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We describe the use of two refractive elements that have helical phase variations, here denoted as a vortex pair, for 
implementing varifocal lenses. Next, we employ vortex pairs for setting several nonconventional optical zoom systems. 
First, we discuss the Gaussian optics characteristics of single lens zoom system. Then, we describe a tunable afocal 
attachment, which is later employed for implementing a telephoto system whose elements are at fixed positions. Finally, 
we discuss a nonconventional zoom system, and we unveil a confocal device that scans axially a volumetric sample. 
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1 Introduction
	 For several applications in optics, it is convenient to modify the optical power of an imaging 
system. In a varifocal optical system, if one moves axially some elements of the device, then one can change 
continuously the focal length. Furthermore, in a zoom system, one can change the optical power, while 
preserving the positions of one pair of conjugate planes [1]. And in 2-conjugate zoom systems, one is able 
to preserve the positions of two independent conjugate pairs, while changing the optical power [2].
	 A different type of varifocal lenses was presented by Kitajima, several years ago [3, 4]. He proposed 
the use of two free-form elements working as a pair. If one displaces laterally the elements of the pair, then 
one can change continuously the optical power. This optical technique was forgotten for several decades, 
and it was rediscovered independently and simultaneously by Alvarez [5] and Lohmann [6-8].
	 Recently, we have revisited the Alvarez-Lohmann proposal for implementing several novel focalizers 
and some nonconventional apodizers by using optical elements that have vortex like complex amplitude 
variations [9, 10].
	 Here our aim is threefold. First, we revisit the use of a pair of free-form refractive elements, which 
is here denoted as a vortex pair, for optically implementing varifocal lenses. Second, we discuss the Gaussian 
optics characteristics of several zoom systems, which employ one or two vortex pairs as varifocal devices 
[11]. Third, we present a device that uses two vortex pairs for scanning axially a volumetric sample [12, 
13].
	 To our end, in section 2, we revisit the use of two refractive elements, for setting a vortex pair, as 
a varifocal lens. In section 3, we show that a vortex pair is useful for setting a single-lens zoom system. 
In section 4, we describe the use of two vortex pairs for setting an afocal attachment, which is applied for 
setting a telephoto system that uses lenses at fixed positions. In section 5, we employ the afocal attachment 
for proposing a nonconventional zoom system. Next, in section 6, we present an optical device that scans 
axially, in a confocal fashion, a volumetric sample. And in section 7, we summarize our contributions.

2 Varifocal lenses using vortex phase delays
	 For clarifying our notation, we employ the optical processor that is depicted in Fig 1. At the 
Fraunhofer plane we place two refractive elements, which work as a pair. For the first element, the complex 
amplitude transmittance is

		  T1(r, j) = exp
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	 In Eq (1) we include a constant phase factor that sets the maximum phase delay to a value of 27pa. 
The Greek letters r and j denote, respectively, the radial spatial frequency and the polar angle on the pupil 
aperture. The maximum value of r is Ω, which denotes the cut-off spatial frequency of the pupil aperture. 
Hence, the circular pupil aperture is represented by the circle function circ(r/Ω).

	 Fig 1. Optical setup depicting the location of a vortex pair at the Fraunhofer plane

	 Now, just behind the first refractive element, we place a second refractive element whose complex 
amplitude transmittance is the complex conjugate of the amplitude in Eq (1), That is,

		  T2 (r, j) exp{iaj (r/Ω)2}circ(r/Ω).	 (2)

	 In Fig 2 we show the phase variations and the interferogram of a quadratic phase profile that has 
helical variations, for a = 10.

Fig 2. Phase delays and associated interferogram of a wavefront with radial and helical variations

	 The interferogram is obtained if one uses a plane wave as a reference beam and the complex 
amplitude in Eq (2) as the test beam. After we have introduced an in-plane rotation (say by an angle b) 
between the previously defined refractive elements, the overall complex amplitude transmittance is

		  Plens (r, j; b) = T1 
r, j + b
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	 It is apparent from Eq (3) that the overall complex amplitude transmittance is independent of the 
polar angle φ. Furthermore, we note that by selecting the value of the angle β, one can control the maximum 
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value of the quadratic phase delay. As is shown in the Appendix, the complex amplitude transmittance in 
Eq (3) is equivalent to the complex amplitude transmittance of a varifocal lens
		  Plens (r, j; b) exp{–i[(b/lf )]r2}circ(r/Ω)	 (4)

	 In Eq (4) we denote as r the radial variable over the pupil aperture. Its maximum value is R. We 
define as a vortex pair the complex amplitude transmittance either in Eq (3) or in Eq (4). In what follows 
we discuss the use of vortex pairs for setting several nonconventional zoom systems.

3 Single lens zoom system and telephoto attachments
	 For designing a single lens system it is convenient to define first the throw of the device, as the 
longitudinal distance between the input plane and the output plane. See for example reference [11]. That 
is, T = z´ – z, where the letter z is the distance from the lens to the input plane, and z´ is the distance from 
the lens to the output plane; as is depicted at the top of in Fig 3.

Fig 3. Single-lens zoom systems with variable magnification and fixed throw

	 The next relevant variable is the magnification, M = z´/z. The values of T and M are sufficient for 
specifying the value of z, as well as the optical power K of the lens; as is depicted at the bottom of Fig 3. 
In mathematical terms,

		  z = T
M – 1

	 (5)

		  K = – (1 – M)2

MT
.	 (6)

	 For a single lens zoom system the selection of K is the last step, which is implemented by introducing 
an in-plane rotation between the elements of the vortex pair. Here, it is relevant to emphasize that the single 
lens zoom system works for a fixed value of T and for a wide range of values of M. To that end, one needs 
to move the vortex pair at the proper position z. After one places the vortex pair at the proper position z, 
then one sets the desired optical power by selecting the angle β.

4 A tunable afocal device and telephoto with lenses at a fixed positions
	 The afocal system that is shown in Fig 4 is a Galilean telescope, which uses a positive lens at 
the front of the optical system, and a negative lens at the back of the same device. Here, the first lens is a 
vortex pair, which has variable optical power
	 K1 = qKs;  0 ≤ q < Q.	 (7)
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	 In Eq (7) the Latin letter q is a positive real number that is less than the real number Q; this latter 
number specifies the separation between the two vortex pairs as follows

		  d = 1
AKs

	 (8)

Fig 4. Afocal device employing two vortex pairs

	 In Eqs (7) and (8) the lower case letter s denotes the optical power of the substrate lens that 
supports the vortex pair. For implementing the afocal device the second lens must have the following optical 
power

	 K2 
1
Q

 – 1
q 

–1
 Ks;  0 ≤ q < Q.                                                                                  (9)

	 Hence, for this device the magnification is

	 M = − K1
K2

 = 1 − q
Q

;  0 ≤ q < Q. � (10)

	 It is apparent from Eq (10) that by using two vortex pairs one can reduce the width of a parallel 
beam from unity to very small values. In Fig 5 we plot the magnification as a function of the parameter 
q.

Fig 5. Magnification as a function of the parameter q

	 The magnification is independent of the optical power associated to the substrate lens supporting 
the vortex elements.
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Fig 6. Telephoto system with lenses located at fixed positions

	 We recognize next that by using a positive lens behind an afocal device, one can design a telephoto 
system that uses lenses at fixed positions; as is depicted in Fig 6. As it was previously discussed when 
describing the afocal attachment, the focal lengths of the two vortex pairs are respectively,

		  f1 = fs
q ; f2 = 


1
Q

 – 
1
q 

 fs � (11)

	 It is straightforward to show that for the telephoto system in Fig 6, the overall focal length is

		  f ′ = Q
Q – q

 f3. � (12)

	 In Eq (12) we denote as f3 the fixed focal length of the last lens in the optical system. It is apparent 
from Eq (12) that the overall focal length changes from the value f3 to the value Q f3; which is obtained if 
q = Q – 1.

5 Nonconventional zoom systems
	 For setting a zoom system that has vortex pairs, we start by using the telecentric configuration in 
Fig 7. The optical setup uses two positive lenses, with focal lengths f0 and f3, respectively. Trivially, the 
magnification is

		  M0 = – f3
f0

 � (13)

Fig 7. First stages for designing a nonconventional zoom system

1234567890

 

f (x) - a,b) etc.

 

to learn, to

 

understand, and to apply!

  

1234567890

 

f (x) - a,b) etc.

 

to learn, to

 

understand, and to apply!

  



420	 Jorge Ojeda-Castaneda, Cristina M Gómez-Sarabia and Sergio Ledesma

	 Next as is depicted in Figure 8, between the elements of the optical system in Fig 7, we insert the 
afocal device previously discussed. We recognize that the device (in Fig 8) preserves the position of the 
input plane, as well as the position of exit plane. Consequently, the optical system has a constant throw T 
= 2 (f0 + f3). By tracing paraxial rays, it is easy to show that the magnification is

		  M = − Q
Q – q  M0;  0 ≤ q < Q. � (14)

	 In other words, for the optical system in Fig 8 the zoom range is

		  R = − Q
q – Q ;  0 ≤ q < Q. � (15)

Fig 8. Nonconventional optical zoom

	 In Fig 9 we plot the zoom range as a function of the parameter q, for Q = 12 and for 0 ≤ q ≤ 
11.8.

Fig 9. Zoom range as a function of the parameter q

	 In what follows we employ a different configuration for designing a nonconventional axial 
scanner.

6 Tunable axial scanners
	 In Fig 10 we show the schematics of an optical processor that employs two vortex pairs for 
producing an intermediate focal spot, which moves along the optical axis. A first vortex pair is used to 
generate, at variable axial positions, an intermediate focal spot that illuminates a 3-D sample. Next, a 
second vortex pair is used for imaging the intermediate focal spot at the fixed output plane. Hence, the 
throw (T = 4 f0) remains invariant. For achieving the desired purpose, the first vortex pair has the following 
optical power
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		  R = − Q
q – Q ;  0 ≤ q < Q � (16)

	 Employing the paraxial ray tracing formulas, it is easy to find that the focal spot is located at

		  R = − Q
q – Q ;  0 ≤ q < Q� (17)

after the first vortex pair. And since z2 = – (2f0 – z1), then the focal spot is located before the second vortex 
pair at the distance

		  z2 (b) = 
1 – 2b 

 b
 f0 � (18)

Fig 10. Confocal axial scanner: unfolded version

	 It is also easy to show that for the second pair the optical power is

		  K2(b) = − 

 
3b – 1 
 2b – 1

 

 1

f0
.� (19)

	 In Fig 11 we plot Eqs (16) and (19) for the interval 0.5 < β < 5.

Fig 11. Optical powers as functions of the angle β
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	 For this scanning device the total power is

		  K(b) = − 


4b2 
 2b – 1

 K0.� (20)

	 In Fig 12 we plot Eq (20) and the focal length for the interval 0.5 < β < 5.

Fig 12. Optical power and focal length as functions of the angle b

	 Still related to the proposals of Minsky [12] and of Frosch and Korth [13], in Fig 13 we show a 
variant of the axial scanner. This is a folded version of the setup in Fig 10. By changing the focal length, 
fz, of the vortex pairs one can select axial positions on a 3-D sample. The specific characteristics of this 
device are beyond our present scope.

Fig 13. Confocal axial scanner: folded version

Still related to the proposals of Minsky [12] and of Frosch and Korth [13], in Figure 13 we show a variant of the axial scanner. 
This is a folded version of the setup in Figure 10. By changing the focal length, fz, of the vortex pairs one can select axial 
positions on a 3-D sample. The specific characteristics of this device are beyond our present scope.
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	 This is a folded version that uses two vortex pairs for selecting points on a sample, by changing 
the focal length, fz, of the vortex pairs. The specific characteristics of this device are beyond our present 
scope.

7 Conclusions
	 We have indicated that a vortex pair is characterized by the use of two complex amplitude 
transmittances, which have helical phase variations. We have shown that a vortex pair is useful for controlling 
the optical power of lens, by introducing an in-plane rotation between the elements of the pair. And in this 
manner, one can implement a varifocal lens. We have described the Gaussian optics characteristics of a 
single-lens zoom system. Furthermore, we have shown that by using two vortex lenses, one can implement a 
tunable afocal attachment. Next, we have indicated that the afocal attachment is useful for setting a telephoto 
system with variable magnification despite the fact that the device has elements at fixed longitudinal positions. 
We have shown that the discussed afocal attachment is also useful for implementing an optical device that 
changes magnification, while preserving the locations of both the input plane and the output plane. Finally, 
we have unveiled a confocal device that scans axially volumetric samples, while preserving the locations 
of the initial point source, as well as that of the detector plane. Our present discussion is only valid in the 
paraxial regime, and if one uses monochromatic illumination.

Appendix
	 In the main text we use the mathematical expression

		  Plens(r, j, b) = exp 

–i(ab) 


r
W

2


 circ 


r
W

� (A1)

	 In Eq (A1) the radial spatial frequencies ρ and Ω are obtained using the following Cartesian 
variables

		  r = r
lf

, W = 
R
lf  = r

W = r
R .� (A2)

	 Next we note that the optical path difference, denoted here with the Latin letter “a”, is

		  a = (N – 1) 
t
l .� (A3)

	 In Eq (A3) the letter N is the value of the refractive index of the material that is used for building 
the vortex element. The letter “t” denotes the maximum thickness of the refractive element; and the Greek 
letter lambda represents the wavelength of the optical radiation. Hence, the complex amplitude transmittance 
in Eq. (A1) is equivalent to

		  Plens(r, j, b) = exp {–i[(N – 1) 


t
lf 2 

b]r2} circ 

r
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		              = exp {–i[
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	 In Eq (A4) we recognize that the expression associated to the variable optical power is

		  K(b) = 

b
f 

 (N – 1) 


t
R2 

b.� (A5)

	 Thus, a vortex pair generates a lens with tunable optical power.
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