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We review some critical aspects related to the shape of traps confining a gaseous working fluid and its consequences on 
the performance of quantum engines cycles. We show that when the gas trapping potential has a particular shape, the 
state of the gas can remain thermal after a quantum adiabatic transformation. We then discuss the comparison of engine 
cycles for gases confined in traps of different geometrical forms. We conclude by analyzing the interplay between the 
quantum statistics of the particles constituting the working fluid and the shape of the trap. Anita Publications. All rights 
reserved.
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1 Introduction  

 Classical and macroscopic heat engines are extremely important in our daily lives. They allow 
the conversion of a form of energy, known as heat, to another form of energy, known as work, through 
transformations in a working fluid. Heat carries entropy while work does not. The laws of thermodynamics 
teach us the limits within which such conversion is possible [1]. In particular not all the heat transferred 
can be converted into work.
 It is important to uncover the details of heat to energy conversion also at the nanoscale, in regimes 
in which the laws of quantum mechanics need to be applied. Large energy savings would result if it was 
possible to efficiently convert heat into work at the nanoscale. The quest for a deeper understanding of the 
basic fundamental limits of thermodynamics and good design principles for future quantum thermodynamic 
systems has started.
 One of the earliest works studied the functioning of a maser as a heat engine [2]. This interest 
was revived more recently, and the community is now focused on three general types of engines: self-
contained, continuously driven and stroke engines. For the latter type of engines, the cycle is divided in 
a distinct and discrete sequence of processes (strokes). Typical examples studied in the literature are the 
Carnot cycle (composed of two adiabatic and two isothermal processes) and the Otto cycle (composed of 
two adiabatic and two isochoric processes). In these two cycles, for instance, the heat baths are coupled to 
the engine only for certain intervals. In continuously driven engines the baths are always in contact with a 
working fluid which is periodically driven by some external potential. The last important class of engines 
is the self-contained, autonomous, engines, in which the engine and the load are considered together, and 
no external driving mimics the effects of the load on the engine [2-7]. Reviews which discuss the above 
topics are [8-18].

 In the following we concentrate on a particular type of stroke cycle which is the Otto cycle. We 
will discuss the important role played by the shape of the trap during a quantum adiabatic process, in the 
performance of an engine, and its interplay with the statistics of the working fluid.
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2 Quantum adiabatic processes and Gibbs states

 An adiabatic process is a reversible process with no heat exchange, only work transfers. It is modelled 
by an (infinitely slow) Hamiltonian evolution for which the entropy of the system does not increase. This 
can be readily shown by considering Von Neumann entropy S of a density matrix ρ̂ ,

 S = tr [ ρ̂ ln ( ρ̂ )] (1)

whose time derivative is given by

 dS
dt

 = tr 
d ρ̂
dt

 ln ( ρ̂ ) + tr 
d ρ̂
dt  

       = tr –i[Ĥ, ρ̂ ] ln ( ρ̂ )
       = tr –i[ ρ̂ ,ln ( ρ̂ )Ĥ
       = 0

where 
^
H is the Hamiltonian operator. For the derivation we have used the trace-preserving property of the 

Hamiltonian evolution, and the invariance of cyclic permutations in the trace (this is indeed true also for finite 
time processes). If we now consider a quantum system with discrete energy levels undergoing an infinitely 
slow process, then the entropy is conserved, and the occupation of each energy level is kept constant.
 It is thus clear that, in general, a quantum adiabatic transformation does not keep the density matrix 
in a thermal-like form. For a Gibbs state to remain in such a form (although at a different temperature) if the 
potential fulfills a scale-invariant property. To be more general, we now consider a many body system of N 

particles. A scaling potential V is such that

 V(xi) = 
1

λ2  f 
xi 

λ  (2)

for a particle at position xi. λ is a scaling parameter.  This is due to the fact that

 Ĥ  = ∑
i  – 

ћ2

2m
 

∂2

∂x2
i

 + 
1

λ2  f 
xi 

λ 
 = 

1

λ2
∑
i  – 

ћ2

2m
 

∂2

∂X 2
i

 + f (Xi)
      = 

1

λ2 ĥ   (3)

where Xi = xi /λ is a dimensionless variable. It follows that, for a quantum adiabatic transformation in which 
the parameter λ is changed to λ' , a thermal state, which was initially at inverse temperature β, remains thermal, 

however at a different temperature β' = (λ' / λ)2β. This can be shown by the following computation

 exp–βĤ = exp–β 
1

λ2 ĥ  = exp–β 
λ'2

λ2  
1

λ'2 ĥ  = exp–β' 
1

λ'2 ĥ  (4)

 In scale-invariant potentials it is also easy to compute the work exchanged during a quantum adiabatic 
process. For work, W, we use the two-times measurement definition [19-21]. Work being a fluctuating 
quantity, its probability distribution P(W) is given, for a process between time t = 0 to t = t, by

 P(W) = ∑
n,m

 δ (W – (E'
m – En)) P

n,m
0,t

pn,        (5)

where En is the n-th eigenvalue of the Hamiltonian at time t = 0, while Pn is the probability of it being 
occupied, E'm is the m-th eigenvalue of the Hamiltonian at time t = 0, and Pn,m

0,t
 is the transfer probability 
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between the states n and m. In a quantum adiabatic process Pn,m
0,t

 = δn,m and E'm = (λ/λ' )2  Em , because of the 
use of a scale-invariant potential, the work can hence be easily written as

 〈Wad〉 0,t = 
λ 

λ'  – 1∑n EnPn

                    = 
λ 

λ'  – 1〈E 〉0  (6)

where 〈E 〉0 is the average energy of the state at time t = 0. The variance of the work output can also be 
computed from

 σ 2
w

 = ∑
n

 
λ 

λ'  – 1
2

E2
n Pn 〈Wad〉2

0,t
 = 

λ 

λ'  – 1
2

σ 2
E0

 (7)

where 

 σ 2
E0

= ∑
n

E2
n Pn 〈E〉2

0
 (8)

is the variance of the energy at t = 0.

 Another significant advantage of using scale-invariant potentials is that it is possible to derive 
explicitly a counterdiabatic driving for them [22] (although the energetic cost of applying a driving field 
should also be carefully considered [23]). The effect of a non-thermal-like distribution in a Carnot cycle 
has been studied in [24].

Fig 1. Schematics of a quantum Otto Cycle. The four strokes are: from vertex [A] to [B] adiabatic 
contraction, from [B] to [C] isoparametric heating, [C] to [D] adiabatic expansion and from [D] to 
[A] isoparametric cooling. The x axis represents the change of the scaling parameter λ from its initial 

value λ0, while the y axis represents the change in the average energy 〈E 〉 = (Ĥ ρ̂ ) compared to 〈E 〉0 

which is the value at [A].

3 Otto cycles with scale-invariant potentials

 The fact that a state remains thermal during a quantum adiabatic process allows a clear study of its 
thermodynamic properties. In [25] the authors studied the role of the shape of the trap for an Otto cycle. At 
this point it is important to make some remarks. First of all, for the isochoric process of a classical Otto cycle, 
the volume is constant as the trap is kept at a xed shape and the temperature is changed. Since the volume 
does not change, no work is done or received. However, for a quantum gas, if a trap is kept constant and the 
temperature is increased, the volume of the gas, measured (in one dimension) as v = tr(x2 ρ̂ ), does not remain 

constant. However, as in the classical case, since the traping potential has not changed, no work has been 
done nor received by the gas. We will thus preferably use the expression of isoparametric instead of isochoric. 

The second remark is that the comparison of the performance of Otto cycles in different traps, for example a 
trap characterised by the potential V1 = 1/λ2 f1(x/λ) and a second one with a potential V2 = 1/λ2 f2(x/λ), requires 
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a more detailed specification of the set-ups. In fact it is necessary to assign at least two parameters to fully 
specify a thermal density operator, β and λ, which can be identified either by a choice of the temperature and 
the volume, or the temperature and the energy. The full cycle is determined by two vertices, for example 
vertices [A] and [C] of Fig.1 and hence by 4 parameters, e.g. the volume and temperature at point [A] and 
energy and entropy at point [C]. Interestingly, it is indeed possible to set two cycles such that the energy at 
the 4 vertices is the same in each of them. This implies that all the energy exchanges are the same between 
the two cycles, and hence the work exchanged and the efficiency are also identical between them. It would 
thus seem that there may not be any relevance to study different traps. However, energy exchanges are 
simply average values, and what is also important is the distribution of the energy exchanges, especially for 
small systems. The net work probability distribution, for two cycles which have the same average energy 
exchanges, can vary significantly depending on the shape of the trap [25].

 To summarize this section, for a fair comparison between Otto engine cycles done with two different 
scale-invariant traps, it is important to specify in a detailed enough manner, the conditions of comparison 
(temperatures, volumes, energies at the vertices). Moreover, even if the average energy exchanged in each 
different stroke is the same in the two engine cycles, the work statistics may be significantly different.
 So it is important to first clearly set the specific conditions in which two engines (made with two 
different traps) are compared, and then what is the figure of merit, e.g. largest net work transfer, largest 
efficiency or smaller variance of the output.

4 Particle statistics and shape of the trap

 We now focus on another aspect for which the shape of the trap plays a crucial role, and this 
is when we compare two engines with the same potential but with different types of working fluids. We 
consider one engine made with a gas of non-interacting, identical bosons and another with non-interacting, 
identical fermions. We will only consider traps made with a scale-invariant potential, such that during ideal 
quantum adiabatic processes the state remains thermal. We will also consider engine cycles at low enough 
temperatures such that the effects of the statistics will be more evident. The engine cycles will be determined 
solely by the temperatures of the baths and the parameters of the potential.
 One key aspect of this study is the energy levels spacing due to the shape of the trap. For a fermionic 
gas at very cold temperatures, each fermion will occupy one of the lowest energy levels. The gap to excite 
such a gas is then due to the energy difference between the last occupied level and the first non-occupied 
level. Conversely for bosons, the relevant energy gap to excite the system is due to the energy between the 
lowest and the first energy levels, because all the bosons will be in the lowest energy level. For different 
traps the relevant gap for bosons could be larger or smaller than that of the fermions, and this will affect the 
performance of the engine cycle. For a harmonic oscillator (which is obviously a scale-invariant potential), 
all the energy levels are equally spaced and thus we do not expect a different behavior. In one dimension, 
for which there are no degeneracies, it is easy to compute analytically the work output and all the higher 
moments and they are identical whether the gas is made of non-interacting bosons or fermions [26].

 For a trap in the form of an infinite square well, the separation between energy level increases for 
larger energy levels. It is thus expected that it is easier for the bosonic gas to exchange energy with the baths 
compared to the fermionic one, especially as the number of atoms is larger. This was clearly shown in the T 

– S diagrams in [26]. For a different trapping potential, for example a linear potential V (x) ∝ |x| the distance 

between the energy levels becomes smaller as the energy level number increases. Hence a gas with many 
fermions will exchange more heat than the bosonic gas and this will result in a larger net work output [26].

 In reality the comparison of the output of the engines with the two different working fluid cannot be 
fully understood by the analysis of the behavior at very cold temperatures. The ratio of the work outputs is a 
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non-monotonous function of the temperature of the hot bath. This is due to the fact that the difference in the 
work output in the adiabatic stroke at hot temperature for fermions and bosons becomes large for the square 
well potential but goes to zero for the triangular potential.
 We have so far discussed three potentials (harmonic, square and linear) for which the energy levels 
distance is a monotonous function of the energy level number. However, it is also possible to produce scale-
invariant potentials with a non-monotonous distance between energy levels such as, for example, in double-
well. In this case the ratio of the work output of the bosonic and fermionic engines is a non-monotonous 
function of the total number of atoms in the gas.

5 Conclusions

 We have summarized some key aspects of quantum heat engines related to the geometrical shape of 
the trap confining the gas [25, 26]. First, we have discussed the types of traps for which a gas remains thermal 
when driven adiabatically. Then we discussed the comparison between heat engines made with the same gas 
but in traps of different shapes. We have concluded by examining how the comparison of working fluids with 
different work statistics is affected by the shape of the trap. It would be particularly interesting to further 
these studies examining other aspects. For instance the use of non-scale-invariant potentials and the entropy 
generated in them, and also processes which are not adiabatic [27]. An interesting study of non-adiabatic 
manybody engines was done in [28].

 Engine cycles in traps of different shapes can be realized in various manner. One important candidate 
is the use of ions in Paul traps. Three important advantages include the fact that traps of different shapes can 
potentially be generated using segmented traps. Moreover it is possible to lower or increase the temperature 
of the system under study via side-band cooling/heating [29, 30]. Finally, it is possible to measure the 
occupation of the various energy levels thus giving us an insight into not only the average value of the energy 
and work, but also in their statistics, see for example [31]. A realization of an engine cycle with a single atom 
is discussed in [32].
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