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Light is not just the major source of energy that supports life and it is also a very viable information carrier. In this 
article, we showed that there is an intimate relationship between information and light as a carrier. We discussed the 
Uncertainty Principle of Heisenberg as related to information, in which we showed that every bit of information (or 
quanta of light) is limited by an unit cell of information and it is associated with a cost of entropy. Examples are given 
within the limit and beyond the Uncertainty Principle. We have shown that time and frequency resolutions cannot be 
observed simultaneously and yet the imaging can also be obtained within the limit of Certainty! ©Anita Publications. 
All rights reserved.

1 Light as An Information Carrier

 In physical world, light is not only part of the mainstream energy that supports life; it also provides 
us with an important information carrier. One can imagine that without light, the human civilization would 
never take place! Furthermore, humans are equipped with a pair of exceptionally good, although not perfect, 
eyes. With the combination of our intelligent brains and remarkable eyes, humans were able to advance 
themselves above the rest of the animals in this planet earth. In the presence of light, humans are able to 
search for the food they need and the art they enjoy, and to explore the unknown. Thus light has provided 
us with a very useful information carrier. The purpose of this article is to show a few key relationships 
between light and information.
	 Let	us	now	define	information	measure	from	a	probabilistic	stand	point,	as	formally	accepted:	For	
example, the more uncertain a message that we anticipate to occur, the higher the amount of information 
the message contained. In short, an optical communication system can be represented by a block diagram 
shown in Fig l.

NOISE

USER

SOURCE SOURCE
ENCODER

SOURCE
DECODERRECEIVER

TRANSMITTER FIBER-OPTICS
CHANNEL

Fig 1. Block diagram of a digital light communication system.

	 We	 assume	 a	message	 (either	 temporal,	 spatial,	 or	 both)	 to	 be	 sent	 via	 the	fiber-optics	 channel,	
first	we	need	to	convert	the	message	into	digital-light	form	before	the	transmission.	And	after	the	signal	is	
received, it has to be properly decoded for the user; otherwise the user may not understand the message! 
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 Strictly speaking there are two types of information transmission strategies; one was developed 
by Wiener [1], and the other by Shannon [2]. Although both Wiener and Shannon share a common though 
of	extracting	signal	from	noise,	but	there	is	a	basic	distinction	between	them.	The	significance	of	Wiener’s	
communication is that, if a transmitted signal is corrupted by some physical means (e.g., noise, nonlinear 
distortion), it may be possible to recover after the effect of corruption. It was for this purpose Wiener 
developed	 the	 correlation	 detection,	 optimum	prediction,	matched	filters	 and	others.	On	 the	 other	 hand,	
Shannon’s	signal	transmission	carried	a	step	further.	He	advocated	that	signal	can	be	optimally	transmitted	
provided it was properly encoded. In other words, the signal can be processed before and after the 
transmission. It was precisely what Shannon developed the theory of information. One of the major aims 
in	Shannon’s	 theory	 is;	 the	 efficient	 utilization	of	 the	 communication	 channel.	Nonetheless	 both	Wiener	
and	Shannon	shared	the	same	objective;	namely	faithfully	reproduction	of	the	signal!	Yet,	it	was	Shannon’s	
binary coding idea enabling us of developing the modern digital computer and communication! Let us now 
start with an input-output information channel as shown in Fig 2,

INFORMATION
CHANNEL

A = {ai} B = {bj}

Fig 2. An input-output communication channel. 

 In which we denote the input and the output ensembles respectively; A = {ai} and B = {bj}, where 
i = 1, 2..., M and j = 1, 2, ...., N. Then the amount of information (or information measure) provided at the 
input and the output ends can be written as
  I(ai) =

DD  – log2 P(ai) bits 
  I(bj) =

DD  – log2 P(aj) bits 
where P(ai) and P(aj) are the probability measure of input and output events ai and aj, respectively. 
 Then the information provided at the output event bj with respect to the input event ai can be 
written as 
 I(ai; bj) =

DD  – log2 
p(ai, bj)

p(ai)
 bits 

 Where p(ai, bj) is the conditional probability of depending upon ai. And this is precisely the 
information	measure	 defined	by	Shannon	 [2] as the mutual information (or the amount of information) 
transferred between event bj and ai.

2 Finite Bandwidth and Uncertainty Principle
	 Strictly	speaking,	all	physical	systems	are	finite	bandwidth	systems.	A	low-pass	system	is	defined	as	
a	system	that	possesses	a	nonzero	transfer	characteristic	from	zero	frequency	to	a	definite	frequency.	Since	the	
analysis of a band-pass system can be easily reduced to the case of an equivalent low-pass system, we restrict 
our discussion to only the low-pass analysis. Let us now provide a low pass system shown in Fig 3.
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Fig 3.	An	idea	low-pass	filter.
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	 If	 the	 input	 signal	 to	 this	 low-pass	 system	has	 a	finite	 time-duration	of	Δt then to have a good 
output	reproduction	of	 the	input	signal,	 it	 is	required	the	system	bandwidth	Δv be greater than or at least 
equal	to	1/Δt that is
 Dv ≥ 1/D t 
where 1/Dt	is	known	as	the	input	signal	bandwidth.	Alternatively	we	can	write	the	following	relationship:
Dv . Dt ≥ 1
	 This	is	known	as	the	Uncertainty	Principle	as	related	to	the	Heisenberg’s	Uncertainty	Principle	in	
Quantum Mechanics as given by 
 Dx . Dp ≥ h
where Dx and Dp are the position and momentum errors, respectively, and h	is	the	Planck’s	constant.	The	
Heisenberg Uncertainty Relation can also be written in the form of energy and time variables;
 DE . Dt ≥ h
where DE and Dt are the corresponding energy and time deviations. Thus one may see that every bit of 
information takes time and energy to transmit, to process, to record, to retrieve, to learn and to assemble! 

3 Gabor’s Information Cell 
 In 1946, Gabor [3] published a paper entitled “Theory of Communication” in the Journal of the 
Institute	 of	Electrical	Engineers”,	 about	 2	 years	 before	Shannon’s	 [2] classical article, “A Mathematical 
Theory of Communication,” appeared in the Bell System Technical Journal” [4].	Several	of	Gabor’s	concepts	
on	information	aspects	were	quite	consistent	with	Shannon’s	theory	of	information.	Here	we	briefly	illustrate	
one	of	his	 concepts	 in	 information	as	 related	 to	 the	Heisenberg’s	Uncertainty	Principle.	Let	us	 look	at	 a	
frequency and time plot shown in Fig 4.
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Fig 4.	Gabor’s	information	cell.

with vm and T are the frequency and time limits of a time-signal. Notice that this frequency-time plot can 
be subdivided into elementary information elements or cells, as Gabor called them Logons, as given by
 Dv . DT = 1
 In which we see that it is essentially the lower bound of the uncertainty relation. By referring to 
Fig 4, the plot can contains 
 N ' . vmT
numbers of information cells. Nonetheless that signal within each of the cell can accommodate two possible 
elementary signals, symmetric and anti-symmetric signals (i.e., orthogonal signals). Thus we see that the 
total number of information cells would be twice the numbers, as given by 
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 N = 2N’	=	2vmT 
 Notice that the shapes of the information cells are not particularly critical, it is however the unit 
area Dv . Dt = 1. As for the elementary signals, Gabor has proposed of using use of Gaussian cosine and 
sine wavelets shown Fig 5,

 
Fig 5. Gaussian envelop; cosine and sine elementary signals.

 We further note that each information cell is in fact the lower bound of the Heisenberg Uncertainty 
Principle	in	Quantum	Mechanics:
 DE . Dt ≥ h
 We emphasize that the band-limited signal must be a very special type. For which the function has 
to be well behaved; it contains no discontinuity, no sharp angles and has only rounded-off features. This 
type of signals must be analytic functions! 
 Let me now provide a pair of practical examples to show that the Uncertainty Principle indeed 
holds as depicted in Fig 6,

  
Fig 6. Wide-band and Narrow-band Sound Spectrograms

 On the left hand side we show a wide-band sound spectrogram in which the time resolution Dt (i.e., 
time	striation)	can	be	easily	seen	with	the	expense	of	finer	frequency	resolution	Dv. On the other hand as we 
view	the	narrow-band	analysis	on	the	right-hand	side,	we	see	finer	spectral	resolution	Dv can be achieved 
at the expense of the time striation Dt! In view of these results, we notice that the observations are quite 
consistent	with	Uncertainty	Principle’s	prediction;	one	cannot	resolve	(or	observe)	the	frequency	resolution	
Dv and the time resolution Dt simultaneously [5] !
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4 Certainty Principle and Coherence Theory

 Notice that if one reverses the inequality of the Uncertainty Principle as written by
 Dt Dv < 1
it is reasonable to name the preceding inequality “Certainty Principle”, as in contrast with the Uncertainty 
Principle. This means that when the light beam (e.g., the signal) propagates within the time resolution Dt, 
the	complex	light	field	preserves	a	high	degree	of	certainty!	Thus,	as	the	bandwidth	Dv of the light beam 
becomes narrower, the signal property is self preserving (i.e., unchanged) within a longer time window Dt, 
or vise versa! This is in fact precisely the temporal Coherence limit of the light beam (or signal). If one 
multiplies the preceding certainty inequality with the velocity of light c, we have 
 c Dt < c/Dv
which is essentially the Coherence length (or certainty distance) of a signal beam (or light source), as 
written by 
 Dd	≤	c/Dv
 This means that within the coherence length Dd, the transmitted signal is highly correlated with the 
original signal within a time window as can be expressed by the Mutual Coherence Function [6] as given 
by
 G12(t) = lim

t→∞ 1
T

 ∫
T

0
 u1(t + t)u2*(t)dt

where t < Dt,* denotes the complex conjugate, u1 is the original signal before u2*. And the degree of 
certainty	(i.e.,	mutual	coherence)	can	be	determined	by	the	following	equation:

 g12(Dt) = 
G12(Dt)

[G11(0)G22(0)]1/2 

 As regarded earlier, the shape of information cell (i.e., Dt Dv) is not a critical issue, as long it is 
within a unit-cell. Notice that, it is this unit region that has not been fully exploited as applied to signal 
transmission, information processing, measurement and imaging. Nevertheless I will show a couple of 
examples to illustrate that within the Certainty Region, Dt Dv < 1, imaging can be actually exploited! 
 One of the successful applications within the Certainty Regime (i.e., Certainty Principle) must 
be due to the Wave Front Reconstruction (i.e., Holography) of Gabor [7]. We may know that a successful 
holographic construction is much depending on the coherence length (i.e., Temporal Coherence) of the light 
source. This light source provides the constraint that the object beam and the reference beam are mutual 
coherent. Otherwise the complex wave front would not able to be properly recorded on a photographic 
film.	Another	 example	 is	 applying	 to	 synthetic	 aperture	 radar	 (SAR)	 imaging.	The	 returned	 radar	 signal	
is required to be combining with a highly coherence local signal, so that the complex distribution of the 
returned radar wave front can be synthesized on a square-law medium. 
 Now let me provide two wave front recording examples, shown in Fig 7.

       
Hologram image              SAR image

Fig 7.
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 Notice that these results were obtained owning to the operation within the Certainty Regime (i.e., 
coherence length limit Dd). On the left we show a holographic image that was reconstructed from a hologram, 
which was recoded within the coherent length (Dd) of a laser (i.e., light source). This guaranty that the object 
and	reference	beams	were	coherently	encoded	on	a	photographic	film.	On	the	right	hang	side	we	posted	a	
radar imagery that was obtained from a synthetic aperture format [8], which was synthesized by a series of 
reflected	radar	signals	with	a	mutually	coherent	local	signal.	We	further	note	that,	some	micro	wave	radar	
has a very narrower bandwidth, and its coherence length Dd could be over hundreds of thousands of feet!

5 Uncertainty Principle and Relativity

Since every bit of information is limited by the Uncertainty Principle;
	 Δv·Δt ≥	1
in which we see that the spectral resolution and time resolution can be traded. In other words it is the unit cell, 
but	not	the	shape	of	the	cell,	sets	the	limit.	Now	let	us	take	the	Relativity	Theory’s	Time	Dilation	equation	
[9] as written by,

	 Δt ' = 
Dt

1– v2/c2

where	Δt '	is	the	dilated	time	window,	Δt is time window, v is the velocity and c is the speed of light. Now if 
we assume the observer is travel at a velocity v and the observer is aiming at an experiment with zero velocity 
i.e.,	v	=	0.	Then	we	would	use	Δt'	instead	of	Δt as applied to the Uncertainty Principle as given by,
	 Δv · Δt' ≥	1
Since	the	dilated	time	window	Δt '	is	larger	than	Δt, that is
	 Δt' ≥	Δt
	 We	see	that	a	finer	spectral	resolution	limit	Δv, in principle, can be obtained. In other words when 
the observer travels at a velocity of v and he is aiming at the changes of an experiment with a velocity v = 0, 
then	he	would	have	a	larger	time	window	limit	Δt ',	instead	of	Δt , for observing the experiment.
 It is interesting to note that, as the velocity of the observer v approaches to the speed of light 
(i.e., v→c),	then	Δt'→∞ the	time	window	Δt '	would	become	very	large	(i.e.,	Δt'→∞ )! This means that the 
observer, in principle, can observe the experiment as long as he wishes, while he is travelling at the speed of 
light!	In	this	case	the	observer	would	have,	in	principle,	infinitesimal	spectral	resolution	(i.e.,	Δv→0).
 On the other hand, if the observer is standing still at v=0 and observing an experiment which is 
traveling at velocity v, then the time window would be, 
	 Δt = Δt' 1– v2/c2

 By substituting Δt in the Uncertainty relation Δv·Δt ≥	1, we see that a broader spectral resolution 
limit Δv  is expected, since Δt ≥	Δt' in this case. 
 Again, If the velocity of the experiment is approaching the speed of light (i.e., v→c), then the 
observer would have no time to observe since Δt→0.	And	the	spectral	resolution	limit	would	be	infinitely	
large (i.e., Δv→∞) !
 Let us now look at the Heisenberg principle, which can be written in several forms, as follows;
	 ΔE · Δt ≥	h
	 Δp · Δx ≥	h
	 We	notice	again	that,	the	limitations	are	not	by	the	shape	but	the	constraint	of	the	Plank’s	Constant	
h.	Similarly	one	can	show	that	the	energy	resolution	ΔE	and	the	time	resolution	Δt can be traded; as well the 
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momentum	resolution	Δp	and	the	position	resolution	Δx are interchangeable. This depends upon where the 
travelling-observer and the experiment are located. 
	 One	final	though	is	that,	by	reversing	the	Heisenberg	Uncertainty	Principle	as	we	have	shown	earlier	
named	 it	as	Certainty	Principle	 (	 i.e.,	Δv · Δt ≤	1)	 .	This	means	 that	within	 the	unit	 information	cell,	 the	
observation is at high degree of certainty.
 We have provided two preceding illustrations shown that exploiting the certainty principle (i.e., 
within the unit information cell) were possible, namely the complex wave front construction for holography 
and synthetic aperture radar format. For these reasons it is rather encouraging to see, in the future, more 
applications within the Certainty Principle for signal processing, detection, imaging, measurement and others 
will	emerge!	It	is	not	just	only	limited	to	the	certainty	relation	of	Δv · Δt ≤	1,	it	can	also	be	applied	in	the	
following certainty relationships;
	 ΔE · Δt ≤	h
	 Δp · Δx ≤	h 
 We further note that, the application of certainty relation is not just limited to low velocity condition; 
it can also be applied in very high speed relativistic regime!

6 Information and Entropy

	 We	note	 again,	 the	 information	measure	 is	 strictly	 defined	 from	a	 statistical	 stand	point.	Let	 us	
now consider an information source has N possible outcomes. If these possible outcomes are assumed to be 
equal in probability (or equiprobable), then the average amount of information provided by the information 
source is
 I0 = – S

j=1

n
 Pj log2 Pj = log2 N bit/outcome 

where Pj = l/N. Now let us assume an amount of information I is acquired by some means and it is possible 
to reduce to a smaller set of outcomes M. If we again assume that the M outcomes are equiprobable, then 
the average amount of information provided by the M outcomes is

 I0 = – S
j=1

M
 Pj log2 Pj = log2 M bit/outcome

where Pj = l/M, and N > M. Thus we see that the amount of information required for this information 
reduction is
 I = I0 – I1 = log2 N

M 
 bits/outcome 

 Let us now seek a relationship between information and entropy [10] of which we consider 
mainly only information provided by some physical means so that entropy theory can be easily treated. In 
order to derive the relationship between information and entropy we turn to a physical system in which 
equal probability in complexity of the structures has been established, a priori. Now let us get back to the 
previous example (where the N possible outcomes have been reduced to M) and assume the system cannot 
be isolated, since the second law of thermodynamics prevails. The corresponding entropies for the N and 
M equiprobable outcomes or states are given respectively by
 S0 = k In N 
 And
 S1 = k In M
where N > M, and k is	the	Boltzmann’s	constant.	Thus	we	have
 S0 > S1
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 It can be seen that the system entropy can be reduced, if and only if an amount of information I 
is acquired at the expense of some external source. Thus we have,
 DS = S1 – S0 = –kI In 2
 Or equivalently,
 S1 = S0 – kI In 2
 However, the information I is required to be proportional to the decrease in entropy DS. This is 
the basic connection between entropy and information. Thus we see that the information and entropy in 
principle can be simply traded!
 By the second law of thermodynamics, if we isolate the entire system, which includes sources of 
I,	then	for	any	further	evolution	within	the	whole	system	the	entropy	will	increase	or	remain	constant:
 DS1 = D(S0 – kI In 2) ≥ 0
 Thus we see that any further increase in entropy DS1 is due to DS0 or DI or both. Although in 
principle it is possible to distinguish the changes in DS0 and DI, but in some cases the separation of the 
changes	may	be	difficult	to	discern.
 It is interesting to note that, if the initial entropy S0	of	the	system,	without	the	influence	of	external	
sources, we have
 DI ≤ 0
since DS0 = 0, thus we see that the changes in information DI were negative, or decreasing. The interpretation 
is that, when we do not have a prior knowledge of the system complexity, the entropy S0 is assumed maximum 
(i.e., the equiprobable case). Hence the information provided by the system structure is maximum. Therefore 
DI ≤ 0 is due to the fact that, in order to increase the entropy of the system, DS S1 > 0, a certain decrease in 
amount of information is needed. In other words, information can be provided or transmitted (a source of 
negentropy) only by increasing the entropy of the system. However, if the initial entropy S0 is at a maximum 
state, then DI = 0 and the system cannot be used as a source of negentropy. This illustrates that entropy and 
information can be interchanged, at the expense of some external source of entropy, as given by; 
 DI ⇋ DS

7 Digital transmission at Light Speed

 In this information age, most of the people including some engineers and scientists, know how the 
digital (e.g., 0 and 1) system operate, yet some of them may not know why we developed it? Let me start 
with	the	major	differences	between	the	digital	and	analog	system	as	follows:
 Digital system operates in binary form (i.e., 0, 1) while analog system operates in analog form (i.e., 
multi-level), digital system provides lower information content (e.g., one bit per level) while analog system 
provides higher information content (e.g., more bits per level), and others. Since the information content of 
a digital system is lower than an analog system, why does one go through all the troubles to transform the 
analog to digital and then to transform back to analog for the receiver? The answer is that by exploiting 
the transmission at velocity of light, which can carry a lot of information at that speed. And it is precisely 
the price paid for the transmission. 
	 Remember	 that	 although	 the	major	 purpose	 of	 using	 digital	 transmission	firstly	was	 for	 noise	
immunity	 in	 binary-signal	 transmission,	 otherwise,	we	won’t	 pay	 for	 a	 longer	 data	 rate	 transmission	 in	
digital form. The reason is that, in digital transmission, the signal can be easily repeated, as in contrast with 
analog-signal	transmission,	it	cannot.	One	may	see	that,	after	a	few	cycles	of	amplifications,	an	analog-signal	
will be completely swallowed up by the noise. While in digital-signal transmission, the transmitted signal 
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can be easily refreshed by means of repeaters. Thus, a digital-signal can be transmitted over thousands and 
thousands miles, and the received signal is just as good as the original! As an example, if one consecutively 
copying a compact disc or a DVD for many times, one would discover that the latest copy is just as good as 
the original one! Although the digital-transmitted signals strictly speaking are not real time, but it appears 
to be very close to real-time because of the light speed transmission! And this is precisely the price we paid 
for the transmission at the speed of light!

8 Diffraction-Limited Demon Exorcist

	 The	 sorting	demon	of	Maxwell	has	 intrigued	 scientists	 and	engineers	 for	 some	 time.	Maxwell’s	
demon is an excellent example for the application of entropy theory of information. Since we are in the 
computer	age,	we	will	extend	Maxwell’s	demon	 to	a	diffraction-limited	regime	 in	which	we	assume	that	
the demon has a diffraction-limited eye and he is operating within a thermally insulated chamber [11], as 
shown in Fig 8.

Thermally Insulated

Chamber 1 Chamber 2

Fig 8. Diffraction limited demon exorcist.

 Since the demon is within the thermally insulated chamber, in order for him to see the molecules we 
equipped the demon with a Light Emitting Diode (LED) for the illumination. Thus by using the negentropy 
provided by the LED, the demon can see the molecules for which the demon is able to let the molecules 
go through the trapdoor. In this manner, he is able to decrease the entropy of the chamber from a higher 
entropy	state	to	a	lower	one.	However,	a	question	may	be	asked:	How	can	the	demon	actually	see	individual	
molecule since he is diffraction limited and added he is located within a thermally insulated environment? 
To alleviate these limitations, we added the demon with a computer to assist him for the processing. To 
see	the	arriving	molecules,	the	demon	first	turns	on	the	LED,	which	is	required	to	emit	at	least	a	quanta	of	
light for the observation, that is,
 hv = kT
	 We	assume	that	the	quanta	of	light	reflected	by	the	approaching	molecules	is	totally	absorbed	by	
the diffraction limited eye of the demon, this corresponds to an increase of entropy that is

 DSd = hv
T 

 This is equivalently to the amount of information provided to the demon, that is,

 Id = DSd
k ln 2

 Because	 of	 the	 diffraction-limited	nature	 of	 the	 demon’s	 eye,	 he	 needs	 to	 process	 the	 absorbed	
quanta to a higher resolution, so that he is able to resolve the molecules to allow the passages of the high- 
and low-energy molecules through the trapdoor. However the amount of information gain, through the 
processing by the equipped computer, constitutes an equivalent amount of entropy increased as given by
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 DSd = k Dld ln 2
 And this is the incremental amount of information gain from the computer so that the demon is able 
to reduce the entropy of the isolated chamber to a lower state. To compute the amount of entropy reduction 
by	the	demon’s	intervention,	we	let	the	initial	entropy	of	the	chamber	be
 S0 = k ln N0

where N0 is the initial microscopic complexity of the chamber. After receiving Id from the LED illuminator 
and DId from the computer processing, the demon is able to reduce the initial complexity from N0 to N1,
 N1 = N0 – DN
where DN	is	the	net	changed	in	complexity.	Thus	the	final	entropy	of	the	chamber	is	given	by
 S1 = k ln N1

 For which the net entropy reduction of the chamber is

 DS1 = S1 – N0 = k ln 1 – DN
N0 

 ~~ –k DN
N0 

where DN < N0. And the overall net entropy changed in the chamber per trapdoor operation by the demon 
can be shown as 

 DS = DSd + DSp + DS1 = k 
hv
kT 

 + DId ln 2 – DN
N0 

 > 0

where we	 see	 that	 the	 diffraction	 limit	 demon’s	 exorcist	 is	 still	within	 the	 limit	 of	 the	 second	 law	 of	
thermodynamics!
	 There	 is	however	a	question	remains	unanswered:	What	would	be	 the	minimum	cost	of	entropy	
required for the demon to operate the trapdoor? Let the arrival molecules at the trapdoor at an instant be one 
or more molecules, then the computer is required to provide the demon with a “yes” or a “no” answer to 
open the trapdoor. If we assume a 50 percent chance of one molecule is arriving at the trapdoor, the demon 
needs one bit of information from the computer, to open the trapdoor. This additional bit of information 
represents an entropy increase provided by the computer, i.e.,
 DSp = k In 2 ~~ 0.7k
 And this is the minimum cost of entropy required for the demon to operate the trapdoor. Thus we 
see that the overall net entropy increased in the chamber is

 DS = k 
hv
kT 

 + 0.7 – DN
N0 

 > 0

 However if we take into account the other bit of “no” information, provided by the computer, then 
the average net entropy increased in the chamber per operation would be

 DSave = k 
2hv
kT 

 + 1.4 – DN
N0 

 >> 0

where two quantas of light from the illuminator were paid for. It is trivial, if one includes the slower 
molecule approaching the trapdoor, the average cost of entropy per operation is even higher. Even though 
we omitted the two quantas of light absorption in the calculation, the overall net entropy changed in the 
chamber is still increasing by

 DSave = k 1.4 – DN
N0 

 >> 0
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where DN < N0. In other words, just for the entropy compensated by the computer is still higher than 
the entropy reduced by the demon. Thus we see that even just taking only the account of the computer 
compensation,	the	demon’s	exorcist	is	still	within	the	second	law	of	thermodynamics!

8 Conclusion

 I would like to iterate again that light is not just the main stream of energy that support life; it 
is an important carrier of information. In principle every bit of information is limited by the Heisenberg 
Uncertainty Principle. Yet, we have shown that observation can also be obtained within the Certainty Limit, 
by means of coherent combination of signals. Since the information measure is related to entropy theory, 
information and entropy can be traded! In this context, we see that every bit of information is associated with 
a cost of entropy. And every bit takes time and energy to transmit, to process, to store, to retrieve, to learn 
and to assemble. And it is not free! In other words; one cannot get something from nothing there is always 
a	price	 to	pay,	even	by	a	simple	observation.	We	have	also	shown	one	of	 the	most	significant	aspects	of	
light and information must be the exploitation of light velocity, in which a hugh amount of information can 
be transmitted at light speed! Finally we have shown a diffraction limited demon exorcist. Even equipped 
the demon with a powerful computer, the demon still cannot operate the trapdoor beyond the second law 
of thermodynamics! 
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