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By exploiting the two wave mixing phenomena in crystals of sillienite family like Bi12SiO20 (Bismuth Silicon Oxide) 
and Bi12TiO20 (Bismuth Titanium Oxide) optical metrological applications like stress and strain measurements and 
testing of optical elements can be carried out. In this paper, we report physics of two wave mixing phenomena in 
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1 Introduction

 Photorefractive crystals are widely used nonlinear optical materials for recording real-time holograms, 
two wave mixing experiments for image amplifications, phase conjugation, opto-electronic correlators etc, 
with relatively low intensity requirements [1-6]. This is because of their unlimited recyclability as, they 
can be recorded and erased with sufficiently high sensitivity. Among the different types of photorefractive 
crystals which, are widely used for real-time holography and two wave mixing experiments are the crystals 
of sillienite family like, Bismuth Germanium Oxide (Bi12GeO20 or BGO), bismuth silicon oxide (Bi12SiO20 
or BSO), Bismuth Titanium Oxide (Bi12TiO20 or BTO) and polar crystals like Barium Titanate (BaTiO3) and 
Lithium Niobate (LiNbO3). These crystals possess high sensitivity for volume holographic grating formation 
[7] that enables them to record holograms in the visual region of the spectrum with continuous wave lasers like 
He-Ne, He-Cd, Argon Ion etc. Also, these crystals are available in large sizes and good quality. There were 
many innovative geometries have been proposed by various authors to record holograms in these crystals with 
and without externally applied electric field across the crystal in both two and four wave mixing geometries 
[8-14], respectively. Normally two wave mixing geometry similar to conventional holographic geometry 
with photorefractive crystals as recording medium is used for recording dynamic holograms. Kamshalin et 
al [15], in a simple two wave mixing geometry by exploiting the anisotropic self diffraction phenomena in 
Bismuth Titanium Oxide (Bi12TiO20) stored dynamic hologram and later the same was implemented using 
Bismuth Silicon Oxide (Bi12SiO20) with higher diffraction efficiency by Troth and Dainty [16]. These two 
dynamic holograms had good efficiency without applied electric field and the main advantage was one 
can use polarizer and analyzer pair to separate out diffracted beams. This is because in an isotropic self 
diffraction geometry, the polarization of writing beams (Object and Reference) after interacting inside the 
crystal gets rotated with respect to direct beams. This enables one to introduce an analyzer after the crystal 
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for separating out the diffracted beams. In fact this, two wave mixing and anisotropic diffraction geometry 
was very suitable to dynamic holographic interferometry for metrological applications. Also, photorefractive 
crystals are extensively used for joint optical correlators, coherent enhancements, soliton generations etc 
[12,13]. But main problem especially for applications to holography remains in terms of non-availability of 
good quality large size photorefractive crystals. In this paper, we start with in section 2, a detailed explanation 
about photorefractive effect and then in section 3, about photorefractive dynamic holography applied to 
photoelasticity using Bi12SiO20 (bismuth silicon oxide) and Farady optical rotation measurements using 
optical activity of Bi12TiO20 (bismuth titanium oxide), respectively. These two applications show clearly, the 
use of photorefractive crystals of silienite like BSO/BTO for real-time dynamic metrology. 

2 Theoretical explanation of photorefractive effect
2.1 Introduction
 Unlike conventional non-linear optical effects (Phase conjugation, Brillouin scattering, second 
harmonic generation etc), the light intensity induced susceptibility is not used for photorefractive effect only, 
relative intensity due to an interference pattern inside the crystal is responsible for photorefractive effect.

 
 Fig 1. Shows the physics of photorefractive effect.
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 Figure 1 shows the mechanism of photorefractive effect where, a photorefractive material is 
illuminated by an interference pattern (In dynamic holography, these would be the signal and reference 
beams). This interference pattern between the object and reference beams results in a pattern of dark and light 
fringes throughout the crystal (Fig 1(a)). Now, the charges (either electrons or holes) present, in regions of 
photorefractive crystal where a bright fringe is present, absorb the light and get photoexcited from an impurity 
level into the conduction band of the photorefractive crystal, leaving net positive or negative charges. The 
impurity levels have an energy intermediate between the energies of the valence band and conduction band 
of the PR crystal and so, the electrons or holes in conduction band of crystal, diffuse throughout the crystal. 
Since the charges are excited in the region of bright fringes, the net charge diffusion current is towards 
the dark-fringe regions of the PR crystal and in the conduction band, the charges (electrons and holes), 
recombine and return to the impurity levels. The rate at which this recombination takes place determines how 
far the charges (electrons/holes) diffuse, which in turn determines strength of the photorefractive effect in that 
crystal. Now in the impurity level, the electrons/holes are trapped and can no longer move unless re-excited 
back into the conduction band by light. This net redistribution of electrons/holes into the dark and bright 
regions of photorefractive crystal causes space charge field (Esc) in the crystal as shown in Fig 1(c). Since the 
electrons and holes are trapped and immobile, the space charge field (Esc) remains even after the removal of 
interference patterns. This internal space charge field (Esc), due to electro-optics effect causes the refractive 
index of the crystal to change in the regions where the field is strongest and this causes a spatially varying 
refractive index grating (Dn) shown in Fig 1(d), to occur throughout the crystal. 
 This dynamic grating can diffract, light shone on to the crystal, and the resulting diffraction pattern 
recreates the original pattern of light stored in the crystal which is either the object beam/reference beam. 
Thus a photorefractive crystal can act as dynamic hologram if both object and reference beam interfere in the 
crystal.
2.2 Theoretical explanation
 Consider, E1exp{i( →k1·→r – ωt)}is the object beam and E2exp{i( →k2·→r – ωt)} the reference beam falling 
on the photorefractive crystal (Fig 2), then the total intensity It incident on the photorefractive crystal will be 
following Appendix 1 as,
 It = I0 [1 + M cos(kgx + φ)] (1)

     
 Fig 2. Two beam interference used in the explanation.

where, I0 and M represent intensity and modulation ratio (0 ≤ M ≤ 1) as given in Appendix 1. Here, we have 
assumed that the amplitude of the object and reference beam are different. Now, if N is the concentration of 
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charges (electrons/holes) in the conduction band then the net generation rate of charges (electrons/holes) Ge 
will be given by the difference between the rates of generation and recombination of electrons/holes to the 
donor level, which is equal to,
 Ge = (βe + sIt) (ND – ND

+) – γeNDND
+ (2)

where, s is the photo-ionization coefficient, Ge is the recombination constant, and βe is the thermal excitation 
rate of electrons/holes [14]. Also ND and ND

+ represent the density of the donors and the density of ionized 
donors respectively and It is the total light intensity incident on the crystal. Generally, the motion of electrons/
holes in the conduction band can be attributed to three forces (i) drift force due to external applied field, (ii) 
due to photovoltaic effect and (iii) diffusion force due to incident spatially modulated light intensity from 
regions of higher concentration to regions of lower concentration. So, assuming that the electrons move due 
to above forces, the current in the crystal can be written as following [14],

 Je = eNμeE + μekBT 
∂n
∂x + pn(ND – ND

+) It (3)

where, N is the number densities of conduction band electrons, μe is the electron mobility, pn is the photovoltaic 
constant, E is the electric field and e is the electric charge. Combining Eqs (2) and (3) in continuity equations, 
we can write the variations of the electron/holes concentration with time as,

 ∂N
∂t

 = Ge + 1
e
 ∂Je
∂x

 (4)

In a similar way, we can write the continuity equation for density of ionized donors as,

 ∂ND
+

∂t  = Ge (5)

Then, using Poisson’s equation the electric field in the crystal can be written as,

 ∂E
∂x

 = e
εs

 (ND
+ – NA

– – N ) (6)

where, εs is the static dielectric permittivity and is independent of position and NA
– is the ionized acceptor 

density. In arriving at Eq (6) we have assumed that the illumination varies only along one dimension. The 
electrostatic condition implies that
	 ∇ × 

→
E  = 0 (7)

Also assuming that N << NA, ND – NA, ND
+ ≈ NA), in the steady state, the equation for number of free electron 

becomes,
 N = N0 1 + m cos 

→
kg·

→x  (8) 
where, N0 = g(I0)τ, g(I0) is the linear generation rate and τR is the free electron life time. Here, m is the reduced 
fringe contrast modulation ratio given by,
 m = M/(1+ (β / sI0)) (9)
Integrating Eq (6), once with respect to x we have the electric field component,

 E = 
Je – eD ∂n

∂x 
eμeN

 (10)

where D is the diffusion coefficient, D = me kB T/e 
Substituting the respective values for current, number of free electrons etc and simplifying, Eq (10) reduces 
to,

 E = Je
eμeN0

· 1
1 + m cos (kg x)

 – Dkg
μe

·
m sin(kg x)

1 + m cos(kg x) (11)
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If, the applied voltage is V over a material of length L then Eq (11) changes to

 1
L ∫

L

0
E dx = 

V
L  = Je

eμeN0
 1L ∫

L

0

1
1 + m cos(kgx)

 dx – 
Dkg
μe

 1L ∫
L

0

m sin(kgx)
1 + m cos(kgx)

 dx (12)

For integral number of very large numbers of fringes in L,

 1
L ∫

L

0

1
1 + m cos(kgx)

 dx = 1
1 – m2

 1
L ∫

L

0

m sin(kg x)
1 + m cos(kg x)

 dx = 0 (13) 

which implies,

 Je = (1– m2)1/2 σ0 EA and  σ0 = eμeN0  (14)
where EA = V/L is the applied electric field [14].
 It may be noted that for the applied electric field, the conductivity of cosinusoidal illumination is 
reduced by a factor 1 – m2  related to the conductivity at the same average intensity [14]. Rewriting, Eq (11) 
and after simplification using little algebra, we get

 E = EA· 
1 – m2

1 + m cos(kg x)
 – ED· m sin(kgx)

1 + m cos(kg x)
  (15)

In Eq (15), ED is called as the characteristic field,

 ED = 
D kg

μe
 = 

KB T
e kg  (16)

where, T is the room temperature and KB is the Boltzmann constant. The characteristic field is independent 
of the material and it depends only on the temperature. If an external electric field is not applied, then charge 
migration is due to diffusion alone and Eq (15) reduces to,

 Esc = –ED 
m sin(kgx)

1 + m cos(kgx) (17)

 The Eq (15) is the space charge field (for diffusion alone) and is denoted by Esc. In photorefractive 
materials this space charge field plays an important role and is created by two different mechanisms using 
drift (with the applied field) and diffusion (without applied field). The space charge field which, is created 
due to charge separation will introduce a change in the index of refraction via the linear electro-optic effect 
(Pockel’s effect) and is given by [12,13]

 Δn = 1
2
 nr

3 reff Esc (18)

where Δn is the change in refractive index, reff is the effective electro-optic coefficient and nr is the unperturbed 
refractive index. This change in the index of refraction will lead to a refractive index grating and the diffraction 
efficiency (η) of such grating is given by [12],

 η = exp – 


αt
cosθB 

 sin2


πt

λcosθB
 Δn


 (19)

where, α is the absorption co-efficient of the crystal, t is the thickness of the crystal, λ is the wavelength of 
incident light and θB is the Bragg’s angle inside the crystal. Since, in photorefractive holography both writing 
and reading holograms are done simultaneously in real-time, the light will diffract from this refractive index 
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grating after mixing. Therefore, there can be transfer of energy from reference (probe) beam to the object 
(signal) beam. The efficiency of dynamic holograms recorded in the photorefractive crystals depends upon 
this energy transfer and is known as the photorefractive gain Γ which, can be written as following [12],

 Г = 2π
λ

 nr
3 reff ESC 

 
(20)

where, λ is the wavelength of light used.

3 Optical metrology using photorefractive crystals

 In this section, we describe two applications of photorefractive crystals of sillienite family 
namely Bi12SiO20 (bismuth silicon oxide) and Bi12TiO20 (bismuth titanium oxide) for dynamic (real-time) 
photoelasticity and for measuring weak Faraday optic rotation, respectively. These two works have been 
reported earlier separately [25,28] and we give some part of results to establish the use of BSO/BTO for 
metrological applications. Section 3.1 describes real-time holographic photoelatsicity using Bi12SiO20 and 
section 3.2 describes measurement of weak Faraday optical rotation using Bi12TiO20. 
3.1 Real-time holographic photoelasticity using Bi12SiO20 (bismuth silicon oxide)
3.1.1 Introduction
 Photoelasticity is an experimental stress analysis technique in which the state of stress in certain 
transparent non-crystalline materials is determined by its effect on the polarization state of light, when 
trans-illuminated through them with a polarized light [17-21]. Such materials are widely used in launch 
vehicles, space crafts and in many machines and equipments. These transparent non-crystalline materials 
can be divided in to two categories, namely birefringent (refractive index dependent due to application of 
stress) and non-birefringent (non-dependent of refractive index due to applied stress) materials, respectively. 
Normally, birefringent, materials are isotropic when there is no applied stress and becomes an-isotropic 
(birefringent), whenever stress is applied. The refractive indices of stress induced birefringent materials 
become n1 and n2 along the directions of the principal stresses σ1, σ2, respectively whenever a polarized light 
beam passes through it. Such stress induced birefringent material when viewed, through crossed polarizers, 
exhibits two types of fringe systems, namely isochromatic and isopachic. The fringe system which separates 
the difference in principal stresses is known as isochromatic and they are contours of constant values of ( σ1 
− σ2 ) and which adds principal stresses are called isopachic and they are contours of constant values of (σ1 
+ σ2), respectively [17]. Photoelasticity actually can map the differences in principal stresses (σ1 − σ2) and 
addition of principal stresses (σ1 + σ2) in birefringent materials under stress, making use of Maxwell-Neumann 
equations. Numerous classical optical methods like, polarimeter, Mach-Zehnder interferometer, conventional 
holographic interferometer have been widely used to find the isochromatic and isopachic fringes of stress 
induced birefringent materials [17-21]. Compared with classical optical interferometric techniques, like 
polariscopes and Mach-Zehnder Interferometer, the holographic technique introduced by Fourney and Mate 
and Hovenesian et al [20,21] to find simultaneously the sum (isopachic) and difference (isochromatic) fringes 
alleviated most of the problems associated with the classical interferometric techniques. But, the problem of 
wet processing of recorded holograms still posed problems and also the analysis of phase information from 
the recorded hologram. To solve this, a new technique based on dynamic (Real-Time) holography using 
photorefractive effect in BSO is proposed.
3.1.2 Experimental procedure and theory
 Figure 3 shows the typical experimental geometry used for recording dynamic holographic 
photoelasticity using photorefractive BSO (bismuth silicon oxide). The test specimen (A plastic ruler made 
up of photoelastic material) is illuminated by a diffuse illumination via the Diffuser (Fig 3) and is imaged on 
to a BSO sandwiched between two polarizers with 1/4th magnification. This is required for imaging on to a 
TV monitor via CCD (Charge Coupled Devise camera). A reference beam from same laser which illuminated 
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the diffuser is allowed to fall on the crystal as shown in Fig 3. The object beam from test specimen and 
reference beam interfere in the BSO crystal and dynamic hologram of test specimen is formed. Since the 
crystal exhibits a strong an-isotropic self diffraction, the dynamic hologram of test specimen can be separated 
out from direct diffracted beam by rotating the analyzer after the crystal.

 Fig 3. Experimental geometry for dynamic holographic photoelasticity using BSO.

 Here, the procedure to be followed is a double exposure dynamic holography that is first dynamic 
hologram is taken when the object is under no stress and the second dynamic hologram is taken after the 
stress is given to the test specimen. Consider, E01 exp(– i f1), E02 exp(– i f2),( virtual and real), represent 
reconstructed waves of holograms before stress and E′01 exp(– i( f1+ ∆f1), E′02 exp(– i( f2+ ∆f2) represent the 
second reconstructed holograms (virtual and real) after stress is given to the photoelastic specimen inside 
the BSO crystal. In that ∆f1 and ∆f2 are the phase changes due to stressing the object. Now the intensity of 
photorefractive dynamic hologram inside the crystal which is captured by CCD and following Vest [17], is 
given by,
 IT = |2E01 + E'

01 + E'
02|2 (21)

Since, before applying stress the light beam passing through the object is isotropic the amplitude and phase 
of light waves are assumed to be equal as (Eo1 e–if1 = Eo2 e–if2) and that is why the first term in Eq (21) is 
2Eo1. Evaluating the terms inside the bar further, by multiplying with its complex conjugate the irradiance of 
reconstructed wave will be proportional to, 

 IH = 2 1+ cos
∆f1+∆f2

2  cos
∆f1–∆f2

2  + cos2

∆f1–∆f2

2 	 (22)

For stress birefringent objects like the photoelastic specimen, using Maxwell-Neumann’s law we get, 

 ∆f1 – ∆f2 = 2π
λ  t' [(A–B) (σ1 – σ2)] (23)

 ∆f1 + ∆f2 = 2π
λ  t' [(A+B) – 2v

E (n1 – n2)] (σ1 + σ2) (24)

where, ν is the Poisson’s ratio, E is the modulus of elasticity of the test specimen and t’ is the thickness of 
the specimen. Simplifying further by substituting Eqs (23) and (24) in Eq (22), we get the irradiance value 
proportional to,

 I = 1 + 2 cos 
πto
λ (A' + B')(σ1 + σ2) ·cos 

πto
λ  C(σ1 – σ2) + cos2 

πto
λ C(σ1 – σ2) (25)

where, 
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 A' = A – vE[(n1–n2)]

 B' = B – vE[(n1–n2)]

 C = A – B
 Equation (25) represents final intensity of dynamic hologram recorded in photorefractive BSO 
where, the third term in the intensity equation represents classical isochromatic (σ1 – σ2) fringe pattern, but 
it is not directly separated from combined isopachic (σ1 + σ2) and isochromatic terms represented by the first 
two terms in the intensity equation. Thus it is impossible to separately obtain pure isochromatic (σ1 – σ2) 
fringes and only hologram of a stressed specimen can give a combination of both isochromatic and isopachic 
fringes superposed with isoclinic fringes [17]. Experiments were carried out using a stressed specimen 
(plastic ruler, mainly available along with school geometry box) and an unstressed specimen made up of 
polymetylmetacrylate (PMMA) of thickness of 6 mm. An 1 Watt Argon-ion gas laser was used as source 
along with a 110 cut, Bi12 SiO20 (bismuth silicon oxide) crystal size of 10 mm ×10 mm × 10mm sandwiched 
between two polarizers as recording photorefractive crystal.

Fig 4(a). Dynamic hologram of a plastic ruler made up of photoelastic PMMA

  

Fig 4 (b). Isochromatic Fringe system Fig 4(c). Isopachic Fringe system

 Figure 4(a) shows the dynamic hologram recorded inside photorefractive BSO of a stressed 
photoealstic specimen (plastic ruler) when illuminated by a diffuse beam from diffuser and (4b) and (4c) show 
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the isochromatic (σ1 – σ2) and isopachic (σ1 + σ2) fringe systems of same dynamic hologram, respectively. 
The method is real-time [24] and as soon as laser beam is on one can directly obtain the dynamic hologram 
on the monitor of PC connected to the CCD/CMOS camera.
3.2 Faraday Rotation measurement using Bi12TiO20 (bismuth titanium oxide)
3.2.1 Introduction
 Faraday optical effect is the rotation of plane of vibration of linearly polarized light passing through 
a material medium due to applied magnetic field [26,27]. The Faraday optical effect is used in a number 
of applications like analysis of mixture of hydrocarbons, modulators, etc. [27]. But, most of the materials 
showing Faraday effect have very small rotations as the applied magnetic fields are small making it difficult 
to measure. For example, rotation produced by a 1 cm column of H2O in an applied magnetic field of 104 
Gauss is only 2°11’. So using Malu’s law [27] and conventional detectors like photodiodes it is difficult to 
measure this small rotation very accurately. So, it becomes essential to enhance such feeble rotation. Optical 
activity is the rotation of plane of polarization of linearly polarized light passing through optically active 
materials [26]. Some of the popular materials, which exhibit strong optical activity, are the photorefractive 
materials of silliniete family namely BSO, BGO and BTO [12,13]. 
3.2.2 Experimental procedure and Results
 Since photorefractive Bi12TiO20 (bismuth titanium oxide) responds very efficiently to low power 
He-Ne lasers at 633 nm, and exhibits strong optical activity, we use the same to enhance weak Faraday-Optic 
rotation in the experimental geometry shown in Fig 5.

Fig 5. Shows the experimental geometry for measuring weak Faraday Optic rotation.

Fig 6. Shows the optical activity of photorefractive crystal.

 The experimental setup used in this method is given in Fig 5 where the light, from a He-Ne laser 
source of 20mW at 632.8 nm passes through a linear polarizer P. This linearly polarized light then passes 
through the sample S (Quartz) whose magneto-optic rotation was to be measured. The sample was kept 
inside a magnetic coil. The light after passing through the sample falls on the photorefractive Bi12TiO20 
(PRC), which then passes through the analyzer A to the detector D. Before putting the photorefractive crystal 
the analyzer–polarizer pair was crossed so that the detector output was made to zero. The photorefractive 
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Bi12TiO20 was then introduced in the setup and the output was measured without applied magnetic field. 
The photorefractive crystal used was a d-rotatory Bi12TiO20 of 5 mm thickness with [1 1 0] cut. The detector 
showed measurable output due to the optical activity of the photorefractive crystal [28]. Whenever, the 
linearly polarized light passes through the photorefractive BTO, it is decomposed into its constituents (left 
and right circularly polarized), which travel through the medium with different velocities. This will result in a 
phase difference of ψ between the two waves. After coming out from the crystal these waves will recombine 
to form a linearly polarized light with its plane of polarization rotated by and angle equal to ψ/2 making 
the linearly polarized light no longer crossed with the analyzer resulting in a change in the output (Fig 6).
 The amount of rotation of the plane of polarization is decided by the specific rotation (ρ) and the 
thickness of the crystal (L) and is given by [27]
 θ = ρL. (1)
The specific rotation ρ is given by [27] 
 ρ = (n− − n+)/ l (2)
where n− and n+ are the refractive indices for left and right circularly polarized waves, respectively, and l is 
the wavelength of light used. Depending on the values of n− and n+ the output will be either d-rotatory or 
l-rotatory [26,27]. Initially the light output from the crystal output, without applying the magnetic field will 
give the rotation due to optical activity of the photorefractive Bi12TiO20 alone and when the magnetic field 
B is switched on and increased gradually the detector outputs will show the increased value. The angle f 
through which the plane of vibration rotates is given by [26,27] 
 f = V d; (3) 
where B is the static magnetic flux density in gauss, d is the length of medium traversed in cm and V is 
the proportionality constant called Verdet constant, respectively. A positive Verdet constant corresponds 
to a material for which Faraday effect is l-rotatory when the light moves parallel to the applied field and 
d-rotatory when it propagates anti-parallel to applied magnetic field B. The samples used in the experiments 
had positive Verdet constants. The sample used in the experiments was quartz (V = 0:0166 G=cmat 20◦C) 
samples [26]. The magnetic field was first applied in such a direction that it is anti-parallel to the direction of 
propagation of light and this will rotate the plane of polarization clockwise (d-rotatory). Since the PR crystal 
used here, that is, Bi12TiO20 is purely d-rotatory, the light after passing through it will produce an increased 
output, which is more than that due to Bi12TiO20 alone (Fig 7). This increase is measured for further analysis. 
Now the direction of magnetic field was reversed and the same procedure was repeated. Now the plane of 
polarization is rotated anti-clockwise (l-rotatory) making the output less than that due to Bi12TiO20 alone (Fig 
8). The total angle of rotation either Θ = (θ + f) or Θ = (θ − f) can be calculated from Malu’s law [26]
 I = I0 cos2Θ  (4)
where I is the detector output and I0 is the output without the analyzer which is a constant for a particular 
source power. The positive (+) sign is when the magnetic field B was applied anti-parallel to light propagation 
and the sample is d-rotatory resulting in an increased rotation of plane of polarization as the d-rotation of the 
sample enhances the d-rotation by the photorefractive crystal (Fig 7). 

 
Fig 7. Total optical rotation with B anti-parallel to light propagation (d-rotation).
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 The negative (−) sign is when the applied magnetic field B is parallel to light propagation and the 
sample is l-rotatory resulting in a decreased rotation of plane of polarization as the l-rotation of the sample 
combines destructively with the d-rotation by the photorefractive crystal (Fig 8). By using the value of ρ the 
magneto-optic rotation f of the sample can be calculated. 

Fig 8. Total optical rotation with B parallel to light propagation (l-rotation)

Fig 9. Change in magneto-optic rotation with applied field for direct measurement for a sample 
1ength equal to 15 cm with source power of 20 mW.

 The experiments were carried out with two different source intensities of 20 and 8 mW, respectively 
and with two experimental samples of different lengths (Sample 1 with 15 cm and Sample 2 with 5 cm). 
The magnetic field was varied from 0 to 360 Gauss and corresponding output intensities are measured using 
commercially available detectors and digital meters. The samples were kept inside a coil having turns 250 
turns/cm and along the propagation path of the beam. First, output from the sample was first measured 
without the photorefractive crystal along the path of the beam with the polarizer–analyzer pair kept at crossed 
position for both the magnetic field (B), applied parallel and anti-parallel to light propagation, respectively. 
From this, the Faraday rotation due to the experimental sample was found out using Malu’s law (I = I0 cos2Θ). 
Initially, for the 15 cm sample the detector did not measure any change in the output until the magnetic field 
was increased to 250 Gauss which is shown in Fig 9. Also, whenever the source intensity was reduced from 
the maximum output, it became still more difficult to measure. Only when the magnetic field was increased 
to 290 Gauss, the detector showed any measurable output. On the other hand, for the 5 cm sample the 
detector output did not show any output intensity values, even for an applied magnetic field of 500 Gauss, 
and with 20 mW source intensity. At this stage, the photorefractive Bi12TiO20 was introduced and kept after 
the sample as shown in Fig 7. This instantly increased the output in the detector, indicating high optical 
rotation. Measurements were taken again for the magnetic field direction, along parallel and anti-parallel 
directions to light propagation. As explained earlier when magnetic field (B) was applied anti-parallel to 
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direction of propagation of light the rotation  was more than the optical rotation due to Bi12TiO20 alone and 
when magnetic field (B) was applied parallel to direction of propagation the rotation was less than the optical 
rotation due to Bi12TiO20 alone.

 (a) (b)
Fig 10. (a) Change in magneto-optic rotation with applied 5eld with photorefractive Bi12TiO20 for Sample 
1 (15 cm) with source power of 20 mW. (b) Change in magneto-optic rotation with applied field with 
photorefractive Bi12TiO20 for Sample 2 (5 cm) with source power of 20 mW.

 The plots of these changes in magneto-optic rotation with the applied magnetic field are shown in 
Figs 10 (a), and (b), respectively. These plots clearly show that the experimentally obtained (squares) values 
match very well with the theoretically (circles) predicted values. From these plots, it can be clearly seen that the 
proposed method gives very accurate results even for small magnetic fields, whereas the direct measurement 
for small magnetic fields deviate grossly from theoretically predicted values. The experimentally obtained 
values become closer to the theoretically predicted values when the magnetic field is increased. 

4 Conclusion

 The paper starts with introduction to photorefractive optics and then in section 2, a detailed 
explanation about physics of photorefractive effect was given. Further, to demonstrate the capability of 
photorefractive crystals for metrological applications, we have demonstrated two experiments one using 
photorefractive Bi12SiO20 (Bismuth silicon oxide) for finding photoelastic stress and strains of birefringent 
samples in terms of isochromatic and isopachic fringe system via dynamic holography and the second one 
for measuring weak Faraday optical rotation using photorefractive Bi12TiO20 (bismuth titanium oxide), 
respectively. These two experiments clearly show the application of BSO and BTO for optical metrology. 
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Appendix I

 Consider Fig 2 in which both object beam and reference beam interfere inside a photorefractive 
crystal and can be represented as,
 Eopt (r,t) = [E1(z) exp {i(

→k1·→r – ωt)}+ E2(z) exp{i( →k2·→r – ωt)}] + c·c A.1

 Assuming that both object beam and reference beam amplitudes are slowly varying along z, the 
intensity distribution of light within the crystal can be expressed as,
 It = [I0 + (I1eikgx + c·c )] A.2
where,
 I0 = 

n0c
2π  |E1|2 + |E2|2

 I1 = 
n0c
2π  E1 E2

*( ̂n1· ̂n2)

And
 

→
kg = kg x̂  = 

→
k1 – 

→
k2

 In Eq (2), the normal vectors ̂n1, ̂n2           represent unit polarization unit vectors of object and reference 
beams, respectively and they are linearly polarized. The term kg is grating vector. The intensity equation is 
also can be written as,
 It = I0 [1 + M cos(kg x + φ)]  A.3
where, M = 2 (|I1|/I0) is modulation index and f = tan–1(Im I1/Re I1).


