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We describe the primary observational features of solar cycles, as seen in the photosphere, and review progress made 

over the past sixty years to simulate and predict these features using magneto-hydrodynamic dynamo models. The focus 

is on the so-called Babcock-Leighton lux-transport (BLFT) dynamo models, calibrated for the Sun, which so far have 
been the most successful in simulation, and the only ones tested for prediction. The proposed 21st century strategy for 

progress emphasizes the need (a) to use modern data assimilation techniques, so successful for Earth’s atmosphere 

simulation and prediction, to exploit all available solar observations, and (b) to generalize BLFT dynamo models to 
3D to simulate and predict longitude-dependent cycle features. The 3D models must include (a) global HD and MHD 

instabilities in the solar tachocline, which probably create spatial patterns and time dependence that is relected in surface 
observations, such as active longitudes, and (b) processes that capture the statistics and effects of emerging active regions 

that are tilted with respect to latitude circles, in order to accurately represent the surface source of poloidal ields, whose 
transport to the poles is responsible for polar ield reversals. © Anita Publications. All rights reserved. 
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1 Introduction

1.1 Overall context

 There is a general consensus that the solar cycle is produced by a magnetohydrodynamic dynamo 

operating in the solar convection zone and the solar tachocline just below. General dynamo theory began 

in the1930’s, motivated mainly by the existence of the Earth’s magnetic ield, thought to be generated by a 
dynamo operating in the liquid interior. Dynamo models with speciic application to the Sun irst appeared 
in [1]. 

 Solar dynamo models have advanced greatly since then, but there are still many challenges to 
overcome in the quest to build a dynamo model that simulates the most prominent features of a solar cycle, 

and allows prediction of amplitude and other properties of future cycles. This review will describe the current 

state of solar dynamo modeling, including various classes of models, important mathematical tools used 

to build them, what has been accomplished to date, what the greatest challenges to be answered to make 

further progress, and how to go about overcoming these challenges. It will be from a perspective of what 

needs to be done in the 21st century to go forward, rather than a comprehensive highly referenced review 

of all that has been done. There are several excellent, recent reviews, such as [2, 3] for models, and [4, 5] 

for solar cycle observations, which the reader is encouraged to consult. We have here relied especially on 

[4, 5] for visualizations of observed solar cycle properties.

 Many stars have dynamo-maintained magnetic ields, some similar to the Sun, others quite different, 
some with magnetic cycles, some not. Solving the solar dynamo problem has obvious value for understanding 
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stellar dynamos generally; conversely, successfully modeling the properties of stellar dynamos will have 
great value for understanding the solar cycle problem.

1.2 Philosophical approach

 Successful modeling of the global luid low and magnetic ields in a planetary atmosphere or 
ocean, or the convection zone of a rotating star, has generally begun with relatively simple models that make 

no attempt to model the all small-scale processes of the whole system, but rather focus on those physical 

processes thought to be important for that system. For example, models for ’baroclinic instability’ in the 
Earth’s atmosphere began to be developed in the 1940’s [6,7]. Baroclinic instability is the fundamental 

energy conversion process in the atmosphere responsible for driving winds that transport heat from the hot 

tropical latitudes to the much colder polar regions. The consequences of this energy conversion, together 

with other global processes and effects, are responsible for driving the global circulation of the atmosphere 

which organizes terrestrial weather.

 Building on early theories of baroclinic instability, it took another twenty years to develop 

models that had enough physical processes and enough realism and spatial resolution to plausibly model 

the atmospheric circulation [8]. Since then, such models have become vastly more detailed and realistic, 
simulating and predicting ever greater detail of the global circulation. In effect, the circulation models have 

been increasingly well ’calibrated’ to the main features of the circulation, allowing them to have value for 

simulation and prediction.

 Dynamo models for solar cycles are developing in an analogous way, but are at a much earlier 

stage. Parker’s model [1] contained very relevant physical processes (in particular, shearing of magnetic 

ield lines by differential rotation and twisting and lifting of ield lines by helical turbulence), but certainly 
was not realistic enough to simulate the primary features of a particular solar cycle. But now such models 

do exist, and they can and have been calibrated to major features of solar cycles. This calibration process 

starts by deining what a key feature of a solar cycle is, which we discuss in section 2. Section 3 describes 
current models and results they produce.

 Despite the complexity and realism of current global models for the general circulation of the 

Earth’s atmosphere, such models still must parameterize important physical processes that are too small 

in spatial scale to be calculated explicitly everywhere on the globe. As computing power increases, still 

smaller spatial scales are included, but the gains associated with each computing power increase are modest, 

because, with three space dimensions and time, even a factor of two increase in resolution requires an 

increase of a factor of sixteen in compute power! The situation is the same for modelling solar cycles with 

a dynamo model. Currently calibrated solar cycle simulation models are virtually always in two dimensions, 

latitude and radius, and can simulate only axisymmetric solar cycle features – which, fortunately, describe 

a large part of what constitutes a cycle. In these models, all non-axisymmetric processes are parameterized 

with axisymmetric representations. As we discuss in later sections, the most successful of these models in 

simulating solar cycles have been the so-called Babcock-Leighton lux-transport (BLFT) dynamos.
 So-called ’full 3D’ solar dynamo models exist [9-11], which do include departures from axisymmetry; 
these models have recently produced cyclic dynamo solutions, but they do not yet give results close enough 

to the observed solar cycles, so they have yet to be calibrated for the Sun. Furthermore, they too do not 
spatially resolve energetically important scales of motion and magnetic ields in the Sun, and so still rely 
heavily on averages of and parameterizations of unresolved processes. This limitation on spatial resolution 

will not be overcome for many generations of computing power growth. BLFT dynamos have their origin 
in so-called ’mean-ield’ electrodynamics. But despite their higher spatial resolution, including variations 
in longitude, the ’full 3D’ dynamos are themselves ’mean ield’ dynamos, since they still must average 
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over processes occurring on smaller spatial scales, and will for the foreseeable future. Thus, in a very real 

sense, all solar dynamo models are mean-ield models.
1.3 Strategies to face new challenges

 The previous section described in broad terms where solar cycle modeling using dynamo models 

currently stand. Here we outline what the major challenges are to making meaningful progress toward 

realistic simulation of actual solar cycles.

The most obvious, and perhaps most important, challenge is to move from 2D to 3D solar cycle simulation 

models, in order to correctly simulate global but longitude-dependent solar cycle features such as magnetic 

lux emergence, active longitudes, and solar sector structure, which has so much inluence in organizing 
and modulating the solar wind and interplanetary magnetic ield that transmits the effects of solar activity 
to the Earth, particularly to its upper atmosphere. Since the non-axisymmetric solar cycle features to be 
simulated are themselves global in scale, it is not clear the ’full 3D’ [10,11] approach, which would spatially 

resolve a whole spectrum of convection, is either warranted or practical. Instead, it will be more productive 

to generalize the BLFT dynamo models to include the most important global 3D effects. We will describe in 
later sections how this can be and is being done [12].

 There is incomplete information available about key components of solar dynamo models, 

particularly meridional circulation. Observations of meridional circulation are good near the surface, but 

much more uncertain for deeper layers. Helioseismic methods are generating some possible proiles, but they 
show large variations for different analysis techniques and time periods. It will be necessary to develop, in 

parallel with the 3D dynamo model itself, better theories for meridional circulation, which take account of 

what we do know about low in the convection zone, such as the differential rotation there. This knowledge 
can be used to constrain meridional circulation proiles that are possible.
 Modern data assimilation (DA) techniques, in the early stages of being included in solar dynamo 

models, will provide a powerful tool for inferring the form and amplitude of meridional circulation with 

depth and latitude [13,14], using so-called observing system simulation experiments (OSSE’s). Even 
more important, DA will provide the computational framework for optimizing the use of observations of 

solar velocities and magnetic ields to initialize and generate the best possible simulations of actual solar 
cycles, including global 3D effects. More advanced use of such methods has been enormously beneicial to 
improving simulations and predictions of global atmospheric lows. Even though it is true that the solar data 
is much more at and above the surface than in the solar interior, it is far more important to use the available 

solar data for assimilation by implementing modern DA methods for estimating spatio-temporal proiles of 
unknown ingredients in the region where we lack observational data. In this context we recall the statement 

of Kalnay – the use of the model forecast is essential in achieving four-dimensional data assimilation. The 

model transports information from data-rich to data-poor regions, and it provides a complete estimation of 

the four-dimensional state of the atmosphere. Including the data-rich Northern hemisphere in the assimilation 

scheme makes much bigger improvements in the forecasts in the Southern hemisphere [15].

 A large part of the goals for solar cycle simulation described above can be carried out within the 

realm of so-called ’kinematic’ dynamo theory, in which the principal equation solved is the MHD induction 

equation. The kinematic system is certainly the place to start, because we do not need a model to simulate 

differential rotation, since it is nearly constant, and since simulation of 3D convection and magnetic ields 
adds great computational expense. In addition, this class of model has yet to be successfully calibrated to 

observed solar cycles.

 Crucial 3D dynamical processes, such as the role of global tachocline HD and MHD instabilities, can 

be included as part of input of solar low ields, without solving the full equations of motion and induction 
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and thermodynamic equation as a coupled system. Ultimately, it will be necessary to include nonlinear 

coupling, but it should be possible to do that without going to another ’full 3D’ system, which would be 

less practical, as well as, perhaps, less able to be calibrated to solar observations.

2 Key components of a solar cycle to be modeled and predicted 

 The existence of a ’solar cycle’ has been known since the middle of the 19th century. Figures 1a,b 

show the classical representations of this cycle. Figure 1a is the so-called ’butterly diagram’ which is a 
time latitude plot of the fractional area covered by sunspots, with North and South hemispheres averaged 
together. The pattern is rather regular, with each new cycle starting in the neighborhood of 30° and ending 

close to the equator. This is the irst and probably most important cycle property that a successful solar cycle 
dynamo model must reproduce. We can see that the cycle period averages about 11 years, but there is a 

variance of more than one year, shorter and longer. As seen in Fig 1b, solar cycle amplitudes as measured 

by sunspot area vary by a factor of 2-3 from cycle to cycle, not randomly, but with an envelope of cycle 

amplitudes that varies over longer time scales than a single cycle.

Fig 1. Upper: Time-latitude diagram of spot area; Lower: total spot area as function of time. Credit: 
Hathaway/NASA/ARC

 Even though cycles vary in amplitude by a factor of up to three, the statistics of the butterly 
diagram are remarkably similar for difference cycle strengths. This is illustrated in Fig 2, which shows the 

centroid latitude of the butterly diagram for small, medium and large cycles, superimposed and plotted as 
a function of years from cycle beginning. The separate its for the three cycle strengths coincide within the 
noise limits. Thus very different amplitude cycles are largely self-similar in this property.

 Figures 1 and 2 characterize only sunspot patterns and statistics. But there is a very important 

relationship between sunspot ields and other surface magnetic ields, so called ’poloidal’ ields, especially 
those near the poles. Figure 3 shows this relationship. Blue and yellow shading represent opposite polarity 

ields. We see the low latitude butterly diagram, but we also see rather rapid migration of poloidal ields 
toward the poles (the steeply slanted streaks). One sign of ield predominates in this migration, opposite in 
North and South hemispheres, and opposite in each succeeding cycle. We can clearly see that this migration 
reverses the sign of the polar ield near the maximum of the sunspot cycle, the polar ield then holds its 
sign in each hemisphere until the next maximum.
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Fig 2. Drift of centroid of active regions as function of cycle phase (credit: Hathaway NASA/ARC). 
Note that the its to the centroid data (lower frame) show no signiicant difference among small, 
medium and large cycles

Fig 3. Magnetic butterly diagram, constructed from longitudinally averaged radial magnetic ields obtained 
from Kitt Peak and SOHO measurements. Blue and yellow shading denote opposite polarities. Note the clear 
presence of polar ield reversals and migration of lux to the poles (the nearly vertical streaks). (Credit: Hathaway 
NASA/ARC)
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 Figure 4 shows a trace of the polar ield amplitude for cycles 21 to the present (see also [5]). We 

see that the strength of this polar ield itself varies from cycle to cycle, and for the past few cycles has shown 
a downward trend. The transition from one polarity to the other takes place over a fairly small fraction of a 

cycle, followed by a longer period over which the ield is often (but not always) nearly constant. There are 
differences in timing of polar ield reversal between North and South, and occasionally there can be multiple 
reversals in ield – but always an odd number, so that the basic pattern of ield reversal is sustained. It is clear 
from Fig 3 that a mechanism for producing different polar ield amplitudes in succeeding cycles is variations 
in the amount of surface magnetic lux that migrates to the poles in each cycle. If the new cycle is weaker 
than the previous one, then there is less new lux available to reverse the polar ield, so when it does reverse 
the new polar ield peak is likely to be weaker than the previous one (and vice versa).

Fig 4. Polar ield amplitudes for cycles 21-24 from the Wilcox Solar Observatory (WSO). Shown are North 
and South poles separately and together. Credit: Hoeksema and WSO website

Fig 5. Excess hemispheric sunspot number, North (green) over South (red), showing that differences in phase 
between hemispheres can persist for multiple cycles. (Source: Royal Belgian Observatory SILSO website)
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 Some properties of sunspot cycles, such as amplitude and phase, can vary substantially between 
North and South hemispheres. If one correlates cycle peak amplitude between North and South, the correlation 
coeficient is about 0.5 for 3 month running averages, rising to over 0.8 for running averages exceeding 1.5 
years (20 solar rotations). Thus, on short time scales the amount of activity can be very different between 

hemispheres. But even over a whole cycle there are substantial differences. Figure 5 shows hemispheric 

sunspot number, with the excess of one hemisphere over the other shaded in green or red, depending on which 

hemisphere has more activity. We see that for several successive years one hemisphere has consistently more 

lux than the other.

Fig 6. Fractional difference between spot area in North and South, adapted from [16] shows that the 

difference can be up to 30% of the average between hemispheres, and persist for multiple cycles. 

Color key with numbers denotes the length of the running average used, in solar rotations, showing 

that the basic result is evident for all averaging intervals.

 The same sign of the difference often persists for more than one cycle. Figure 6 shows the fractional 

difference in sunspot area between hemispheres for whole sunspot cycles, starting with cycle 12. We see 

that one hemisphere can be consistently stronger than the other for more than one cycle, but followed by an 

abrupt switch to the opposite hemisphere. It appears that each hemisphere has some memory of the strength 

of the previous cycle in that hemisphere, but there must be enough connection between hemispheres to cause 

a reversal in amplitude difference. 

 The timing of the peaks also can differ between hemispheres, by up to more than 2 years. Left panel 

of Fig 7 shows this clearly. In fact, it can be argued that the North and South hemispheres avoid having 
synchronized activity peaks. By contrast, the timing of minimum in the two hemispheres varies by no more 

than a year, and usually less. So some interaction between hemispheres tends to resynchronize the cycles 
by the end of a cycle. This has to occur during the declining phase, because, from the right panel of Fig 7, 

the ascending phase is always much shorter in one hemisphere than the other, commonly by substantially 

more than a year.

 Which hemisphere ascends faster typically persists for more than one cycle. These statistics also 

indicate that there is a relatively weak but not insigniicant interaction between the hemispheres that keeps 
the timing of cycle minimum fairly well in phase, but with each hemisphere pursuing its own pace within 

the cycle. Thus the ’shape’ of a sunspot cycle can be rather different between North and South. Correctly 
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simulating differences between hemispheres is a signiicant challenge for dynamo models; succeeding in 
simulating them would be a strong indication of the validity of the dynamo model used.

Fig 7. Difference between North and South in timing of peaks and minima, from [16]. Left panel shows that the 

difference in timing of cycle peaks is usually more than one year, often more than two years. By contrast the timing 

of minima differs by less than one year. The difference in these timing differences comes from the differences in rise 

time of a cycle between North and South (right panel), which is virtually always greater than one year, and sometimes 
more than two years. One hemisphere always jumps ahead of the other at the beginning of a new cycle.

Fig 8. Typical synoptic magnetograms from cycles 22 and 23 (credit: Hathaway NASA/ARC). Hale’s 
polarity laws and Joy’s laws are very evident.

 The properties of sunspot cycles described above are all axisymmetric, but we know that the 

emergence of solar activity in a cycle is fundamentally longitude-dependent, and this longitude dependence 

must be taken into account in solar dynamo models. Figure 8 shows typical examples of solar magnetic 

ields on the visible disk near the maximum of cycles 22 and 23. Again, blue and yellow shading denote 
opposite ield polarities. In Fig 6 we see clearly Hales polarity law, which says the leading and following 

parts of each active region have opposite polarities in North and South hemispheres, which polarities reverse 
from one cycle to the next. We also see that all active regions by eye are tilted with respect to latitude 

circles, such that the follower polarities are closer to the poles, on average, than are the leader polarities. 

This tilt, called Joy’s law, is crucial for determining the sign of the net magnetic lux that migrates to the 
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poles to reverse the polar ields, as seen in Fig 3. All dynamo models must take this tilt into account, either 

by including it in parameterizations of surface poloidal lux emergence (2D models) or actually calculating 
it, in a way that is calibrated to observed tilts.

Fig 9. Active region tilts as function of cycle phase, for cycles 21,22 and 23, with linear its (adapted from [17]).

 The average amount of this tilt is now well known from observations of active regions. Figure 9 

shows tilt angles as functions of latitude for cycles 21, 22 and 23. The angle is greatest at the start of the 

cycle, declining nearly linearly to the end. There are some differences between cycles, but in the averages 

these are relatively small. Different data sets give similar results. Particularly when coupled with statistics 

for the latitude centroid of sunspot occurrance in Fig 2, the combination of tilt angle, centroid and cycle 

amplitude can give us good estimates of emerged surface poloidal lux available for migration to the poles 
to reverse the polar ields. 
 There are other measures of longitude dependence in surface magnetic ields that are important 
for dynamo models to simulate. These involve particularly the tendency for new magnetic lux to emerge 
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in the same longitude band for many months, the so-called active longitudes. These persistent features are 

known to lead to global longitude dependent magnetic structures in the corona and interplanetary medium, 

the so-called magnetic sectors. 

 Finally, it is known that solar cycles can seem to virtually disappear for several decades, an 
extreme variation in the envelope of cycle amplitudes. The so-called Maunder minimum is the most recent 

solar manifestation of this phenomenon, for which there were very few spots seen on the Sun from about 
1645-1715. There is some evidence that the cycle continued, but at a very low amplitude. Simulating these 
multicycle minima is a particularly dificult challenge for dynamo models, particularly from actual solar 
data.

3 Current models and results 

3.1 Brief history of solar dynamo model developments

 A brief history of developments in solar dynamo theory is diagrammed in Fig 10. The modern 

era of solar dynamos really began with Parker’s [1] ’lifting and twisting’ dynamo, which showed how a 

combination of helical low and differential rotation could produce a ’dynamo wave’ that propagated in 
latitude with time, with the right choice of helical low and differential rotation, could roughly simulate the 
’butterly diagram’ seen in Fig 2. This model was followed by more heuristic models of Babcock [18] and 

Leighton [19, 20] that used observed patterns and migration of ields to create magnetic cycles. The rise of 

’mean-ield’ dynamo theory from the German school [21] gave solar dynamo theory much more rigor and 

connection to MHD turbulence concepts.

Fig 10. Flow-chart of the history of development of solar cycle dynamo models, from Parker [1] through the 1990’s.
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 Mean-ield dynamos gave plausible cycles and butterly diagrams provided the angular velocity 
increased inwards in the bulk of the convection zone, but this picture was overturned by the discoveries 

of helioseismology. And the irst full 3D convectively driven solar dynamo of Gilman [9] gave plausible 

differential rotation but an ’anti-solar’ butterly diagram in which toroidal ields migrated toward the poles. 
These developments lead to shifting the focus of the dynamo from the bulk of the convection zone to its 

base. The problem of reversed butterly diagrams was overcome by the demonstration of a new mechanism 
for toroidal ield migration, provided by meridional circulation [22, 23]. Thus was born the so-called 

Babcock-Leighton lux transport dynamos, which have proved so far to be the most successful dynamos for 
simulating solar cycles. These are 2D (latitude-radius) models, but efforts have begun to generalize them 

to 3D.

Fig 11. Schematic sequence of induction and transport processes contained in Babcock-Leighton 
lux-transport dynamo models, adapted from [24].

 Figure 11 provides a schematic diagram that shows how this dynamo works, from [24]. It begins 

with the shearing of an antisymmetric poloidal ield by the latitudinal differential rotation (frames a, b) to 
produce a toroidal ield near the base of the convection zone where the turbulent magnetic diffusivity is 
relatively low. This is followed (frames c, d) by toroidal lux loops rising to the surface while twisting, 
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creating new poloidal loops there (frames e, f), which are tilted with respect to a latitude circle. These then 

contribute to a new axisymmetric poloidal ield (frame g) that is carried toward the poles by meridional 
circulation and then down into the convection zone to its base (frame h), which has the opposite sign from 

the original poloidal ield (frame a), from which a new toroidal ield, also of opposite sign, is generated, 
leading to a repeat of the whole process, with all magnetic ield signs reversed.

Fig 12. Upper frame: butterly diagram for solution of Babcock-Leighton lux-transport dynamo model 
solution with only a surface poloidal ield source, showing that in 300 years, the solution switches from 
antisymmetric (dipole) parity to symmetric (quadrupole) parity. Lower frame: similar simulation for which 

kinetic helicity or α-effect from tachocline global HD unstable modes has been added, which retains its 
antisymmetric (dipole) parity. Adapted from [25].

 In actual dynamo simulations with the lux-transport dynamo equations, if they are done with a full 
spherical shell with no symmetry conditions imposed at the equator, there is no guarantee that the model 

will select the correct ield symmetry for the Sun. In fact, various calculations showed a tendency to pick 
the opposite, or ’quadrupole’ symmetry. Dikpati and Gilman [24] looked into this question in detail, and 

found that even if the simulation was started with the correct solar symmetry, if only the surface Babcock 

-Leighton mechanism for forming surface poloidal lux from emerging toroidal ields (Fig 11d-f) was 

present, within a few hundred years of simulation the symmetry switched over to quadrupole type. This is 

illustrated in the upper frame of Fig 12. The butterly diagram remains plausible, but Hales polarity law 
is totally violated. Dikpati and Gilman [24] showed that if there was a second mechanism for generating 

poloidal from toroidal ield, such as the lifting and twisting (α-effect) due to global hydrodynamic instability 
of differential rotation in the tachocline, the original dipole type symmetry was retained, as seen in the 

lower frame of Fig 12. Dikpati and Gilman [25] showed that the effect of the bottom α-effect preserves 
the original symmetry to provide a booster to the poloidal ield brought down from surface polar regions, 
which is then swept toward the equator before it can dissipate, getting in synch with the other hemisphere 

to create poloidal ield lines that cross the equator rather than closing there within each hemisphere. The 
equatorward lowing meridional circulation is a key factor, since it brings stronger poloidal ield from 
high latitudes to merge near the equator with its opposite-hemisphere counterpart. Without the bottom 

α-effect, there is little poloidal ield available to merge with its opposite-hemisphere counter part through 
the equator to form a dipole structure, which can produce antisymmetric toroidal ield after being sheared 
by the differential rotation.
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 Later calculations by others [26 - 29] have conirmed this symmetry selection process, and proposed 
and tested additional possible mechanisms to ensure the correct symmetry is selected.

3.2 Calibrated and benchmarked models

 It makes sense to calibrate a dynamo model to solar cycle properties only if the model at least gives 

the correct dominant symmetry of magnetic ields about the equator. Dikpati et al [30] were the irst to truly 
calibrate a solar dynamo model to solar observations, in particular the magnetic butterly diagram shown in 
Fig 3. Figure 13 shows the result. The tachocline toroidal ield is shown as contours, the surface poloidal 
ield as light and dark shading. We see that there is a strong resemblance between Fig 13 and Fig 3. The 

shape of both ield patterns is about right, the polar ields reverse near the maximum in toroidal ields, and 
reach maximum in between sunspot cycles. Eight versions of this class of model, using different numerical 

algorithms, have now been benchmarked against each other for certain parameter choices in common, and 

have been found to agree very closely [31].

3.3 Solar cycle simulation and prediction

 The quality of the calibration suggested that the lux-transport dynamo model was ready to use to 
attempt the dynamo-based simulations of particular solar cycles, and even the irst dynamo-based prediction 
of a solar cycle. Dikpati and colleagues [24, 32] used the same calibrated lux-transport dynamo model that 
generated Fig 13 to simulate the peaks of cycles 12-23, and predict the peak amplitude of the then future 

cycle, cycle 24. For cycles 12-23, they achieved a correlation between the observed and simulated peaks in 
excess of 0.94 for all turbulent magnetic diffusivities chosen, up to 3×1011 cm2s−1. To do these calculations, 

data ’nudging’ was used to drive the model with the observed time history of surface poloidal lux. Thus, 
magnetic surface magnetic ields from previous cycles led to the amplitude of the next cycle. When North 
and South hemispheres were simulated separately [16], the model produced the larger observed differences 

between hemispheres shown in Fig 6. The correlation between simulated and observed peaks was somewhat 

lower, but still in excess of 0.8. Simulations of this length were possible because for the turbulent magnetic 
diffusivities chosen, the ’memory’ of the model was about two sunspot cycles. In the diffusivity range 

chosen, the dynamo was deinitely in the advection-dominated regime. However, the duration of the model’s 
memory may not be settled yet, as Yeates et al [33] produced only one sunspot cycle.

Fig 13. Calibrated butterly diagram from the Babcock-Leighton lux-transport dynamo shown in [30]. 

Shading is surface poloidal ield (light and dark shading opposite polarities); contours are for toroidal ield 
amplitude at the bottom of the dynamo domain. This diagram closely resembles the observed diagram 

shown in Fig 3. The narrow black/white streaks at the equator near the end of each cycle are the weak 

remains of the toroidal ield from the previous cycle, which are slow to cancel across the equator because of 
the low turbulent magnetic diffusivity at the bottom.
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 Unfortunately, the observed peak in cycle 24 has turned out to be substantially lower than predicted 

by Dikpati and colleagues. Also using a lux-transport dynamo model, but higher turbulent magnetic 
diffusivities and input of surface poloidal ields only near the poles and only near solar minimum, Choudhuri 
et al [34] predicted a much lower peak for cycle 24, actually lower than observed. Their model is in the 

diffusion-dominated regime, with a much shorter memory.

 There is currently no concensus as to what the turbulent magnetic diffusivity is in the convection 

zone, so it is hard to choose among models that use different values. But there is a problem with high 

diffusivity models as true self-contained dynamo models, in that it can be shown by scale analysis that for 

diffusivities in excess of 1012 cm2s−1, such as suggested by mixing length applied to the Sun, and as used 
by Choudhuri et al [34], it would take a very unrealistically large surface poloidal source or α-effect to 
sustain a dynamo at all.

 One way to see this is by calculating the critical dynamo number P for the model, which must be 

exceeded for a dynamo to be sustained, following, for example, [35]. The original argument is for α-ω dynamo 

models, but it holds equally as well for lux-transport dynamos. P = α0∆ωλ3 rSUN
3/ηT 

2, in which α0 is the 

α-effect, ∆ω a measure of the difference in rotation across the shell, λ the shell thickness in fractions of its 

radius, rSUN  the solar radius, and ηT the turbulent magnetic diffusivity. It is well established that P should 

exceed 3×103 for sustained dynamo action. For a mixing-length amplitude diffusivity ∼ 3×1012 cm2s−1 , this 

requires α0 ∼ 1.5×103 ms−1, which is completely unrealistic for any scale of solar convection anywhere in 

the convection zone, or for any surface poloidal source. By contrast, ηT ∼ 1011 cm2 s−1 would require α0 ∼ 1.5 ms−1, a much more plausible value. In fact, this is what was argued by Choudhuri et al [36] in their 

very irst Babcock-Leighton lux-transport dynamo model, and therefore a value of 3 ms−1 was carefully 

considered. However, by Choudhuri and colleagues, the so-called high-diffusivity dynamo models were 

developed by implementing a high diffusivity to poloidal ields, but a low diffusivity to toroidal ield, along 
with the use of an unrealistically high α-effect of about 20 ms−1, to obtain a sustained dynamo solution. It 

remains a confusion whether a dynamo model with high and low diffusivities applied to respectively the 

poloidal and toroidal ields can be called a diffusion-dominated dynamo model or a dynamo model with 
diffusion-dominated poloidal-ield and advection-dominated toroidal-ield.

Fig 14. Relationship between latitude of poleward boundary of primary meridional circulation and period 
of magnetic cycles produced by Babcock-Leighton lux-transport dynamo. Adapted from [37]
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 If one uses the unrealistic high surface poloidal source, with high diffusivity, the calibration is 

negated because the resulting dynamo period is much too short. The Choudhuri et al [34] prediction model 

gets around these problems because, it does not operate as a self-contained dynamo, instead it is being 

forced at the top using magnetic data from previous cycles. The Sun does not have that freedom; it must 
be a self-contained calibrated dynamo to begin with.

 In any case, it is more important to analyze reasons why the advection-dominated lux-transport 
dynamo-based predictions of cycle 24 amplitude have not succeeded. These have to do with the simplifying 

assumptions that went into the early models. In particular, the early prediction models used a steady single 

celled meridional circulation, but we now know that the circulation amplitude and proile both vary with 
time within a solar cycle. Even allowing just for a change in the light latitude boundary of the primary 

meridional circulation low toward the poles is enough to explain the 2-year longer duration for cycle 23 
compared to cycles 21 and 22 [37]. In the earlier cycles this cell reached to about 65° latitude, while in 

cycle 23 most of the time it reached all the way to the poles. The longer conveyor belt in cycle 23 led to a 

longer cycle, because it took longer for the surface poloidal ields in active latitudes to be transported to the 
poles and down to the bottom of the convection zone. Figure 14 shows a plot of the relationship between 

cycle period, peak circulation speed, and the latitude of the poleward boundary of the circulation.

Fig 15. Butterly diagrams (frames b,c) from lux-transport dynamo containing two primary 
meridional circulation cells stacked in depth (frame a). Adapted from [40]. It is evident that two 

cells in depth leads to a non-solar (reversed) butterly diagram, particularly for the toroidal (sunspot) 
ields. This is because the toroidal ield at the bottom where it is strongest is being carried toward the 
poles rather than the equator.

  Recently there has developed evidence of a possible second, reversed meridional circulation 
cell below the primary cell that lows poleward, carrying the surface poloidal lux to the poles to reverse 
the polar ield [38]. Although there exists some debates about the existence of the weak reverse cell [39], 

if such a two-celled pattern persists in the Sun, then the calibration of lux transport dynamo models to the 
Sun is completely destroyed. An example is given in Fig 15, from [40]. Because in this case the bottom 

circulation is toward the poles rather than the equator, as it would be with a single circulation cell with 
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depth, the butterly diagram constructed from the bottom toroidal ields is completely reversed from the real 
Sun. If this is what is happening in the Sun, then the Sun must not be a Babcock-Leighton lux transport 
dynamo at all, and there must be another paradigm shift in solar dynamo theory. But observations of the 

second cell with depth are quite uncertain, and so it is premature to conclude such a shift is needed.

Fig 16. Early results from a 3D Babcock-Leighton lux transport dynamo model (BASH model), adapted 
from [12]. Frames (a)-(c) show typical evolution of the surface radial ield originating from newly emerged 
lux. Frames (d), (e) respectively show time-latitude butterly diagrams of the surface poloidal and bottom 
toroidal ields for a 120 year model run.

 Beyond changes in meridional circulation, several other factors not previously accounted for in solar 

dynamo models may also contribute to the lack of success in solar cycle prediction models. Asymmetries 

between North and South hemispheres are substantial and virtually always present; the early models treated 
a single hemisphere. There is still uncertainty about the proile of turbulent magnetic diffusivity with depth. 
The data nudging scheme used in early prediction models did not make use of much of the available solar 

observations, which could change the predictions substantially. As discussed in section 1, modern data 

assimilation methods need to be incorporated into the models to use all available data. Finally, a substantial 
part of observed magnetic ields and patterns of lux emergence are longitude-dependent, and all prediction 
models so far are axisymmetric. For example, creating active region tilts is strongly longitude-dependent as 
well as highly variable in time. Active longitudes, while varying on longer time scales are also obviously 

functions of longitude.

3.4 Beginnings of application of data assimilation

 Application of data assimilation methods to the solar dynamo problem is in its very early stages. 

As a precursor, Dikpati and Anderson [41] have found from numerical experiments that the ’response time’ 

of a Babcock-Leighton lux-transport dynamo model to a change in meridional circulation amplitude is 
about six months. This is a key time scale for designing an optimum DA scheme, since the time interval for 

updating data needs to be long enough that the model has time to start responding to the change. In a more 

recent study, Dikpati, Anderson and Mitra [42] have carried out so-called Observing System Simulation 
Experiments (OSSE’s) that show it is possible to reconstruct time changes in meridional circulation from the 
magnetic ields generated by the dynamo, using a relatively limited number of ’observations’, synthetically 
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generated from the model. This kind of reconstruction will be necessary (see also Hung et al [14]) because 

there do not now exist consistent observations of meridional circulation below the solar surface, including 

near the bottom of the convection zone and in the tachocline, where the circulation plays a key role in 

moving the dynamo-generated toroidal ield.
3.5 Flux emergence and active longitudes

 Work has begun on incorporating longitude dependent lux emergence into lux transport dynamos. 
For example, using a ’spotmaker’ recipe that generates statistically appropriate active region tilts, Miesch 
and Dikpati [12] have created a 3D Babcock-Leighton type dynamo which generates a time sequence of 

longitude-dependent domains of surface lux similar to those in the original Leighton model, as seen in Fig 
16a. Averaging in longitude and time over this sequence creates a surface poloidal lux source for the 2D 
Babcock-Leighton lux-transport dynamo. Solutions from this dynamo contain plausible butterly diagrams 
for surface radial ield and toroidal ield near the base, seen respectively in Fig 16a, b.

Fig 17. Theory of active longitudes and observed newly emerging magnetic lux at active longitudes, taken 
from [43]. Left column shows a sequence of theoretical synoptic maps of the location of tachocline upward 

bulges (red) from unstable tachocline MHD modes m = 1, 2, for a narrow band of toroidal ield placed near 
30° latitude. These bulges are the most likely longitude for emergence of new magnetic lux at the surface. 
Frame (a) is determined by adjusting the longitude phase of m = 1, 2 modes of equal amplitude to place 

the bulges of toroidal lux at similar longitudes as the observations shown in the right hand column (top 
frame) for Carrington rotation 1921. Then the MHD modes are allowed to propagate at their eigenvalue-

determined phase speed to Carrington rotations 1927 and 1936. The predicted longitudes of the bulges are 

then compared to the additional emerged lux. The yellow arrows show where the bulges would fall on 
the observed synoptic map. We can see the correspondence remains quite good for the 15 rotations, even 

though new lux has emerged at different longitudes.
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 The longitude locations where new magnetic lux emergence appears are not to be random; certain 
locations are repeated sources for new lux, which can persist for many months, even years. Dikpati and 
Gilman [43] proposed a theory for these ’active longitudes’ in terms of global HD and MHD instabilities 

occurring in the solar tachocline. Because the upper boundary of the tachocline can deform, instability of 

the combined latitudinal differential rotation and toroidal ield there creates ’bulges’ of the tachocline into 
the convection zone above that could be favored locations from which toroidal lux can rise through the 
convection zone to the photosphere. They showed that using just two unstable modes, of longitude wave 

number m = 1, 2, it is possible to match quite well the location of observed active regions with the bulges 

in the tachocline over a time of up to 15 solar rotations, as seen in Fig 17a, b. It is possible to incorporate 

this kind of effect into a 3D global lux-transport dynamo model by including unstable global tachocline 
modes into the dynamo, as inputs to the velocity ield in the dynamo induction equation.
 Recently McIntosh et al [44] have shown that many manifestations of solar activity show global 

periodicities with periods in the range 6-18 months. This range of periods may also be due to global dynamics 

and MHD of the solar tachocline. Dikpati [45] showed, using a nonlinear HD shallow water model of 

unstable latitudinal differential rotation in the tachocline, that there is a well deined nonlinear oscillation 
between energy in the differential rotation and in the low longitudinal wave number ’Rossby waves’ that 
gain energy from it. When these waves extract enough energy from the differential rotation, it ceases to be 

unstable, and subsequently extracts energy from the disturbances, growing until it becomes unstable again. 

In this way, the differential rotation and perturbation energies oscillate out of phase with each other, with 

the total energy of the system remaining virtually constant. Similar oscillations should still occur when 
toroidal ields are added; we would expect that the maximum amount of new lux would emerge at the 
surface when the perturbations and therefore the bulges have maximum amplitude.

4 What should be done next?

 The overriding priority for the 21st century solar cycle dynamo models is to build a 3D calibrated 

dynamo. 3D is essential for simulating the substantial departures from axisymmetry seen in typical synoptic 

magnetograms produced starting in the 1970’s, and now available many times per solar rotation from both 

SDO/HMI and from ground-based observing systems such as SOLIS and MWO. Calibration, including for 
longitude-dependent features, is essential for determining that the model simulates typical solar ield patterns 
through a solar cycle that the model can be used to simulate past cycles as well as applied to forecasting 

future cycles.

 In principle, there are at least two approaches that could be taken. One is to use available full 3D 

convectively driven MHD dynamo models; the other is to generalize an already calibrated 2D Babcock-
Leighton lux transport model to include longitude-dependent ields and lows. The latter approach is 
advantageous over the former, because no current full 3D dynamo model has been successfully calibrated for 

the Sun, and none seems likely to be for the foreseeable future. In addition, they are extremely expensive in 
computing time to operate, even without the inclusion of modern data assimilation algorithms to incorporate 

observations of solar magnetic ields and global velocities. In our view, therefore, the only practical approach 
to the global 3D solar dynamo problem is to generalize a successful 2D model.

 What form should this generalization take? It should be strongly inluenced by solar observations. 
For example, the typical solar synoptic magnetogram shows photospheric magnetic ields have truly global 
patterns, with high amplitude in low longitudinal wave-numbers m. Only a few low m’s can capture much 

of the important departures from the axisymmetric or m = 0 part of the ield. In addition, as we go above 
the photosphere into the corona and beyond, the lowest m’s dominate even more in the magnetic structure. 

Solar ’sectors’ generally are well represented by just m = 1, 2 modes. For these reasons, the model that is 
built should allow for picking just the lowest wave-numbers, and allow experimentation to determine how 
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few are needed. Therefore, fast-Fourier transform representation of interactions between modes should be 
avoided in the formulation.

 It is straightforward to expand the kinematic induction equation to include longitude dependence 

of this type. In the linear case, one simply gets separate equations for the amplitude of each longitudinal 

wave-number, including the original 2D m = 0 mode. Linear solar dynamo models of this type were irst 
studied in the early 1970’s by Stix [46], but have not been pursued that much since. In these models, the 

low ields included were still axisymmetric, as was the parameterized helical turbulence included. For future 
models, we have strong motivation, and theoretical support, for going far beyond this limited 3D model, to 

include velocity ields that are themselves dependent on longitude. The theoretical support is provided by 
the substantial theory of global HD and MHD instabilities in the solar tachocline that has been developed 

over the past 20 years [47-53,45]. This theory also favors the existence of global helical velocity and 

magnetic ield disturbances in the tachocline, for which the same low longitudinal wave-numbers m = 1, 

2 are the most unstable, and therefore the most likely to dominate in the tachocline and layers above. The 

only exception to that is if the toroidal ield present there is conined to a narrow (< 10°) band of latitudes. 
In this case, somewhat higher m’s are also excited.

 Figure 18a shows a schematic framework for such a 3D model. In concentric spherical shells, 

starting from the innermost, the model would include 3D helical low from global tachocline instabilities, 
from which bulges into the convection zone above would be generated. In the bulk of the convection zone 

there would be 2D differential rotation and meridional circulation, and residual 3D tachocline instability 

low and 3D global ields. Near the outer boundary would reside the 3D Babcock-Leighton surface poloidal 
ield source, generated from a spotmaker recipe that generates newly emerged lux from active longitude 
locations determined by global tachocline instability. Later versions could also contain a coronal domain 

above, with 3D ield structures determined by the dynamo below. Figure 18b shows an example of the 

low instability and bulges (red) and depressions (blue) generated in the tachocline. Red also corresponds 
to upward radial motion, blue to downward motion. Therefore the disturbance shown has kinetic helicity 

analogous to that used by Dikpati and Gilman [25] to derive a symmetry selection mechanism.

Figure 18. Frame (a): Schematic of proposed 3D lux-transport dynamo model for solar cycles, showing location 
in radius of various 2D and 3D processes to be included. Frame (b): An example from nonlinear simulations [45] 

showing a typical pattern of global HD instability low and tachocline thickness (red:bulges; blue: depressions in 
the upper tachocline boundary). Red also implies upward low, blue downward lowi; arrows depict horizontal 
low. The radial lows are clearly correlated with the radial component of vorticity of the horizontal lows, implying 
the existence of kinetic helicity in the low. It is this kinetic helicity that was responsible for the preservation of 
dipole symmetry in the dynamo solutions in [25].

 We see that unstable modes in the tachocline can have at least three important effects on the dynamo. 

First, they can ’imprint’ longitude dependent patterns on the bottom of the convection zone, particularly 
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in magnetic ield, which can be transmitted to the photosphere where they can be seen. Second, they can 
provide limited longitudinal bands where upward bulges in the tachocline can appear, which, when they 

coincide with the presence of strong toroidal ields, can provide favored sites for toroial lux tubes that 
become buoyant and rise to the photosphere. Third, they also are a powerful source of kinetic helicity for 

the dynamo itself, supplementing the Babcock-Leighton type surface poloidal source in creating, amplifying 

and evolving the dynamo’s poloidal ield. All three of these effects could be important in the solar dynamo, 
so it is essential that their effects be included in the model.

 It is feasible to incorporate all three of these effects into a global 3D lux-transport dynamo model. 
The inprinting of magnetic and velocity patterns at the bottom of the dynamo domain follows directly 

from including nonaxisymmetric low and ields from solutions to the linear instability equations, with 
assigned amplitudes. Amplitudes for such modes can be calculated directly from nonlinear models for global 

tachocline instabilities. One such model already exists for HD instabilities [45], which can be generalized 

to include global MHD effects. This part of the dynamo model can in principle be calibrated to the Sun by 
comparing observations of persistence and longitudinal phase and phase speed of low longitudinal wave-

number magnetic patterns with those predicted by the linear and nonlinear tachocline instability.

 In addition to the effects of global HD and MHD tachocline instabilities, at least one other well 

observed process that occurs on smaller longitudinal scales must be included in the model. This process is 

the emergence of solar active regions that are ’tilted’ with respect to a latitude circle. This tilt is crucial, 

because it leads to preferential migration of surface poloidal lux of the polarity of follower sunspots toward 
the poles. Up to very recently, 2D dynamo models captured this effect in a parameterized Babcock-Leighton 

surface poloidal source. This approach works up to a certain point, but does not allow for luctuations in 
the tilt angle with time, or from one active region to another, through a sunspot cycle. Since tilt angle, 
along with active region amplitude, largely determine how much net emerged lux of one sign gets to the 
poles, this effect can strongly inluence the amplitude of polar ields with time; since in all dynamo models 
polar ields, which reverse near the maximum of each sunspot cycle, play an important role, capturing this 
emergence and tilting process in a way that calibrates well to the Sun is critical for 3D solar dynamos.
 To do this requires including in the dynamo model a sequence of steps that capture (a) the longitude 

and latitude location of magnetic lux about to come into the bottom of the convection zone; (b) what tilt 
the lux starts with and how it is modiied by Coriolis forces as it rises through the convection zone; (c) 
when and where it emerges at the photosphere; (d) what amplitude and tilt it has when it gets there; and 
(e) how it is evolved and transported poleward once it is on the surface. The outcome of this sequence of 

processes itself will need to be calibrated at least statistically against solar observations of active region 

location amplitude and tilt angle. In actual cycle simulations, data assimilation methods can be used to 

update the observed active region properties, compared to what the dynamo model itself produces, with 

appropriate updating guided by the difference between the observations and the model output.

 Out of the sequence of processes just described will come a generalized Babcock-Leighton surface 

poloidal lux source that is longitude dependent. It can be Fourier analyzed to compute the m = 0 axisymmetric 

component, which is simply the traditional surface source for 2D lux-transport dynamo models, but with 
the addition of sources for each low nonzero wavenumber. This step allows the full effects of the lux 
emergence process to be represented in the same model framework as all other effects.

 This 3D class of model will make much heavier use of solar observations, particularly at the surface; 
incorporating all this data into the model in a sensible way will require sophisticated data assimilation 

algorithms, most likely of the sequential type, to update the model integrations. The choice of update interval 

will be constrained by the time resolution of the observed data as well as the ’response’ time of the dynamo 

model to changes in an input, such as meridional circulation. Experience so far with simpler 2D models 

with data assimilation point to an update interval of 15-30 days, which is consistent with the time cadence 

of the solar observations to be used.
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 The initial 3D models should be kinematic; they should solve just the induction equation. In later 
versions it should be possible, and desirable, to couple the induction equation to equations that calculate 

the global tachocline instability modes. The toroidal ield produced by the dynamo as a function of time 
can be incorporated into linear and nonlinear models of tachocline instability to calculate how the unstable 

modes evolve. Then these can be included in computational updates of the induction equation, that include 

all changes in the dynamo inputs.

 It is important to note that all of the above steps to build a global 3D solar dynamo are done 

without including any explicit calculations of solar convection on any spatial scale. This is done partly to 

see just how far one can go in producing a realistic global solar dynamo in which convection itself enters 

in only through estimates of turbulent magnetic diffusion, and implicitly through its maintenance of solar 

differential rotation. Since differential rotation is very nearly a constant throughout a solar cycle, not much 
can be gained by calculating it explicitly from convection; furthermore, such models do not yet reproduce 
the observed differential rotation that well, so using such a model can actually degrade the dynamo model’s 

simulation of an actual solar cycle. It will be necessary to build better theoretical models of meridional 

circulation, probably starting from better measured quantities such as differential rotation; current global 
convective models do not do particularly well in simulating observed meridional circulation either.

 Once a 3D global solar dynamo as described above is produced, which calibrates well to the 

Sun, then it will be possible to extend such a model into the corona to calculate dynamo-produced coronal 
structures with longitude dependence that can be compared with observed coronal structures. Then it should 

be possible to relate these structures to such features as coronal holes, polar structures, sectors, and high 

speed solar wind streams.

 Finally, if the model calibrates well to the Sun, it can be tested for its ability to predict both 
longitude-averaged and longitude dependent features of future solar cycles, using real solar data.

Acknowledgments

 SDO data courtesy of SDO (NASA) and the HMI and AIA consortium and WSO data courtesy. 
Many helpful comments/suggestions of an internal reviewer and an external reviewer of this paper are 

gratefully acknowledged. The National Center for Atmospheric Research is sponsored by the National 
Science Foundation.

References

 1.  Parker E N, Astrophys J, 121(1955)293-314.

 2.  Charbonneau P, Liv Rev Sol Phys, 7(2010)3.

  3. Charbonneau P, Ann Rev Astron Astrophys, 52(2014)251-290.

 4.  Hathaway D H, Liv Rev Sol Phys, 12(2015)4.

 5.  Petrie G, Liv Rev Sol Phys, 12(2015)5.

 6.  Charney J G, Meteorology, 4 (1947)136-162.

 7.  Eady E T, Tellus, 1(1949)33-52. 

 8.  Trenberth K E, Climate System Modeling, (Cambridge Univ Press),1992, 788pp, 
 9.  Gilman P A, Astrophys J Suppl, 53(1983)243.

 10.  Lawson N, Strugarek A, Charbonneau P, Astrophys J, 813(2015)95.

 11.  Fan Y, Fang F, Astrophys J, 789(2014)35.

 12. Miesch M S, Dikpati M, Astrophys J Lett, 785(2014) L8.

 13.  Dikpati M, Anderson J L, Mitra, D, Geophys Res Lett, 41(2014)L5361-L5369.

 14.  Hung C P, Jouve L, Brun A L, Fournier A, Talagrand O, Astrophys J, 814(2015)151.

 15.  Kalnay E, Atmospheric modeling, Data assimilation and Predictability, (Cambridge Univ Press), 2003, p 328. 



362 Mausumi Dikpati

16.  Dikpati M, Gilman P A, de Toma G, Ghosh S S, Solar Phys, 245(2007)1-17.

 17.  Wang Y -M, Colaninno R C, Baranyi T, Li J, Astrophys J, 798(2015)50.

 18.  Babcock H W, Astrophys J, 133(1961)572-587.

 19.  Leighton R, Astrophys J, 140(1964)1547-1562.

 20.  Leighton R, Astrophys J, 156(1969)1-26.

 21.  Radler K -H, Fluid Mechanics and its Applications, 80(2007)55.

 22.  Dikpati M, Charbonneau P, Astrophys J, 518(1999)508-520.

 23.  Wang Y -M, Sheeley N R (Jr), Nash A G, Astrophys J, 383(1991)431-442.

 24.  Dikpati M, Gilman P A, Astrophys J, 649(2006)498-514.

 25.  Dikpati M, Gilman P A, Astrophys J, 559(2001)428-442.

 26.  Bonanno A, Elstner D, Rüdiger G, Belvedere G, Astron Astrophys, 390(2002673-680.

 27.  Hotta H, Yokoyama T, Astrophys J, 709(2010)1009-1017.

 28.  Chatterjee P, Nandy D, Choudhuri A R, Astron Astrophys, 427(2004)1019-1030.

 29.  Dikpati M, Rempel M, Gilman P A, MacGregor K P, Astron Astrophys, 437(2005)699-702.

 30.  Dikpati M, de Toma G, Gilman P A, Arge C N, White O R, Astrophys J, 601(2004)1136-1151.

 31.  Jouve L, Brun A S, Arlt R, Arlt, Brandenburg A, Dikpati M, Bonanno A, Käpylä P J, Moss D, Rempel M, Gilman 
P, Korpi M J, Kosovichev A G, Astron Astrophys, 483(2008)949-960.

 32.  Dikpati M, de Toma G, Gilman P A, Geophys Res Lett, 33(2006)L05102.

 33.  Yeates A, Nandy D, and Mackay D, Astrophys J, 673(2008)544-556.

 34.  Choudhuri A R, Chatterjee P, Jiang J, Phys Rev Lett, 98(2007)131103.

 35.  Stix M, Astron Astrophys, 47(1976)243-254.

 36.  Choudhuri A R, Schüssler M, Dikpati M, Astron Astrophys, 303(1995)L29-L32.

 37.  Dikpati M, Gilman P A, de Toma G, Ulrich R K, Geophys Res Lett, 37(2010)L14107.

 38.  Zhao J, Bogart R S, Kosovichev A G, Duvall T L (Jr), Hartlep T, Astrophys J Lett, 774(2013)L29.

 39.  Kholikov S, Serebryansky A, Jackiewicz J, Astrophys J, 784(2014)145.

 40.  Belucz B, Dikpati M, Forgacs-Dajka E, Astrophys J, 806(2015)169.

 41.  Dikpati M, Anderson J L, Astrophys J, 756(2012)20.

 42.  Dikpati M, Anderson J L, Mitra D, Astrophys J (2016) submitted.

 43.  Dikpati M, Gilman P A, Astrophys J Lett, 635(2005)L193-L196.

 44.  McIntosh S, Leamon R J, Krista L D, Title A M, Hudson H S, Riley P, Harder J W, Kopp G, Snow M, Woods T 
N, Kasper J C, Stevens M L, Ulrich R K, Nature Comm, 6(2015)6491.

 45.  Dikpati M, Astrophys J, 745(2012)128.

 46.  Stix M, Astron Astrophys, 13(1971)203-208.

 47.  Gilman P A, Fox P A, Astrophys J, 484(1997)439-454.

 48.  Dikpati M, Gilman P A, Astrophys J, 512(1999)417-441.

 49.  Dikpati M, Gilman P A, Astrophys J, 551(2001)536-564.

 50.  Garaud P, Mon Not Royal Astron Soc, 324(2001)68-76.

 51.  Cally P S, Dikpati M, Gilman PA, Astrophys J, 582(2003)1190-1205.

 52.  Cally P S, Mon Not Royal Astron Soc, 339(2003)957-972.

 53.  Dikpati M, Gilman P A, Cally P S, Miesch M S, Astrophys J, 692(2009)1421-1431.

[Received: 19.2.2016; accepted: 20.3.2016] 


