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Statistical properties of the derivatives of the intensity and phase in fractal speckles are investigated theoretically. To 
obtain the statistics, we derive two key parameters in the joint density function of speckle intensity, phase and their 
derivatives with respect to x and y. These parameters in fractal speckles are given by performing the integration of 
a negative power function, which corresponds to an intensity distribution incident on a diffuser for producing fractal 
speckles. In relation to these two parameters, we also derive a correlation area in fractal speckles. The results show 
that the two parameters and the correlation area in fractal speckles obey power functions related to the negative power 
exponent in the function of the intensity profile incident on the diffuser. © Anita Publications. All rights reserved.
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1 Introduction

 It has been known that speckle patterns with fractal properties are produced when coherent light 
with an intensity distribution obeying a negative power function is incident on a diffuser such as a ground 
glass plate [1]. Such speckles have an extremely long spatial correlation tail decaying with a negative power 
law related to the intensity profile incident on the diffuser. Since such a correlation function is one of the 
major characteristics of fractals, unconventional speckles of this type may be called fractal speckles [2]. 
The correlation properties of fractal speckles have been studied theoretically and experimentally as well as 
by computer simulations in three optical regions; Fraunhofer and Fresnel diffraction regions and an image 
plane of a diffuser [3]. The results showed that intensity distributions in these regions share the same fractal 
properties, which correspond to long power-law tails in their spatial correlation functions. This feature is 
supposed to extend measurement ranges in various metrological applications of speckle patterns based on 
their correlation properties [4]. Another application of fractal speckles is an optical formation of fractal 
random media in view of a random laser, in which three-dimensional fractal speckle fields are generated by 
two or three speckle beams crossed orthogonally in computer simulations and showed that their intensity 
distributions exhibit the spatial correlation functions obeying a negative power law [5]. From the view of the 
interesting physical properties and practical applications in fractal speckles, their statistical properties and 
fractal structures are studied in details, such as multifractality [6] and lacunarity [7] of intensity in fractal 
speckles, and the correlation properties of clipped fractal speckle intensities [8]. The phase statistics of fractal 
speckles in the Fraunhofer region of a diffuser are also discussed by computer simulations and shown to have 
another kind of fractality [9].
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 In applications of statistical properties of speckles, the statistics of the derivatives of speckle 
intensity and phase play an important role in some problems, such as the properties of local maxima of 
speckle intensity and the level crossing problems related to the zeros of the derivative of speckle intensity, 
the statistical properties of the geometrical ray directions in speckles, which is given by the local gradient of 
phase related to the derivative of speckle phase, the density of vortex and so on [10]. While there are physical 
and practical research backgrounds, the statistical properties of the derivatives of the intensity and phase 
in fractal speckles have not been studied yet. In the present paper, therefore, we investigate the theoretical 
derivation of statistics of derivatives of intensity and phase in fractal speckles. 

2 Statistics of derivatives of intensity and phase in speckle patterns

 For fully developed speckle, when it is assumed that the intensity distribution incident on a diffuser 
has axial symmetry, a probability density function of the derivatives of speckle intensity and phase is derived 
from a joint probability density function of six random variables of intensity and phase in the speckle field. 
The joint probability density function is expressed as [10]

 p(I, θ, Ix, θx, Iy, θy) = 1
64π3σ2bxby

 exp – 4bxbyI2 + σ2 (byIx
2 + bxIy

2) + 4σ2I2(byθx
2 + bxθy

2)
8Iσ2bxby  , (1)

where I and θ are the intensity and phase in a speckle field, Ix and θx are the partial derivatives of I and θ 
with respect to x, and Iy and θy are the partial derivatives of I and θ with respect to y. σ2 is an autocorrelation 
function of the real and imaginary parts in complex amplitude of speckle fields. bx and by are autocorrelation 
functions of partial derivatives with respect to x and y of real and imaginary parts in speckle fields. The 
three parameters σ2, bx and by are the eigen values of the covariance matrix obtained from the process of the 
derivation of the joint probability density function in Eq (1) and are given by

 σ2 = κ
2λ2z2 ∫∫ I(x,y)dxdy, (2)

 bx
 = 2κπ2

λ4z4 ∫∫ x2 I(x,y)dxdy, (3)

 by
 = 2κπ2

λ4z4 ∫∫ y2 I(x,y)dxdy, (4)

where κ is a proportionality constant related to the correlation area of the diffuser, λ is a wavelength of an 
optical source, z is a propagation distance of the speckle fields and I(x,y) is the intensity profile incident on 
the diffuser in the x-y coordinate. The integral regions span from –∞ to ∞, which is omitted for brevity in 
the above equations and in the rest of the paper unless specified otherwise. Since the probability density 
functions of the derivatives of speckle intensity and phase are derived as marginal densities for each random 
variable, the statistical properties of the derivatives are governed by these three parameters.

3 Theoretical background of fractal speckles

 Speckle patterns with fractal property can be generated by illuminating a diffuser with an intensity 
distribution obeying a negative power-law function expressed as [1, 2]
 I(r) = r–D, (5)
where r is the radial coordinate. In early studies of fractal speckles, the theoretical derivation and the 
experimental setup are based on doubly scattered speckle, in which the intensity distribution in Eq (5) is 
produced by the Fraunhofer diffraction pattern of the scattered wave from a random fractal object with fractal 
dimension D and then is incident on the diffuser. However, due to the development of digital optical devices, 
the intensity distribution in Eq (5) is directly produced by a computer generated hologram using a spatial 
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light modulator [11, 12]. For the generation of fractal speckles by this method, the theoretical background of 
speckles on the basis of a single scattering speckle is suitable [13]. The amplitude correlation coefficient of 
speckle patterns is given by the Fourier transform of the intensity distributions of the scattering spot in Eq (5). 
Since the negative power-law function in Eq (5) has circular symmetry, the Fourier transform can be converted 
into the Fourier-Bessel transform using the transformation of variables from the Cartesian coordinate to the 
polar coordinate [14]. After performing the transformation, we have the amplitude correlation coefficient

 μA(∆ρ) = 
1
2π ∫ ∞

0  r1–D  J0 
2π
λz

∆ρr

 dr, (6)

where Jν(∙) is the νth order Bessel function of the first kind and ∆ρ is the difference of the radial coordinate. 
Eq (6) reduces to [15], 

 μA(∆ρ) = 
2– (D+1)

π  
Γ 

2 – D

2 
Γ 

D
2 

 

2π
λz

∆ρ

– (2 – D)

  (7)

for 1/2 < D < 2, where Γ(∙) is the gamma function. The intensity correlation coefficient of speckle patterns is 
given by the square modulus of the amplitude correlation coefficient, and therefore, we have
 μI (∆ρ) = |μA (∆ρ)|2 ∝ ∆ρ– 2(2 – D)  for 1/2 < D < 2. (8)

 Fractality of the intensity distribution of fractal speckles is evaluated by fractal dimension. In this 
case, fractal dimension Ds of fractal speckles is calculated on the basis of the concept of mass fractals and is 
given by
 Ds = 2D – 2. (9)
Equations (7) and (8) holds for 1/2 < D < 2 . However, Eq (9) gives negative values or zero in the range of 
1/2 < D ≤ 1, which is to be interpreted as Ds = 0 for D ≤ 1, and speckle patterns do not have fractality in this 
range of D. Therefore, we finally obtain
 μI (∆ρ) ∝ ∆ρ–2(2–D)  for 1 < D < 2. (10)
The results agree well with those obtained on the basis of the doubly scattered speckles [1,2].

4 Statistics of derivatives of intensity and phase in fractal speckles

 To derive statistical properties of the derivatives of the intensity and phase in fractal speckles, we 
use a realistic model of the intensity distributions of scattering spots. It is given by applying the Fisher-
Burford approximation and an approximation using a Gaussian function to Eq (5) [8, 16] and is expressed as

 I(r) = 

1 + 


r
R

2


–D/2

exp 

– r

2

α2
, (11)

where R is a parameter adjusting deviations from Eq (5) around the origin and is regarded to determine the 
maximum speckle size in fractal speckles, and α is a parameter limiting the extent of scattering spots and 
is regarded to give the minimum speckle size in fractal speckles. By substituting Eq (11) into Eqs (2)-(4), 
transforming the Cartesian coordinate to the polar coordinate and performing the integration with respect 
to the angle θ, Eqs (3) and (4) become the same function br = bx = by due to the symmetry of the intensity 
distribution of the scattering spot, and we have

 σ2 = πκ
λ2z2 ∫

∞

0
 

1 + 


r
R

2


–D/2

exp 

– r

2

α2 
rdr, (12)
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 br = 2κπ3

λ4z4  ∫
∞

0
 r2 


1 + 


r
R

2


–D/2

exp 

– r

2

α2 
rdr. (13)

It is noticed that Eq (12) has the similar form as the integration in the derivation of the contrast of spatially 
integrated fractal speckles [7]. After performing the transformation of r2 = R2r', Eq (12) reduces to 

 σ2 = πκR2

2λ2z2  ∫
∞

0
 (1 + r' )–D/2 exp 


– R

2

α2 r'
 

dr'. (14)

By using the integral representation of the Whittaker function [15]

 Wk,l (z' ) = z'k

Γ(l – k + 1/2)
 exp 


– z'

2  ∫
∞

0
 t l–k–(1/2) exp(–t) 


1 + t

z' 
l + k – (1/2) 

dt (15)

for Re(l – k) > –1/2 and |arg z' | < π, we have finally

 σ2 = πκR2

2λ2z2  

R2

α2
(D – 4)/4 

exp 


R2

2α2  
Wk1,l1 

R2

α2
,  (16)

where k1 = –D/4 and l1= (2 – D)/4.
 Next, we calculate Eq (13). Using the transformation of variables similar to Eq (14), we have

 br = κπ3R4

λ4z4  exp 

R2

α2∫
∞

1
 r' –D/2 (r'–1) exp 


– R

2

α2 r' 
 

dr'. (17)

This equation is also calculated using the integral representation of the Whittaker function in Eq (15) and 
reduces to

 br = κπ3R4

λ4z4  

R2

α2
–(6 – D)/4

exp 


R2

2α2  
Wk2,l2 

R2

α2 
,  (18) 

where k2 = – (D + 2)/4 and l2 = (D – 4)/4.
 An important parameter related with these parameters σ2 and br is a correlation area. Rigorously 
speaking, the correlation area cannot be defined in concept of fractals because fractal structures do not have 
a characteristic length and therefore the correlation area diverges. However, in this study, since the intensity 
distribution of the scattering spots is defined as Eq (11) and has finite extents in respect to R and α, the 
correlation area can be calculated. The correlation area of fractal speckles is expressed as

 Ac = (λz)2 ∫∫I(x,y)2 dxdy
[∫∫I(x,y)dxdy]2 . (19)

While the denominator in Eq (19) is given by Eq (16), the numerator is obtained from

 In = 2π ∫
∞

0
 

1 + 


r
R

2


–D

 
exp 


– 2r2

α2 
dr. (20)

This integration is also calculated by the similar fashion as σ2 and reduces to

 In = πR2 

2R2

α2 
(D – 2)/2

 
exp 


R2

α2 
Wk3,l3 

2R2

α2 
, (21)

where k3 = –D/2 and l3 = (1– D)/2. Substituting Eqs (16) and (21) into Eq (19) yields

 Ac = λ
2z2

πR2  2(D – 2)/2

 
R
α

2 Wk3,l3 (2R2/α2)
[Wk1,l1 (R

2/α2)]2 . (22)

 Figures 1, 2, 3 and 4 show the logarithmic plots of Eqs (16), (18), (22) and br /σ2, which is the 
quantity related to three parameters σ2, br and Ac , and their slopes γn, where n stands for a sequential number 
of these four quantities. These figures are obtained by setting κ = 25 (μm2), R =10 (μm), α in the range from 
100 (μm) to 10 (m), λ = 632.8 (nm) and z = 0.15 (m). It is seen from these figures that the values of these 
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parameters linearly vary in the logarithmic plot and their slopes converge to a constant with an increase in α. 
We can derive the asymptotic values of Eqs (16), (18), (22) and br/σ2 for α → ∞ [17]. The Whittaker function 
in Eq (15) is also represented by [15]

 Wk,l (z') = 
Γ(–2l)

Γ(1/2 – l – k) Mk,l (z' ) + 
Γ(2l)

Γ(1/2 + l – k) Mk,–l (z'), (23)

in which Mk,l (z' ) is represented by the confluent hypergeometric function F(∙,∙; ∙) as

(a)

(b)
Fig 1.(a) Logarithmic plot of σ2 as a function  of α in the entire range of D, and (b) its local slope γ1.
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  Mk,l (z' ) = z' l + 1/2 exp 

– z'

2 
 F(l – k + 1/2, 2l + 1; z' ). (24)

Substituting Eqs (23) and (24) into Eqs (16), (18) and (22) and noting that F(l – k +1/2, 2l + 1; z' ) → 1 as  α 
→ ∞,  we have

 σ2 = πκR2

2λ2z2  

a1 + b1

R2

α2 

–(2 – D)/2

 
= πκR2

2λ2z2  Γ 

2 – D

2  
α
R

2 – D
, (25)

 
 br = κπ3R4

λ4z4  

a2 

R2

α2 

–(4 – D)/2
+ b2 

= κπ3R4

λ4z4  Γ 

D – 4

2  
α
R

4 – D
, (26)

 In = πR2 

a3 + b3 

2R2

α2 

(D–1)

 
= πR2, (27)

where an and bn are constant coefficients in the right hand side of the Whittaker function in Eq (23), namely  
an = Γ(–2ln)/Γ(1/2 – ln – kn) and bn = Γ(2ln)/Γ(1/2 + ln – kn). Using Eqs (25)-(27), the correlation area and 
br/σ2 reduce to

 Ac = λ2z2

πR2  Γ 

2 – D

2 

–2


α
R

2D – 4
, (28)

 
br
σ2 = 2π2R2

λ2z2 Γ 

D – 4

2 
Γ 

2 – D

2 

–1


α
R

2
, (29)

      = 2π
Ac

 Γ 

D – 4

2 
Γ 

2 – D

2 

–3


α
R

2D – 2
. (30)

These approximations agree well with the numerical results evaluated from theoretical analyses shown in 
the figures. 

(a)
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(b)
Fig 2.(a) Logarithmic plot of br as a function of α in the entire range of D, and (b) its local slope γ2.

 In the case of ordinary speckles generated from a scattering spot with circular symmetry such as the 
circular and the Gaussian functions, the four parameters obey σ2 ∝ α2, br ∝ α4, Ac ∝ α–2, and br /σ2 ∝ Ac

–1 ∝ 
α2, in which α is regarded as the radius of the circular function or the width of e–1 intensity of the Gaussian 
function. Therefore, it is found in fractal speckles that σ2 and br gradually increase and Ac gradually decreases 
with an increase in α, with the dependence unlike ordinary speckles, while the power exponent of br /σ2 of 
fractal speckles converges as α increases to the same dependence with ordinary speckles. 

(a)
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(b)
Fig 3.(a) Logarithmic plot of Ac as a function of α in the entire range of D, and (b) its local slope γ3.

(a)

(b)
Fig 4. (a) Logarithmic plot of br /σ2 as a function of α in the entire range of D, and (b) its local slope γ4.
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5 Conclusion
 We reported the statistics of the derivatives of the intensity and phase in fractal speckles. To obtain 
these statistical properties, we derived the two key parameters in the joint density function of speckle intensity, 
phase and their derivatives with respect to x and y. The two parameters were given by the integrals of the 
intensity distributions of the scattering spot obeying a negative power-law function. We also derived the 
correlation area in fractal speckles, which is related to the two parameters in the statistics of the derivatives of 
speckle intensity and phase. To represent the realistic model of the intensity distribution of the scattering spot 
for producing fractal speckles, the Fisher-Burford and Gaussian approximations were applied to the negative 
power function, in which the former is to adjust the profile of negative power function around the origin and 
the latter is to limit the extent of the intensity distribution of the scattering spot. The results showed that the 
two parameters and the correlation area vary monotonically as the extent of the scattering spot increases, 
depending on the power exponents of intensity distributions of scattering spots unlike ordinary speckles. In 
conclusion, the results in the present study would play an important role in some problems related to fractal 
speckles, such as the properties of local maxima and the level crossing problems of intensity, the statistical 
properties of the geometrical ray directions, the density of vortex and so on.
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