
lateral coordinates x and y [17]:

 p1 = 
bx(u,υ)cx(u,υ) – ex(u,υ)fx(u,υ)
gx(u,υ)hx(u,υ) – ix(u,υ)jx(u,υ)   (B1)

 p2 = 
ax(u,υ)cx(u,υ) – dx(u,υ)fx(u,υ)
gx(u,υ)hx(u,υ) – ix(u,υ)jx(u,υ)   (B2)

 p3 = 
by(u,υ)cx(u,υ) – ey(u,υ)fy(u,υ)
gy(u,υ)hy(u,υ) – iy(u,υ)jy(u,υ)  (B3)

 p4 = 
ay(u,υ)cy(u,υ) – dy(u,υ)fy(u,υ)
gy(u,υ)hy(u,υ) – iy(u,υ)jy(u,υ)    (B4)

where

 ax(u, υ) = xdr33 – r13, ay(u, υ) = ax(u, υ) (B.5)

 bx(u, υ) = xdt3 – t1, by(u, υ) = bx(u, υ) (B.6)

 cx(u, υ) = r22 – r32 ycn , cy(u, υ) = r21 – r31 ycn (B.7)

 dx(u, υ) = yd r33 – r23, dy(u, υ) = dx(u, υ) (B.8)

  ex(u, υ) = ydt3 – t2, ey(u, υ) = ex(u, υ)  (B.9)

 f x(u, υ) = r12 – r32 xcn, f y(u, υ) = r11 – r31xcn (B.10)

 gx (u, υ) = r11 – r31 xcn , gy(u, υ) = r12 – r32xcn (B.11)
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 hx(u, υ) = r22 – r32 ycn, hy(u, υ) = r21 – r31ycn  (B.12)

 ix(u, υ) = r21 – r31 ycn , iy(u, υ) = r22 – r32ycn (B.13)

  jx(u, υ) = r12 – r32 xcn, jy(u, υ) = r11 – r31xcn (B.14)
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