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Radius of curvature of spherical surfaces and the focal length of optical imaging systems are very important parameters 
to be measured. Large number of techniques and methods have been developed over the years. They offer varying 
accuracy and ranges. However, the complexities of measurement increase depending on the desired accuracy and range. 
The paper presents a variety of techniques and methods that include contact type and non-contact type methods.© Anita 
Publications. All rights reserved.

1 Introduction
 All optical components are bound by the combination of plane and curved surfaces. The curved 
surfaces provide power to the element. Due to ease of fabrication, the curved surfaces are spherical, though 
non-spherical and free form surfaces are gaining importance in some sophisticated designs. The spherical 
surfaces need to be produced with tight tolerances on the surface curvature. The measurement of radii of 
curvature of surfaces and focal lengths of lenses and mirrors is a very important activity in the production 
environment. It is the range, and the accuracy and precision required that make these measurements often 
very complicated. In most of the cases, the measurement procedure is straightforward. But the complexities 
abound when the measurement involves extremes in the range; the range may span from a millimeter to 
several meters. The paper discusses the principles of various methods and procedures used for measuring 
these parameters.

2 Measurement of radius of curvature
 Both the mechanical and the optical means are used to measure the radii of curvature of the surfaces 
[1-5]. Each of these methods can be grouped into two categories: (i) indirect method in which either the 
sagitta or the slope of the surface is measured, and (ii) direct method in which distance between the positions 
of the vertex and the center of curvature is measured. It should be noted that the surfaces are assumed to be 
part of a sphere. The methods under this category do not measure the departure from sphericity but yield 
an average radius of curvature of a surface.

A-1 Indirect Method: Measurement of Sagitta
 Sagitta can be measured either using a mechanical spherometer or an optical spherometer. It can 
also be measured interferometrically such as in Newton’s ring method.

A-1.1 Mechanical Spherometer
 Usually a mechanical spherometer is a three-leg instrument: the three pointed legs being at the 
vertices of an equilateral triangle [4]. A central plunger is used to measure the sagitta. The instrument is 
adjusted by placing it on a plane surface, contacting the surface with the plunger and taking the readings. 
These readings act as a reference. The instrument is then placed on a spherical surface and the readings 
are taken when the plunger touches the surface. The difference between these two readings is the sagitta. 
It can be shown that the radius of curvature R is related to the measured sagitta h as

  R = a2

6h + h
2  (1)
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where a is the length of the arm of an equilateral triangle. Often the pointed legs are replaced by the legs 
carrying balls of radii r. In this case a small correction is made to the measured sagitta and the radius of 
curvature is now given by  

  R = a2

6h + h
2  ± r (2)

where + sign is used for concave surface and – is used for the convex surface. The expression (2) is easily 
obtained following the Fig (1a) as

  (R – r)2 = d2 + [R – (h + r)]2 → R = d
2

2h + h
2  + r (3)

But the value of d in terms of the length a of the arm of the equilateral triangle (Fig 1b) is obtained as 

  a
2  = d cos 30° = d 3

2  → d = 
a
3

 (4)

Substituting for d in Eq (3), we obtain

  R = a2

6h + h
2  + r (5)
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     (a)            (b)
Fig 1. (a) Determination of sagitta, (b) relation between a and d

 When the spherometer with a ring base is used, the radius of curvature is given by 

  R = y2

2h + h
2  (6)

where y is the radius of the ring. The ring has sharp edge, which contacts with the spherical surface and 
may scratch it. Instead of the ring, one can have three balls of radius r mounted on it. In that case, the 
radius of curvature is given by 

  R = y2

2h + h
2  ± r (7)

 Same formula (Eq 7) applies when a ring of circular section of radius r is used in place of three 

balls.
Assuming that y and r are accurately known, the uncertainty ΔR in R due to the uncertainty Δh in the 
measurement of the sagitta h can be expressed as 

  DR = Dh
2  1 + y2

h2  (8)

where the uncertainties have been added.
 A bar spherometer is used for the evaluation of astigmatism. It is in the shape of a bar with the 
contact points at the ends and spindle at the center for measurement. It can measure the curvature along 
any diameter [6]. The Geneva gauge is a commercial version of the bar spherometer for optometric work. 
Its scale is directly calibrated in diopters assuming that the refractive index of the glass is 1.523.



On the methods of measurement of radius of curvature and focal length 19

 

 Methods based on physical contact require an application of constant pressure for each measurement. 
It is implied that the pressure must not deform the surface. Therefore, non-contact methods are preferred 
against the contact methods.

A-2 Direct Methods

A-2.1 Image formation
 Concave mirror forms an image of an object with unit magnification when the object is placed at 
the center of curvature, i.e. the image is formed where the object is, as shown in Fig 2. Then the distance 
between the object plane and the vertex of the mirror is the radius of curvature.!
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Fig 2. Measurement of radius of curvature of a concave spherical mirror

A-2.2 Differences in conjugate positions

 There could be a significant error in locating the vertex of the mirror, and hence the distances of the 
object and image could also be in error resulting in a significantly large error in the value of the measured 
curvature. However, if we could locate a reference point with respect to which the distances are measured, 
more accurate value of the radius of curvature can be obtained. For this purpose, center of curvature is 
taken as the reference point, which is located by making an image of a point object on itself as shown in 
Fig 3. We can now place an object at any position O1 and obtain its image by sliding a small screen (or a 
detector) from the plane passing through the center of curvature. Let this position be I1. The point object is 
now moved to a different location O2 and its image is obtained at I2. Let the distances between the center 
of curvature C and I1 be b and between C and I2 be c. Further the separation between the object positions 
O2 and O1 be a. These distances can be measured accurately as these are the differences between the two 
positions.

!
!

"!#$!#% &$! &%!

'! (!
)!

*!

+!

Fig 3. Imaging in a spherical concave mirror

Using imaging conditions, we have 

  1
p  + 1

R – b  = 2
R     (9a)

and

  1
p + a  + 1

R – c  = 2
R     (9b)

where p is the distance of object point at O1 as measured from the vertex V and is unknown and R is the 
distance between vertex V and center of curvature C, which is to be determined.
Eliminating p and rearranging, we obtain
 R2 (a + b – c) – 2Ra(b + c) + 4abc = 0 (10)
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 The solution of the quadratic equation (10) gives the value of R as

  R = 
a(a + b) + a2(b + c)2 – 4abc (a + b – c)

(a + b – c)  (11)

 By inserting the numerical values of a, b and c, the radius of curvature R is calculated. Note a, b 
and c are the difference values and known to an accuracy of the least count of the optical bench on which 
the experiment is conducted.

A-2.3 Optical Spherometer
 A point focus microscope along with a suitable measuring rail constitutes the optical spherometer 
[7-15]. The microscope and the test surface are mounted on the rail. For a concave surface, two positions 
can be found which give the point image on retro-reflection. The separation between these positions is the 
radius of curvature of the surface. For making measurement on the convex surface, additional lens is required 
which must have its focal length larger than the radius of curvature of the surface being measured. Figure 
4 shows the experimental arrangements.

   

Source 
Cat’s Eye

Source 
Retro-re lectionn 

Concave mirrorr 

Cat’s EyeRetro-re lection 

Convex mirror 

Source

Fig 4. Determination of radius of curvature of (a) concave, (b) convex spherical surface

 For moderate range (~ 1m to 2m) an autocollimator with a suitable lens can also be used to obtain 
cat’s eye and confocal positions. A Twyman-Green or a Fizeau interferometer can also be used to determine 
these locations by observing null in the interference pattern. A long coherence length laser is used as a 
source. With careful implementation, the radius of curvature of the spherical surfaces can be measured to 
an accuracy of a few parts in 105.

A-3 Measurement of long radius of curvature

A-3.1 Newton’s Rings Method
 For the measurement of very long radii of curvature of the spherical surfaces, the methods employing 
measurement of sagitta by mechanical means or the direct distance measurement are not suitable: - the first 
due to the accuracy of measurement of the sagitta and the second due to the availability of space and optics 
considerations. 
 However, sagitta can be measured interferometrically with good accuracy [16]. For measuring long 
radii of curvature, interference methods such as Newton’s ring method along with phase shifting could be 
used. The radius of curvature R and radius ρm of the mth circular fringe in the Newton’s rings pattern is 
related by

(a)
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  rm = mlR  or R = rm
2

ml  (12)

 Value of the radius of curvature is obtained from the slope of rm
2 vs. m plot. The Talbot effect has 

also been utilized to measure moderate to long radii of curvature of the spherical surfaces.

A-3.2 Cavity Method

 Gerchman and Hunter presented a method in which a cavity is formed between the concave surface 
under test and a plane surface [17]. A parallel (collimated) beam is incident on the concave surface, which 
focuses it at a point where a plane surface is placed, which retro-reflects the beam. In fact many such 
positions can be found by changing the separation between the plane surface and the concave surface such 
that the beam is focused on either of the two surfaces resulting in retro-reflection. This greatly reduces the 
working space required for measurement.
 When a collimated beam is incident on the concave surface, it is brought to a point focus at a 
distance R/2, where the plane surface is placed. This arrangement is called n = 1 configuration. When the 
plane surface is moved towards the concave surface such that the beam is focused on the concave surface, 
this results in n = 2 configuration.  Further shift of the plane mirror results in focusing of the beam at the 
plane surface which is n = 3 configuration. The process can continue for higher order configurations. When n 
is odd, the focus is on the plane surface and for n even it is on the concave surface. The separation between 
two successive such positions is used to obtain the value of the radius of curvature.
 Let zn be the separation between the concave and the plane surfaces (cavity length) for the nth 
configuration.  The equations that relate the cavity length zn and the radius of curvature R of the concave 
surface are derived from paraxial ray analysis. This is accomplished by repeated application of the Gaussian 
image equation given by 

  1
pm

 + 1
qm

 = 2
R    (13)

and the conjugate recursion formula
  pm = 2zn – qm – 1 (14)
where m = k, k – 1, k – 2,……,0, and k = (n – 1)/2  for odd n and k = (n – 2)/2 for even n.
 An appropriate initial condition is determined for each configuration depending upon where the 
system comes to focus. These initial conditions are: for n odd, zn = qk  and for n even, zn = qk/2.
 We will now apply these equations to obtain the cavity length for 7th order configuration. Therefore, 
n = 7, and k = 3. This gives m values as 3, 2, 1 and 0. Further we have the following equations
  p3 = 2z7 – q2 (15a)
  p2 = 2z7 – q1 (15b)
  p1 = 2z7 – q0 (15c)
  z7 = q2 (15d)
 Figure 5 shows the geometry of 7th order cavity with the ray paths showing the positions pm and 

qm. Using the Gaussian imaging relation 1
p3

 + 1
q3

 = 2
R     , and substituting for q3, we solve it for p3 as

  p3 = R z7
2z7 – R    (16)

 Using Eq (15a), we obtain 

  p3 = R z7
2z7 – R  = 2z7 – q2 ⇒ q2 = 

4z2
7  – 3R z7

2z7 – R    (17)
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 We now apply the Gaussian imaging condition for m = 2, i.e.

  1
p2

 + 1
q2

 = 2
R   ⇒ 1

p2
 = 2

R  – 
2z7 – R

4z2
7  – 3R z7

 ⇒ p2 = 
4R z2

7  – 3R2 z7

8z2
7  – 8R z7 + R2    (18)

 Using Eq (15b), we have 

  p2 = 
4R z2

7  – 3R2 z7

8z2
7  – 8R z7 + R2  = 2z7 – q1 ⇒ q1 = 

16 z2
7  – 20R z2

7  + 5R2z7

8 z2
7  – 8R z7 + R2    (19)

 Now applying Gaussian imaging condition for m = 1, we have 

  1
p1

 + 1
q1

 = 2
R   ⇒ 1

p1
 = 2

R  – 
8 z2

7  – 8R z7 + R2

16 z3
7  – 20R z2

7  + 5R2z7
   (20)

 This gives

  p1 = 
16R z3

7  – 20R z2
7 + 5R 3z7

32 z3
7  – 48 R z2

7  + 18R3z7 – R3
   (21)

 Using Eq (15c), we have

  p1 = 16R z3
7  – 20R z2

7 + 5R 3z7

32 z3
7  – 48 R z2

7  + 18R3z7 – R3
 = 2z7 – q0 

 ⇒ q0 = 6R z4
7  – 112R z3

7 + 56R2z2
7 + 7R3z7

32 z3
7  – 48 R z2

7  + 18R3z7 – R3
  (22)

 Now applying Gaussian imaging condition for m = 0, we have

  1
p0

 + 1
q0

 = 2
R   ⇒ 1

p0
 = 2

R  – 32 z3
7  – 48 R z2

7  + 18R3z7 – R3

64 z4
7  – 112 R z3

7 + 56 R2z2
7 + 7R3z7

   (23)

 This gives 

  p0 = 64R z4
7  – 112R2z3

7 + 56R3z2
7 + 7R4z7

128 z4
7  – 256 R z3

7 + 160 R2z2
7 – 32 R3z7 + R4

   (24)

Table 1

Cavity length zn Radius vs differential cavity length
n     zn

1 0.5 R R = 4 (z1 – z2)
2 0.25 R R = 9.65685 (z2 – z3)
3 0.1464466 R R = 19.62512 (z3 – z4)
4 0.0954915 R R = 35.08255 (z4 – z5)
5 0.0669873 R R = 57.23525 (z5 – z6)
6 0.0495156 R R = 87.29584 (z6 – z7)
7 0.0380603 R R = 126.47741 (z7 – z8)
8 0.0301537 R R = 175.99437 (z8 – z9)
9 0.0244717 R

 Since collimated beam is incident on the concave surface, p0 = ∞. Therefore

  128 z4
7  – 256 R z3

7 + 160 R2z2
7 – 32 R3z7 + R4 = 0 (25)
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 The solution of this equation is z7 = 0.0380603R. Essentially one can solve for the cavity length for 
any value of n. The values for z3, z4, z5 and z6 are: z3 = 0.1464466R, z4 = 0.0954915R, z5 = 0.0669873R and 
z6 = 0.0495156R. Thus the cavity length zn is related with the radius of curvature R of the concave surface 
through a relation zn = Cn R, where the values of Cn for first 9 configurations are given in Table 1. This table 
also gives the relationships between the radius of curvature and differential cavity length (zn – zn – 1). 
 
 
 
 

 
 

z7=q3 z =q

p1 

p2 

p3 

q0 

q1 

q2 

Fig 5. Ray path for 7 reflections cavity method

A-4 Measurement of very long radii of curvature

A-4.1 Interferometric Methods
 Sagitta of a concave or a convex surface can also be measured interferometrically [16]. A flat 
surface is placed on the spherical surface. It makes a contact at the center when the spherical surface is 
convex creating a thin film of air. For the concave surface, the contact is at the edge of the flat or edge of the 
concave surface whichever is smaller. A collimated beam illuminates this arrangement and the interference 
takes place between the beams reflected from the top and the bottom of the air film as shown in Fig 6. The 
fringes are fringes of constant thickness and hence are circular in form. The order of fringe is zero at the 
center for a convex spherical surface and increases outwardly. The center fringe is black due to phase change 
of π at the air-glass interface. For a concave surface, the order is zero at the contact circle and increases 
towards the center. 

!
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      (a)                              (b)
Fig 6. Interference in a thin film between a flat surface (a) convex surface (b) concave surface

 Consider a convex surface on top of which is placed a flat surface. It can be shown that the radius 
rn of the nth dark ring due to interference between plane and convex surface is given by
  rn = nlR  (26)
where R is the radius of curvature of the convex surface. This is valid when the radius of curvature is very 
large. This equation can be modified to yield radius of curvature of the convex surface as

  R = D2
n – D2

n – 1
4l  (27)

where Dn and Dn – 1 are the diameters of nth and (n – 1)th fringes. It is to be seen that the center point n = 0 
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is dark. The diameters of rings can be measured using a travelling microscope. A graph Dn
2 vs n will be 

linear and its slope is 4λR. 
 From the Eq (26) it is to be noted that [16]

   1 + 
D2

n + 1 – D2
n

D2
n + 2 – D2

n + 1
 ~~ 1 + 

1
2n

 (28)

 The fringe width, for large value of n is practically constant. 
 For a concave surface, the shape of the air-film is as shown in the Fig (6b). The flat surface makes 
a contact at the periphery. The film thickness t0 is a maximum at the center. Let t(y) be the thickness at a 
location y from the center. Therefore, y2 = (2R – ty)ty
where ty = t0 – t(y). Under the condition R >> t0, we have

 2[t0 – t(y)] = 
y2

R
 = m′l = (m0 – m)l (29)

where m0 is the fringe order corresponding to the thickness t0, which necessarily is not an integer and is 
not known and m is the fringe order at location y. The fringe order is zero at the point of contact. Due to 
circular symmetry, the fringes are circular. From this equation we have 
 D2

m0 – m = 4R (m0 – m)l (30a)
 D2

m0 – m – 1 = 4R (m0 – m –1)l (30b)
 On subtraction, we obtain
 D2

m0 – m – D2
m0 – m – 1 = 4R l (31)

 This is the same formula (Eq 27) that was obtained for the convex surface. The radius of the 
concave surface is obtained from the slope of D2

m0 – m vs (m0 – m) plot. 
 The method works fine when there are several circular fringes in the interference pattern; the circular 
shape of fringes implies that the surface is spherical. However, when the radius of curvature is large, there 
are a fewer fringes, but the method can still be applied. However, when the number of fringes becomes 
less than one, the method breaks down. In such a situation, the center of fringe pattern is shifted by lightly 
tilting the test piece. The fringes now are the arcs of circles. These arcs of circles are nearly equidistant. 
Let us assume that nth fringe passes through the middle of the test surface as shown in the Fig 7.
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Fig 7. Interferometric measurement of large radius of curvature

 Therefore,
 D2

n + 1 – D2
n = (Dn + 1 – Dn) (Dn + 1 + Dn) = 4R l (32)

and
 DnDn = 

d2

4  (33)

 In Eq (29), the difference (Dn + 1 – Dn) is two times the fringe width, x–, and Dn + 1 ~~ Dn, and hence 
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we have

 
Dn

x–
 = e = 

d2

4lR ⇒  R = 
d2

4le
 (34)

 The radius of curvature is obtained by measuring the sag Δn and fringe width. It is to be noted that 
Newton’s ring method can be applied to measure short to very large radii of curvature. 

A-4.2 Radius of curvature with a test plate

 Test plates are made by grinding and polishing two identical circular plates [16]. The process 
generates a spherical surface, whose radius of curvature can be measured by some other independent 
procedure. The process of grinding and polishing is continued till the required radius of curvature is achieved. 
Either of them is called a test plate, which is used to check the radius of curvature of the component being 
fabricated in the production shop. Convex test plate is used to check a concave surface and vice versa.
 If the radius of curvature of the test surface is different than that of the test plate, circular fringes 
are observed. One can also determine whether the radius of curvature of test surface is smaller or larger 
than that of the test plate. Let the radius of curvature of the test plate be R, and that of the test surface be 
R+ΔR. Further let the diameter of the test plate be d. It can be shown that the gap perpendicular to one of 
the surfaces at a distance rn from the point of contact is given by
 Dn = DR (1 – cos q) (35)

where θ is given by sin q = 
rn
R , where rn is the radius of the nth circular fringe. Fringe of nth order will be 

formed when 2Dn = nl. Substituting for Δn and with little manipulation, we obtain

 rn
2 = nl 

R2

DR  ⇒  D2
n = 4nl 

R2

DR  (36)

where Dn is the diameter of the nth fringe. In practice, instead of several circular fringes, one would like to 
have the radius of curvature of test surface as close to that of the test plate as possible and hence less than 
one fringe. It is under this condition, one is required to determine the departure from the expected radius 
of curvature. Therefore, the center of the fringe pattern is shifted by slightly tilting the test surface. The 
fringes now are the arcs of circles and their sag is used to determine the value of ΔR. As before (Eqs 32 & 
33) we set up the following two equations

 D2
n + 1 – D2

n = (Dn + 1 – Dn) (Dn + 1 + Dn) = 4l 
R2

DR  (37)
and

 DnDn = 
d2

4  (38)

 Using these two equations, we obtain

 
Dn

x–
 = e = 

d2 DR
4lR2  ⇒  DR = 

4leR2

d2  (39)

 This equation gives the departure of the radius of curvature of test surface from the expected value 
R.

A-5 Newton’s Method

 When the distances of an object and its image are measured from the foci, we obtain a formula, 
which is termed as Newton’s lens equation or simply Newton’s formula [1-3]. Mathematically
  z z′ = f f ′ (40)
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where z and z′ are the extra focal object and image distances, respectively and measured from the front and 
back focal points. The Eq (40) has been very cleverly used to measure long radius of curvature. Figure 8 
shows the schematic of the measurement principle. In the Figure 8, a point object O is imaged at O′ and 
a convex surface is inserted such that its vertex coincides with the back focus point F′. In this case, z′ = 
R and the focal lengths f and f ′ are equal. Thus z = f 2/R is the working formula. If z could be measured, 
then the radius of curvature is obtained from the single measurement.

!
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Fig 8. Schematic to measure radius of curvature using Newton’s lens equation

 The basic question is to how to place the surface exactly at the back focus and measure z accurately. 
To locate the points O, F and F′, a Fizeau interferometer is utilized and the distance z is measured on a 
precision linear scale. The procedure is explained in the next paragraph with the help of Fig 9.
 Laser beam is expanded and then collimated with lens Lc. The plate P is a partially coated plate, 
which provides a reference beam. The procedure to locate point F′, F and O, in that order, is as follows:

 
 

 
 

F’ 

Cx 

L 

F 

O 

L1 P Lc BS 

Fig 9. Experimental arrangement to locate points O and F

 Lens L is placed in the collimated beam, which focuses the beam to a diffraction focus. The convex 
surface is now placed in the convergent beam. When properly placed, the beam is retro-reflected (cat’s eye 
position) and a null is obtained between the interference of the reference and retro-reflected beams. 
 Now the lens L1 is placed in the beam and a plane mirror is inserted between L and Cx without 
disturbing the positions of lens L and convex surface Cx. The lens L1 is translated until the beam existing 
from lens L is collimated. This position is obtained when the beam reflected from the plane mirror, on 
interference, gives the null. In this case the back focal point of lens L1 and front focal point of lens L coincide. 
Thus the position F is found and the location of L1 is noted. The plane mirror is removed and the lens L1 is 
translated away until the null is obtained. In this case, the rays from lens L strike the surface Cx normally 
and are retro-reflected (confocal position). This position of lens L1 is noted and the difference between 
these two positions is the distance z that is required to determine R. The relative error in the measurement 
of radius of curvature is given by

 
DR
R  = 4 

Df
f 

2
 + 

Dz
z 

2 
= 4 

Df
f 

2
 + 

R
f 2 

2 
(Dz)2   (41)

where Δf is the accuracy in the measurement of focal length of lens L and Δz is the accuracy in the 
measurement of distance z.

A-6 Scanning Profilometry

 The surface profile can be obtained by measuring the slope along a diameter of the symmetric 
surface [13, 18]. Let the surface be defined by z = f (x) along the diameter and let f (0) = 0. The slope is 
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measured at locations xk, the consecutive positions are separated by Δx. Thus f (xk + 1) = f (xk) + 
Dx
2  [ f ′(xk) 

+ f′(xk + 1)]. Thus integrating the slope values can generate the profile of surface. The radius of curvature is 
obtained from 

  R = 
f ''(x)

{1+[ f '(x)]2}3/2  (42)

 The slope can be measured by an autocollimator in conjunction with a penta-prism, which scans 
the surface. Higher accuracy is obtained when an interferometric arrangement say when a phase measuring 
interferometer is used.

A-7 Radius of curvature measurement by Talbot Interferometry

 It has been shown that a periodic structure repeats itself when illuminated by a coherent beam. We 
can make use of this phenomenon to determine the radius of curvature of a spherical surface [19]. Figure 
[10] shows the schematic of the experimental setup where only the confocal part is shown.

R 
r zT 

G1 G2 

D 

Fig 10. Measurement of radius of curvature by Talbot phenomenon

 The grating G1 of pitch p is illuminated by a diverging wave of radius of curvature r. The Talbot 

planes are formed at distances zT, where zT = 
2N p2r

lr – 2Np2 , where N = 1, 2, 3,..for different Talbot planes.
The spacing between the successive Talbot planes increases with the order N. The pitch of the grating also 

increases as if it is geometrically projected, i.e. p′ = p r + zT
r . If grating G2 is placed at the first Talbot plane, 

moiré pattern due to pitch mismatch is formed. The pitch of the moiré fringe pattern is pm = Dr
2p  – p ~~ Dr

2p . 

The radius of curvature of the wave at the plane of G1 grating is thus obtained.  This could be related to the 
radius of curvature of the mirror. 
 Assuming that the illuminated sizes of grating G1 and G2 are y and y1, then 

  p′ = p y1
y  = p y + azT

y  = p 1 + azT
y  (43)

where a = D/R. The pitch of the moiré fringe is pm = p p′
p′ – p  = p′y

a zT
. If there are n moiré fringes in the 

pattern formed, then 

  n = y
pm

 = azT
p′  = DzT

Rp′  ⇒ R = DzT
np′  (44)

 The radius of curvature can be obtained by measuring D, zT, and noting the number of moiré fringes 
formed. Often Talbot phenomenon is used for setting purposes. 

B-Measurement of Focal Length

B-1.1 Focal length of a thin lens
 For a single thin lens, the effective focal lengths f and f ′ are defined as the distances from the 
lens vertex to the front focal point and the rear focal point respectively. However, for a thick lens or a lens 
combination, the effective focal lengths f and f ′ are the distances between the front focal point and the front 
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principal point, and the rear principal point and the rear focal point. The back focal length is the distance 
between the rear vertex to the rear focal point and the front focal length is the distance between the front 
focal point and the front vertex of the lens.  It is easier to measure the back and the front focal lengths.

B-1.2 Focal length by imaging

 The simplest though not an accurate method to determine the focal length of a lens is to image a 
distant object. Since the object is far away, the distance between the lens and the image is the focal length. 
One could use sun as an object and make its image. Alternately an incandescent or a fluorescent lamp far 
away in the room could be taken as the luminous object. Using this method focal length can be assigned 
to within a few millimeters.
 A simple arrangement to measure the focal length of a thin positive lens is to use a mesh (gauge) 
illuminated by a diffuse light source [1-3]. The mesh is placed flushed on a screen that is located on the 
optical bench. The test lens and a plane mirror behind it are also placed on the bench and their heights are 
properly adjusted. The lens is moved towards or away from the mesh until its sharp image is formed on 
the screen. The light retro-reflected by the plane mirror forms this image. The mirror may be tipped a little 
so that the image is formed along side of the mesh. The distance between the screen and the vertex of the 
lens is the focal length of the lens.

B-1.3 y′/tan q′ method

 Figure 11 shows an off-axis collimated beam incident on the lens. The image is formed at its focal 
plane.

!
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Fig 11. Ray path to measure focal length of a lens

 From the Fig 11, y′ = –f tan q = f ′ tan q′. When the lens is in air, its nodal planes are coincident 
with the principal planes and hence its focal lengths f and f ′ are equal, and the angle  q′ in image space is 
equal to the angle of incidence θ. In practice, y′/tan q′ method is implemented by placing a reticle at the 
focal plane of a collimator. The graduations and the focal length of the collimator are accurately known, 
implying that the angular size of the object is accurately known. The test lens is placed coaxially with the 
collimator; the reticle appears at infinity to the test lens and a microscope measures its image formed at the 
focal plane of the lens. If the measurement is done directly using a translation stage on which the microscope 
is mounted, the focal length is obtained as 

  f = y′
tan q  = y′

y0
 fe (45)

where y0 is the size of the reticle whose image is y′ and fc is the focal length of the collimator. If the graticule 
in the eyepiece of the microscope is used for measuring, then the measured value of y′ is to be divided by 
the magnification m of the microscope.

B-1.4 Magnification method

 Using the lens imaging formula, the lateral magnification M when the media on both sides of the 
lens are same, can be expressed as
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  M = – q
p  = 1 – q

f  (46)

 Further if the distance between object plane and the image plane is more than 4f, an image can 
be formed for several positions of the lens. Therefore, keeping the object and image planes fixed, the test 
lens is translated to form an image. Let the distance between the vertex of the lens and the object plane be 
qi and the corresponding magnification of the image is Mi. The slope of a plot between qi and Mi gives the 
inverse of the focal length.
 Alternately, the lens can be kept fixed and the object position is varied and the magnification 
measured at the corresponding image position. Let q1 and q2 be the image positions at which the measured 
magnifications are M1 and M2 , respectively. Then 

  M1 = 1 – q1
f , M2 = 1 – q2

f   ⇒ (M2 – M1) = |q2 – q1|
f   (47)

 The separation (q2 – q1) can be measured accurately. The method does not require the knowledge 
of the location of the principal planes. 
 A variant of this method involves the measurement of the displacement of the object. Let M1 and 
M2 be the magnifications for object positions p1 and p2, respectively. Mathematically

  1 + 1
M1

 = p1
f  and 1 + 1

M2
 = p2

f  (48)

 This gives,  f = (p2 – p1) M1M2
M1 – M2

. The method is due to Abbe [2]. 

 There is another interesting method credited to Bessel [2]. Here the object and image planes are 
fixed. It is ascertained that the separation L between the two planes is equal to or greater than the focal 
length of the lens to be measured. This gives two positions of the lens where the image of the object is in 
focus as shown in Fig 12. The distance between these positions is taken as d. Then the focal length of the 
lens is given by 

  f = L
2 – d2

4L  (49)

 The method requires measurement of two distances only.
 
 
 
 
 
 

L 

d 

Fig 12. Bessel method to determine focal length of a positive lens

 Recently a method has been described to measure focal length with high precision using imaging 
conjugates [20].

B-1.5 Focal length of a negative/diverging lens
 The focal length of a diverging lens cannot be determined directly. There are other indirect methods 
to determine the focal length of a diverging lens. One of the methods, known as virtual object method requires 
a positive lens of a shorter focal length than that of the diverging lens. Figure [13] shows the schematic of 
image formation by a combination of positive and negative lenses. It may be noted that the lenses need not 
be in contact.
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Fig 13. Determination of the focal length of a diverging lens

 Positive lens L makes an image of a source at O at the image position O'. When the test lens LT is 
inserted in the light path and properly positioned, the image shifts to O''. The focal length is calculated from

  f = p′q′
p′ – q′

 (50)

B-1.6 Nodal slide method

 The method is based on the fact that the nodal planes and principal planes are coincident when 
the media on both sides of the lens are same and the rotation of the lens about the rear nodal point does 
not shift the image.
 In practice, an object say a fine mesh is illuminated by a light source and imaged by a test lens, 
which is placed on a nodal slide. The lens is placed on a translation stage, which is mounted on a rotatable 
mount. The axis of rotation can be made to pass through any portion of the lens by moving the translation 
stage. This arrangement is called a nodal slide. The lens is so positioned that the axis of rotation passes 
through the nodal point. In such a situation, rotation of the lens does not shift the image. Indeed this criterion 
is used to locate the nodal plane. Since the nodal plane is coincident with the principal plane, the distance 
between the image plane and the axis of rotation is the focal length.

B-1.7 Focal length measurement from the difference between conjugate positions

 Several methods described here assume the lens to be a thin lens, which is a mathematical 
idealization. A lens is bound by two surfaces and has a finite central thickness. The focal length is the 
distance between the respective principal plane and focal plane. Nodal slide method locates the nodal 
plane. A method is described which uses the data, which is the difference between the object positions and 
image positions [20]. However, to obtain these difference data, we need to find a reference with respect to 
which the measurements are made. Fortunately the second focal point can be found by placing the lens in 
a collimated beam and this point is taken as a reference with respect to which the measurements are made 
for different object positions. Figure [14] shows the various locations of the point object. !
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Fig 14. Imaging by a lens
 When the point object is at infinity, its image is formed at the second focal point and the distance  
f′ is the distance between the principal plane H' and the focal plane F'. The image of point object O1 is 
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formed at I1 and that of O2 is formed at I2. To receive the images, the screen/detector is to be moved by 
b and c, which are measured on the bench. Similarly the distance between O1 and O2 is measured on the 
optical bench and is equal to a. The focal length f ′ is calculated from the measured values a, b and c. The 
formula is obtained by using the imaging conditions, that is 

  1
p  + 1

f′ + b  = 1
f′  (51a)

and

  1
p – a  + 1

f′ + c  = 1
f′  (51b)

where p is the object distance for the point O1 as measured from the principal plane H. Eliminating p and 
rearranging, we obtain

 f′ = 
abc

(c – b)  (52)

 Thus the focal length is obtained by using the measured difference values and hence the focal 
length is determined with higher accuracy. 

B-1.8 Moiré deflectometry [21, 22]
 Consider a situation where the lens is illuminated by a collimated beam, which is brought to 
focus by the test lens. In the convergent beam are placed two identical Ronchi gratings of pitch p. Let their 
separation be Δ as shown in the Fig 15. They are placed such that their rulings are parallel.

 

a 

f

G1 G2 

Fig 15. Moiré formation for focal length measurement

 The grating G1 is projected on grating G2 and hence its pitch  becomes smaller. If the illuminated 
size of the grating G2 is L and that of G1 is L+y, then the pitch p' is related to pitch p as

  p′ = 
L

L + y  p ⇒ p
p′

 = 1 + Y
L  (53)

 The moiré fringes are formed due to pitch mismatch. The pitch d of the moiré fringes is d = pp′
p – p′ 

= pL
y . Further, from the Fig 15 we have a

f  = y
D

. Substituting for y, we obtain

 f = aD
pN  (54)

where N (L/d) is number of fringes observed over the grating G2 of size L. Therefore the focal length is 
determined by noting the number of moiré fringes observed with identical Ronchi gratings.
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