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Dispersion coefficients for the interaction of inert gas atoms with alkali and alkaline 
earth ions and alkali atoms with their singly ionized ions
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We report the dispersion coefficients for the interacting inert gas atoms with the alkali ions, alkaline earth ions and alkali 
atoms with their singly charged ions. We use our relativistic coupled-cluster method to determine dynamic dipole and 
quadrupole polarizabilities of the alkali atoms and singly ionized alkaline earth atoms, whereas a relativistic random phase 
approximation approach has been adopted to evaluate these quantities for the closed-shell configured inert gas atoms 
and the singly and doubly ionized alkali and alkaline earth atoms, respectively. Accuracies of these results are adjudged 
from the comparison of their static polarizability values with their respective experimental results. These polarizabilities 
are further compared with the other theoretical results. Reason for the improvement in the accuracies of our estimated 
dispersion coefficients than the data listed in [At. Data and Nucl. Data Tables 101, 58 (2015)] are discussed. Results 
for some of the atom-ion interacting systems were not available earlier, these results and the other reported improved 
results will be very useful for the comprehensive understanding of the collisional physics involving these atom-atom 
and atom-ion interactions in the cold atom and atom-ion hybrid trapping experiments at the low-temperature regime. 
© Anita Publications. All rights reserved.

1 Introduction

	 The long-range interactions between the atoms and molecules play prominent roles in the low-energy 
and low-temperature collision experiments [1]. Thus, these interactions are expedient for understanding atomic 
collision physics that are essential for guiding the laser cooling and trapping techniques of atomic systems, 
in the photo association spectroscopy and for analysing the magnetic field induced Feshbach resonances 
[2-6]. In addition, these interactions are instrumental in the chemical processes for the charge-exchange 
and molecule formation at the single particle level. Comprehensive understanding about behaviour of these 
interactions is very useful in explaining various quantum phase transitions [7], quantum computing techniques 
[8], endowing continual atom-ion sympathetic cooling mechanisms [9, 10] etc. In fact, investigations of 
atom-ion interactions have drawn recent attention of the researchers for several reasons to carry out many 
inventive studies [9, 11, 12]. For example, several applications of co-trapped atoms and ions at the low energy 
scale have been demonstrated by a number of groups [13-15]. Cote and his coworkers had investigated the 
ultracold atom-ion collision dynamics, charge transportation processes, and had realized possible formation of 
the stable atom-ion system [12]. It was shown recently that the elastic scattering cross section of an atom-ion 
system depends on the collisional energy in the semiclassical regime and favors scattering at small angles 
[16]. Particularly, the dispersion coefficients of the interacting inert gases with the alkaline earth ions and 
with the ground state of Li have extensive applications for understanding pressure broadening [17-20] and 
transportation of atoms in the laboratory experiments [21-23]. Necessity of accurate knowledge of dispersion 
interaction coefficients for the Li+ ion interacting with the inert gas atoms at ultralow temperature is advocated 
in Refs. [12, 24]. Also, these van der Waals interactions are useful in estimating the refractive indices of 
the matter (atomic) waves traversing through the inert gases [25-28]. Values of the dispersion coefficients 
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of these systems are essential for deducing the amount of pressure broadenings to estimate uncertainties 
accurately in the measured quantities [19, 20, 29, 30]. These coefficients can be used to manipulate the 
characteristics of potential surfaces of the amalgamated materials [31, 32].
	 When an ion is submerged in a buffer gas, the dispersion interaction gives rise to shifts in the 
transition frequencies between different atomic states. The above approach, which is used to develop the 
dispersion coefficients [17, 33-36], is pioneered by Dalgarno who has given these expressions in terms 
of oscillator strength sum rules [37-39]. Mitroy and co-workers had evaluated dispersion coefficients for 
Sr+ ion by constructing one electron model of Sr+ ion using semiempirical core potential [29]. Dispersion 
coefficients of Li, Li+ and Be+ interacting with rare gases have been described in detail in Ref [40] by using 
electric dipole (E1) matrix elements, obtained employing a variational Hylleraas method, in a sum-over-states 
approach. Jiang et al [41] had deduced dynamic polarizabilities and dispersion coefficients for the alkali 
atoms and for their ions using Casimir-Polder relations at the imaginary frequencies. In our previous work 
[42], we had determined the long range c6 and c8 coefficients among the alkali atoms and singly charged 
alkaline earth ions more accurately. Here, we extend these calculations further to a wide range of systems 
such as for the interacting inert gases with the alkali and alkaline ions, and for alkali atoms-alkali ion 
combinations. The analysis of the above dispersion coefficients requires evaluation of the dynamic electric 
dipole and quadrupole polarizabilities at the imaginary frequencies. In fact, the determination of accurate 
values of atomic polarizabilities itself has enormous applications in the areas of quantum information 
processing, optical cooling and trapping schemes and for studying atomic clocks [43]. For this purpose, 
we use all order relativistic coupled-cluster (RCC) and random phase approximation (RRPA) many-body 
methods to evaluate both the dipole and quadrupole polarizabilities of the considered systems. All the results 
are reported in atomic units (au) throughout the paper.

2 Theory of dispersion coefficients

	 Using the second order perturbation theory, the two body long-range dispersion interaction potential, 
with the interatomic separation distance R, can be expressed as [1, 33, 37, 38, 44, 45]

 	 Vdisp (R) = – c6
R6  – 

c8

R8  + ..... , � (1)

here the terms containing higher power denominator than R–8 are neglected. The cn parameters (with n 
= 6, 8) are the van der Waals dispersion coefficients, where c6 elucidates dipole-dipole interaction and 
c8 represents for the dipole-quadrupole interactions between two atoms or between an atom and an ion 
combination [44, 46]. The coefficients c6 and c8 for two interacting systems A and B can be estimated using 
the expressions [47-49]

	 c6 = 
3 
p     [ ∫

∞
0 α1

A (iω) α2
B (iω) dω]� (2)

and

 	 c8 = 
15
2p

 [ ∫
∞
0 α1

A (iω) α2
B (iω) dω + ∫

∞
0  α2

A (iω) α1
B (iω) dω]� (3)

where α1
A(B) (iω) and α2

A(B) (iω) are the respective dynamic dipole and quadrupole polarizabilities with 
imaginary frequency (iω) for the system A(B). These quantities for frequency can be written using the 
second order perturbation theory as given by

	 αk (ω) = –∑I ≠ n  
(En – EI)|〈Ψn|Ok|ΨI〉|2

(En – EI)2 – ω2
� (4)

where |Ψn〉 represents for the ground state wave function, the sum over |Ψ1〉 describes all the possible allowed 
excited states and E’s are the energies of their respective states. Here, O1 is the electric dipole (E1) operator 
D and O2 is the electric quadrupole (E2) operator Q. In the next section, we discuss about the RCC and 
RRPA methods for determining the above dipole and quadrupole polarizabilities.
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3 The RCC and RRPA methods of polarizabilities

	 We use the Dirac-Coulomb (DC) Hamiltonian in our calculations, which is given by

	 HDC = ∑i [c α pi + ppi + βic2 + Vn (ri)] + ∑i, j 
1
rij

,� (5)
		                            i ≥ j

where α p and b are the Dirac matrices and Vn (r) is the nuclear potential. This is a good approximation to 
describe the positive energy states of the Dirac theory. Weak coupling with the positron wave functions 
are usually neglected and also the rest mass energy of the electrons can be subtracted for the convenience. 
Thus, the working DC Hamiltonian yields.

	 HDC = ∑i [c α pi . ppi + (βi – 1) c2 + Vn (ri)] + ∑i, j 
1
rij

.� (6)
		                                      i ≥ j

	 Again, it may not be appropriate to assume atomic nucleus as a point like object for accurate 
calculations. On the other hand, there are not proper valid models available to describe the nuclear structure 
exactly. Among many, Fermi charge distribution model is more popular in which density of an electron 
within the atomic nucleus is described by

	 ρn (r) = 
ρ0

1 + e(r – b)/a ,� (7)

where ρ0 is the normalization factor b, is known as half-charge radius and a = 2.3/(4 ln 3) is related to the 
skin thickness of the nucleus. Considering this distribution, the nuclear potential can be obtained as

	 Vn (r) = 
z

ℵ r 
 
 
1
b  

3
2  + 

a2π2

2b2 
 – 

r2

2b2 
 + 

3a2

b2 
 P2 + 

6a3

b2r 
 (S3 – P3

+) for  a ≤ b

1
r  1 + 

a 62π2

b2 
 – 3a2r

b3 
 P2

–
 + 

6a3

63b 
 (S3 – P3

–) for  a > b 
� (8)

for the factors ℵ = 1 + 
a2π2

b2 
 + 

6a3

b3 
 S3 with Sk = ∑∞

m = 1 
(–1)m – 1

mk  e–b/a and Pk
± = ∑∞

m = 1  
(–1)m – 1

mk   e±m(r – b)/a). 

The b parameter can be determined from b = 5
3  r2

rms – 7
3  a2 π2  with the root mean square radius rrms, 

which can be estimated using the empirical formula rrms = 0.836A(1/3) + 0.57 in fermi (fm) or can be taken 
from a standard nuclear data table.
	 Owing to the two-body nature of the Coulomb interactions, solving eigenvalue equation for the 
atomic Hamiltonian Hat given by 
	 Hat |Ψn

(0) 〉 = En |Ψn
(0)〉,� (9) 

with more than three electrons in an atomic system is infeasible. Instead, it is a usual practice to get the 
approximated solution to the above equation and then append corrections from the residual contributions 
gradually. This approximated solution is treated as a model space in the working Hilbert or Fock space 
accounting majority of the contributions from the Coulomb interactions in the calculation of the atomic 
wave functions. One of the most conducive and appropriate approaches to determine the approximated wave 
functions is to use the Hartree-Fock (Dirac-Fock (DF) in the relativistic framework) Hamiltonian (H0). The 
residual interaction (Vres = Hat – H0) can further improve the results by annexing contributions from the rest 
of the Hilbert or Fock space, referred to as orthogonal space, through a decent many-body method. Below 
we demonstrate few methods and try to inculcate one-to-one connections among these methods. For this 
purpose, we try to build-up each many-body approach by commencing from same DF wave function. To 
proceed further, we adopt the procedure of the generalized Bloch equation to explain the many-body methods 
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systematically in a comprehensible and logical manner. In the many-body perturbation theory (MBPT) the 
exact wave function of an atomic state can be expressed as
	 |Ψn

(0)〉 = Ωn
(0) |Φn〉,                   � (10)

	 Where |Φn〉 is the model space (here DF wave function) and Ωn
(0) is the wave operator which is 

responsible for incorporating contributions from the orthogonal space due to Vres. It should be noted that 
we also make here no-pair approximation while constructing the orthogonal space, i.e. the excited state 
configurations are built up considering only the zeroth order positive energy states, to avoid spurious 
contributions due to the contamination of the excited state configurations with the negative energy states. 
Contributions from the above orthogonal space can either be expressed in terms of order of perturbation 
or in the form of excited configurations with respect to |Φn〉. Without loss of generality, we can go on with 
the perturbation series expansion approach first and then we can manifest the same in terms of the excited 
state configurations.
	 Two projection operators P and Q satisfying |Φn〉 = P|Ψn

(0) and Q = I – P for the identity operator 
are defined for easy description, which follows P = |Φn〉〈Φn|. In the perturbative approach, it yields
	 Ωn

(0) = Ωn
(0, 0) + Ωn

(1, 0) + Ωn
(2, 0) + ... = ∑k Ωn

(k, 0)� (11)
	 Notice that we use two superscripts, for the later use, among which the first one represents for 
number of Vres present in the calculations while the second one with zero means there is no external source 
of perturbation taken into account. The amplitudes of the above wave operators are solved one-by-one 
in the sequence of order of perturbations involved with the wave operators using the following recursive 
relation.
	 [Ωn

(k, 0), H0] P = QVres Ωn
(k – 1, 0) P – ∑k – 1

m = 1 Ωn
(k – m, 0) PVres Ωn

(m – 1,0) P.� (12) 
	 The energy of the state (En) can be evaluated using an effective Hamiltonian Hn

eff = PHΩn
(0) P at 

different orders of perturbation with the expansion form of. i.e. Ωn
(0). i.e. En = 〈Φn|Hn

eff|Φn〉.
	 Now, the modified (|Ψn〉) wave function of the atomic system in the presence of an external weak 
perturbative source (such as Vprt which can be either the D or Q operator for the evaluation of the dipole 
αn

E1 or αn
E2 quadrupole polarizabilities, respectively) can be approximated to first order approximation as 

	 |Ψn〉 = |Ψn
(0)〉 + λ|Ψn

(1)〉,� (14)
where l is an arbitrary parameter representing the strength of the perturbation source. In this way, αn

E1 and 
αn

E2 can be obtained by expressing

	 αn
E1/E2 = 

〈Ψn|D|Ψn〉
〈(Ψn|Ψn)〉

 ≃ 
〈Ψn

(0)|D| Ψn
(1)〉

〈Ψn
(0))|Ψn

(0)〉
,� (15)

by considering or Vprt ≡ D or  Vprt ≡ Q.
	 It is commanding to obtain solution for |Ψn

(1)〉 by solving an in homogeneous equation of the 
type 
	 (Hn

eff – En)|Ψn
(1)〉 = (En

1 – Vprt)|Ψn
(0)〉.� (16)

	 In Bloch equation methodology, we can express |Ψn
(1)〉 = Ωn

(1) |Φn〉 such as Ωn
(1) = ∑k Ωn

(k,1) 
encompassing kth order of Vres and one order external perturbation Vprt. The amplitudes of Ωn

(1) are obtained 
from the following equation
 	 [Ωn

(k,1), H0] P = Q[Vprt Ωn
(k, 0) + Vres Ωn

(k – 1, 1)] P – 
� ∑k – 1

m = 1  (Ωn
k – m, 0 PVprt Ωn

(m, 0) P – Ωn
(k – m, 1) – PVres Ωn

(m, 0))P.   (17)
	 For the choice of reference state |Φn〉 as the DF wave function and external perturbation operator 
Vprt being an one-body operator, the zeroth order expressions for the wave operators can yield Ωn

(0, 0) = 1, 

Ωn
(1,0) = 0, and Ωn

(0, 1) = ∑p, a 
〈p|Vprt|a〉
ep – ea

 for the occupied p and unoccupied orbitals with energies ea and ep 
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respectively. In the double perturbative sources, up to k = 0, 1, 2 ... approximations in the wave operators 
are referred to MBPT (k) method. 
	 Having said and done with the basic formalism of determining atomic wave functions in the many-
body perturbative analysis, extending them to build-up these wave functions containing all orders in Vres for 
both the cases, absence and presence of external source, would be now much straightforward. This can be 
achieved by generalizing the above perturbative approaches after carefully formulating the wave operator 
Ωn in a slight different form or assembling the coefficients from each order of perturbation expansion to 
compose various degree of excitations. We now proceed to describethe RCC and RPA methods for calculating 
the polarizabilities. The all order perturbative nature of these many-bodymethods in determining the atomic 
wave functions can be understoodwell in the following manner.
	 In the RCC method, linear combination of the Slater determinants are carried out in a distinct manner 
so that atomic wave functions are contrived to form an exponential function. By assembling different level 
of excitations with respect to the DF wave function from each order of correction from the perturbation 
theory, we express the atomic wave function as

 	 |Ψn
(0)〉 = |Φn〉 + ∑

NI

I
 Cn

I |Φn
I〉 + ∑

NII

II
Cn

II |Φ II〉 + ∑
NIII

III
 Cn

III |Φn
III〉 + ...,

		  ≡ |Φn〉 + ∑
NI

I
 TI

(0) |Φn〉 + ∑
NII

II
TII

(0) |Φ 〉 + ∑
NIII

III
 TIII

(0) |Φn〉 + ...,

		  = |Φn〉 + T1
(0)|Φn〉 + T2

(0) |Φn〉 + T3
(0) |Φn〉 + ...

		  = eT1
(0) + T2

(0) + T3
(0) + ... + TN

(0) |Φn〉 = eT(0) |Φn〉,� (18)
where T(0) = ∑N

K TK
(0) for k = 1, 2, 3 ... represents for RCC excitation operators with subscript k implying  

kth level excitation carried out from |Φn〉. The advantage of this method is of many fold: (i) it is both 
conceptually and computationally simpler, (ii) truncated RCC methods also satisfy both size-extensivity 
and size-consistency properties, (iii) owing to exponential form of the expression for the wave function, 
contributions from higher level excitations to certain extent also do appear through the non-linear terms in 
a truncated RCC method, etc.
 	 Although we mentioned above about computational simplicity in the use of RCC method, yet in 
actual practice it does not turn out to be factual. Because of presence of the non-linear terms and requirement 
of a sufficiently large Hilbert or Fock space to carry out accurate calculations of the atomic wave functions, 
intermediate computational strategies have been adopted conforming available computational resources 
and depending upon the size of the atomic system of our interest. This is judiciously accomplished by 
devising a proper plan before implementing the method. Since atomic orbitals are meticulously described 
in the spherical coordinate system, thus use of reduced matrix elements instead of actual matrix elements 
were pertinent and itprevails extra computations for the azimuthal quantum numbers. This is the most well 
versed approach for states having closed-sell configurations, but states of open-shell configurations cannot 
be dealt with this way. However, atomic states having one or two electrons in the valence orbitals and one 
or two electron less from closed-shell configurations can be computed using the reduced matrix elements 
by appending valence orbitals or removing electrons from the appropriate closed-shell configurations in the 
Fock-space approach. We discuss here an approach to calculate wave functions of atomic sates having only 
one electron in the valence orbital along with a closed-shell configuration in the Fock-space formalism.
 	  In the Fock-space CC formalism, wave functions of one valence (v = n) atomic states are expressed 
as 
 	 |Ψv〉 = eT(0)

 {1 + Sv
(0)}|Φv〉,� (19)
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Where Sv is a CC operator exciting the valence electron along with from closed-core of |Φv〉. In a Fock-space 
approach, |Φv〉 is constructed from the closed-core |Φ0〉 by appending the respective valence orbital v as |Φv〉 
= av

+ |Φ0〉. In this approach, the RCC T(0) operator is responsible for accounting electron excitations from 
the closed-core |Φ0〉. In these expressions, superscript is used to highlight that wave functions are still free 
from the external fields. We consider only the singles and doubles excitations in our calculations, which is 
known as the CCSD approximation in the literature.
	 The matrix element of an operator O (which is either D or Q in or case) between the |Ψf〉 and |Ψi〉 
states is determined by

	 〈O〉f i = 
〈Ψf |O| Ψi〉

〈Ψf |Ψf |Ψi |Ψi〉
, 

〈Ψf |{1 + Sf
(0)+} O– {1 + Si

(0)}| Φi〉

〈Ψf |{1 + Sf
(0)+} N– |{1 + Sf

(0)} Φf 〉〈Φi |{1 + Si
(0)+} N– |{1 + Si

(0)}Φi〉
�  (20)

	 Where O– = eT(0)+ OeT(0) and N– = eT(0)+ eT(0) are two non-truncated series in the above expression. 
These non-truncated series are computed at several intermediate steps in an iterative procedure.
	 We evaluate many E1 and E2 matrix elements among the ground and low-lying excited states 
using the above RCC method in the considered alkali atoms and singly ionized alkaline earth ions. Using 
these matrix elements and experimental energies, we estimate the dominant contributions to the dipole and 
quadrupole polarizabilities in a sum-over-states approach as given in Eq (4). Other contributions such as 
from the core-valence correlations and high-lying excited states are estimated using the DF method as their 
magnitudes are negligibly small. The core correlations to these polarizabilities for the open-shell systems 
and the dipole and the quadrupole polarizabilities of the ground states of the closed-shell atomic systems 
are determined using the RRPA method, where the pair correlation effects contribute insignificantly. We 
outline the RRPA method briefly below.
	 The RRPA is a subclass of RCC method, but technically it is derived from the DF method in a 
completely different procedure. Its main advantage is, it can embody the core polarization effects to all 
orders at the same time being cost-effective. Its expression can be obtained from Eq (12) by continuing 
to infinite order for Ω(k, 1) while suppressing Ω(k, 0) in a self-consistent procedure. The derivation of the 
final expression is a repercussion of expanding the DF wave function |Φn〉 to first order due to Vprt and 
generalizing it to infinite order. Thence, it only picks up the singly excited configurations from |Φn〉 in case 
of polarizability calculations owing to one-body form of the interaction operator Vprt ≡ D or Vprt ≡ Q. In 
the RRPA approach, the first order corrected wave operator Ωn

(1) ≡ Ωn
RPA is explicitly given by 

 	 Ωn
RPA = ∑∞

k = 1 ∑pq, ab 
[〈pb| Vres|aq〉 – 〈pb|Vres|qa〉] Ωb → q

(k – 1, 1)+

ep – ea
 +

�
Ωb → q

(k – 1, 1)+
 [〈pq|Vres|ab〉 – 〈pq|Vres |ba〉]

ep – ea
  (21)

where a → p implies singly excitation operation by the wave operator replacing an orbital a by p in |Φn〉. 
After obtaining amplitude of the Ωn

RPA operator and using Eq (15), we obtain the dipole and quadrupole 
polarizability contributions to the core correlations in the single valence atomic systems and ground state 
of the inert gas configured state functions.

4 Results

	 Our estimated dynamic polarizabilities for the alkali atoms and singly charged alkaline earth ions, 
obtained using the above discussed RCC method, are given in [42] and their accuracies are justified by 
comparing the static values with their corresponding experimental results. To verify how accurately we have 
also achieved these values in the inert gas atoms, we present our DF and RRPA results for these atoms in 
Table 1 and compare them with the results available from the other calculations and from the measurements. 
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As can be seen from the table the differences between the DF and RRPA results are not substantial, however 
the RRPA calculations are closer with the experimental results. Johnson et al [50] had also evaluated α1 
values of the above inert gas atoms using RRPA, but considering different basis functions. Our results are 
very much consistent with their results. This implies that our RRPA can also provide accurate dynamic 
dipole and quadrupole polarizabilities for these atoms.
Table 1. Calculated values of the static dipole and quadrupole polarizabilities for the He, Ne, Ar, Kr and Xe inert gases.

Polarizabilities He Ne Ar Kr Xe
α1

total (DF) 0.99 1.98 10.15 15.82 26.87
α1

total (RRPA) 1.32 2.37 10.77 16.47 26.97
α1total (Other) 1.32 [50], 1.383 

[51]
2.38[50], 
2.697 [52]

10.77 [50], 11.22 
[52]

16.47 [50], 16.8 
[52]

26.97 [50], 
27.06 [52]

α1
total (Experiment) 1.3838 [53] 2.668 [53] 11.091 [53] 16.74 [53] 27.340 [53]

α2
total (DF) 1.80 4.76 37.19 69.91 151.88

α2
total (RRPA) 2.33 6.42 50.12 94.25 205.12

α2
total (Other) 2.445 [18] 7.52 [54] 51.86 [54] 98.2 [41] 213.7 [41]

	 Soldan and colleagues had also employed a coupled-cluster (CC) method, in the non-relativistic 
framework, to determine these values [51] and had obtained more accurate results compared with the 
experimental values. It is very difficult to determine the dynamic polarizabilities for a large set of imaginary 
frequencies using the (R)CC methods due complexity involved in calculating the first order wave function 
due to the dipole and quadrupole operators. Nevertheless, our RRPA results are suitable enough for estimating 
the dispersion coefficients within the present interest of accuracy. There are no experimental results for α2 
available to compare against our calculations, but we find few other theoretical studies on them using a 
variety of many-body methods [18, 41, 54]. Chen and co-workers [18] had evaluated the α2 values for the 
ground state of helium using a variationalperturbative approach considering the B-spline and Slater-type 
basis functions in the configuration-interaction (CI) scheme. Thakkar et al [54] had used a finite order 
many-body perturbation theory to gauge these quantities and in Ref [41], Jiang and companions computed 
values of α2 using systematically generated effective oscillator strength distributions. Our results for are 
consistent with these calculated results.

Table 2. Calculated values of the static dipole and quadrupole polarizabilities for the  Li+, Na+, K+ and Rb+ alkali 
metal ions.

Polarizabilities Li+ Na+ K+ Rb+

α1
total (DF) 0.16 0.83 5.46 9.27

α1
total (RRPA) 0.19 0.95 5.45 9.06

α1
total (Other) 0.1894 [50], 0.192486 

[55]
0.9457[50], 1.00 

[56]
5.457 [50], 5.52 [56] 9.076[50], 9.11 [56]

α1
total (Experi-

ment)
0.188 [57] 0.978 [58] 5.47 [58] 9.0 [59]

α2
total (DF) 0.09 1.21 12.92 28.11

α2
total (RRPA) 0.11 1.52 16.25 35.35

	 We have also performed the DF and RRPA calculations of polarizabilities for the singly charged 
alkali atoms. We present the static dipole and quadrupole polarizability values of these ions in Table 2 and 
compare them with the other available results. We find that the differences between the DF and the RRPA 
results are not very large and see that the RRPA results are much closer to their respective experimental 
values than in the case of the previously discussed inert gas atoms. This may be because of the fact that 
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atomic orbitals are tightly bound in the ions than the neutral atoms. Our RRPA values match well with the 
other RRPA values of Johnson et al [50]. Lim and co-workers had also employed a RCC method considering 
only the scalar relativistic Hamiltonian [56] to evaluate these quantities, but their values are larger than the 
RRPA and experimental results. The reason could be their approximated method may be overestimating the 
correlation effects from the non-RRPA contributions and the higher order relativistic corrections maybring 
back these results closer to the experimental values. In this view and for the computational simplicity, it 
seems RRPA is appropriate to estimate the dynamic α1 values in these ions within the reasonable accuracies. 
We could not find any other references presenting the α2 results of these ions, but on the basis of findings on 
values, we also assume that our RRPA calculations for α2 are of moderate accurate and can be considered 
for the accurate estimate of the dispersion coefficients.
	 Having gauged about the accuracies of our calculated polarizabilities, we now intend to determine 
the c6 and c8 dispersion coefficients for all possible combinations of the considered inert gases with the 
alkali and alkaline earth ions and the alkali atoms with their singly charged ions. Using the formula given 
by Eqs (2) and (3) and the Gaussian quadrature integration method, we present the c6 and c8 values of the 
alkali ions with the inert gas atoms in Table 3. Tang and co-workers [40] had also evaluated thesec6 and c8 
coefficients for Li+ interacting with the inert gases by using avariational Hylleraas method. It can be seen 
that the results obtained in the present work are comparative to the results calculated by the other groups.

Table 3. The c6 and c8 dispersion coefficients for the alkali ions-inert gases combinations. Values reported in Ref 
[40] are also given to compare with our results.

System
This work Others [40]

c6 c8 c6 c8

Li+ – He 0.34 2.20 0.302715247023 1.9954705321
Li+ – Ne 0.72 5.86 0.66588 5.7756
Li+ – Ar 2.24 31.03 1.8427 27.256
Li+ – Kr 3.11 51.38 2.5468 45.261
Li+ – Xe 4.55 95.23 3.6392 83.937
Na+ – He 1.61 14.12

Na+ – Ne 3.23 35.06

Na+ –  Ar 10.48 171.11

Na+ – Kr 14.64 261.11

Na+ – Xe 21.47 503.70

K+ – He 6.97 88.84

K+ – Ne 13.77 203.11

K+ – Ar 47.55 956.11

K+ – Kr 67.25 1534.64

K+ – Xe 100.08 2746.82

Rb+ – He 10.69 161.82

Rb+ – Ne 20.95 359.63

Rb+ – Ar 73.61 1655.53

Rb+ – Kr 104.52 2633.81

Rb+ – Xe 156.20 4661.33
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Table 4. The c6 and c8 dispersion coefficients for the alkaline earth ions-inert gases combinations.  
Values reported in Ref [41] are also given to compare with our results.

System
This work Others [41]

c6 c8 c6 c8

Ca+ – He 20.02 670.07 19.724 658.87

Ca+ – Ne 37.27 1319.37 39.136 1395.8

Ca+ – Ar 152.22 6243.18 145.07 5965.9

Ca+ – Kr 225.74 9879.45 212.77 9353.4

Ca+ – Xe 355.93 17263.05 329.07 16181

Sr+ – He 24.96 896.84 24.404 913.41

Sr+ – Ne 46.59 1753.64 48.613 1920

Sr+ – Ar 188.80 8283.49 178.02 8117.7

Sr+ – Kr 279.27 13072.11 260.40 12655

Sr+ – Xe 439.03 22723.46 401.31 21682

Ba+ – He 32.99 1428.28 31.504 1396.9

Ba+ – Ne 61.80 2771.32 62.753 2905.2

Ba+ – Ar 247.97 12790.04 229.44 12141

Ba+ – Kr 366.03 20004.12 335.37 18809

Ba+ – Xe 574.01 34315.91 516.40 31891

Ra+ – He 34.39 1462.77

Ra+ – Ne 64.80 2846.98

Ra+ – Ar 255.86 13060.71

Ra+ – Kr 375.96 20386.60

Ra+ – Xe 586.23 30873.79

	 Similarly, we have tabulated the values of c6 and c8 coefficients for all the considered alkaline 
earth ion-inert gase combinations in Table 4. We find the magnitudes of these dispersion coefficients for 
the alkaline earth metal ions with the inert gases are less than the values of the corresponding alkali metal 
atom-inert gasinteractions as the polarizabilities of the alkaline earth metal ions are smaller in magnitude. 
In Table 5, we present the c6 and c8 coefficients of the alkali metal atom-alkali metal ion combinations. Lee 
and co-workers [60], in year 2013, had estimated the collision rate coefficients for the collisions between 
Rb atoms and optically dark Rb+ ions in trapped mixtures. Charge transfer and total cross sections in the 
elastic collisions of Na-Na+ at ultralow temperatures have been studied by Cote and co-workers [11]. These 
dispersion coefficients may be useful in such experiments carried out using hybrid atom-ion traps [60]. 
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Table 5. The c6 and c8 dispersion coefficients for the alkali atom-alkali ion combinations.

System c6 c8

Li – Li+ 3.28 157.21

Li – Na+ 16.21 815.17

Li – K+ 90.18 4773.52

Li – Rb+ 148.14 8131.05

Na – Li+ 3.87 189.23

Na – Na+ 19.01 980.05

Na – K+ 103.48 5728.29

Na – Rb+ 169.21 9740.79

K – Li+ 6.15 353.35

K – Na+ 30.04 1810.07

K – K+ 160.74 10527.01

K – Rb+ 261.63 17782.86

Rb – Li+ 7.12 445.85

Rb – Na+ 34.71 2285.70

Rb – K+ 183.63 13220.86

Rb – Rb+ 297.98 22313.61

5 Conclusion

	 In the foregoing work, we have determined the dynamic electric dipole and quadrupole polarizabilities 
in the alkali atoms and singly charged alkaline earth-metal ions using matrix elements that were obtained by 
employing the relativistic coupled-cluster. Similarly, a relativistic random phase approximation was used to 
calculate these quantities in the inert gas atoms and in the singly ionized alkali atoms and doubly ionized 
alkaline earth-metal atoms. Accuracies of these quantities were verified by comparing their static values with 
the other available theoretical and experimental results. By using these values, we determined the dispersion 
coefficients for the considered atomic systems, which are the constituent of long range interactions between 
the atoms or atom-ion combinations. These values will have significant applications in finding position of 
the magnetic field induced Feshbach resonances and to study collisional physics; particularly at the low-
energy and low-temperature regime.
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