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Quantitative phase imaging has attracted widespread attention of the research community because of its extensive applications 
in metrology and biological sciences. The techniques are broadly divided into interferometric and non-interferometric 
categories. The transport of intensity equation (TIE) based phase imaging method comes under the non-interferometric 
category. The TIE has usual advantages over the interferometric techniques because of partial coherence illumination and direct 
phase recovery without any unwrapping complexity. However, it has some limitations also such as paraxial approximation, 
near Fresnel region diffraction, and knowledge of appropriate boundary conditions. This article reviews the difficulties 
and complexities while solving the TIE for accurate quantitative phase map. © Anita Publications. All rights reserved.
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1 Introduction

 The pure phase objects are those samples which are having thickness unevenness or refractive 
index variation and are mostly transparent to the illuminating light intensity. The micro pure phase samples 
are difficult to image with conventional imaging modalities. These phase samples do deviate the phase 
of the light wave. By measuring the phase difference, one can predict the surface morphology up to the 
nano-level depth. In the recent years, a great interest among scientific community has been developed in 
quantitative phase imaging (QPI).The QPI has emerged as an important tool for phase visualization and 
morphological structure analysis. These methods have been very effective especially for non-absorbing 
specimens such as micro-optical elements and unstained biological cells. Zernike’s phase contrast [1] and 
differential interference contrast microscopy [2] techniques have been proven to be very useful imaging tools 
for visualization of phase samples. Generally, the phase image obtained with these conventional methods 
is having the qualitative descriptions in terms of optical path-length measurement. The information is not 
quantitative as needed for morphological information. However, the phase contrast methods can be further 
studied for quantitative imaging also with some additional modifications. The method is complex and again 
an interferometric technique. In a related study [3], spiral phase filter based phase contrast microscopy has 
been extended for quantitative imaging. It has been demonstrated that a sequence of at least 3 spatially 
filtered images are needed to record with different rotational orientations of the spiral phase plate to obtain a 
quantitative reconstruction of both amplitude and phase information of a complex microscopic sample.
 The current techniques for QPI can be divided into two main categories. First, the digital holography 
[4,5], which is interference based method. Digital holographic microscopy (DHM) has been successfully 
demonstrated in various applications such as optical metrology, biological imaging, and bio-medical 
applications [6-9]. However, these methods typically rely on interference of  light beams with a high degree 
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of coherence. Therefore, the DHM involves many problems such as phase unwrapping and speckle that 
prevent accurate phase retrieval and formation of high quality images.
 The second category is the non-interferometric methods, such as ptychography [10-12] and the 
transport of intensity equation (TIE) [13-15]. The ptychography is based on intensity distributions which uses 
iterative phase retrieval techniques to obtain the phase image of the sample. The technique is relatively new 
and major works are yet to be accomplished to improve the algorithms. The TIE-based approach is a simpler 
method based on Fresnel propagation which is a non-interferometric and non-iterative technique. The TIE 
was originally derived by Teague [13] from the Helmholtz equation under paraxial approximation [14]. The 
TIE has analytical relationship with the object-plane phase and the first derivative of intensity with respect 
to the optical axis in the near Fresnel region. It allows direct recovery of phase information by just solving a 
second order differential equation. It was mainly applied in conventional fields such as adaptive optics [16], 
transmission electron microscopy (TEM) [17,18], material studies [19],  X-ray imaging [20], matter wave  
field [21], and neutron radiography [22]. Recently, it has been brought in the forefront of three-dimensional 
(3D) depth imaging [23,24] and quantitative phase microscopy [25].
 The TIE-based quantitative imaging systems are free from the vibration isolation and phase 
unwrapping problem. The perfect coherence of illumination source is also not needed for TIE. In the 
conventional TIE experimental setup, a CCD is mounted on a translation stage. The translation is precisely 
controlled along the propagation axis and thus multiple defocused images are recorded. There are some 
drawbacks also in the TIE method such as accuracy and misalignment occurred during translation. Recording 
of two intensity images is the basic requirement for the TIE computation. For this, either the camera or 
the object needs to be displaced. This mechanical translation should be precisely controlled and accurately 
measured. To avoid the displacement issue, several methods have been proposed such as volume holography, 
chromatic aberration, and  with no hardware modification. Our technique uses the chromatic aberration that 
is inherent to every lens-based imaging system as a phase contrast mechanism. This leads to a simple and 
inexpensive way of achieving single-shot quantitative phase recovery by a modified Transport of Intensity 
Equation (TIE) employing spatial light modulators (SLM) and electrically tunable lenses [26-31]. Though 
these methods help overcoming the displacement issue but still involve problems such as variation in 
magnification and image alignment. A TIE like equation has been derived in which intensity distributions at 
different refractive index can be related with phase variation at image plane [32-35]. 
 The mandatory requirement of multiple images makes TIE method less suitable for dynamic 
imaging applications, therefore single-shot TIE methods have been reported [36-42]. Paganin et al used the 
Beer’s law approximation [36] and Zuo et al exploited SLM as electrical tuneable lens with tilted mirrors 
to solve the TIE from single-shot [38]. Zhou et al reported a method based on in-line digital holography, in 
which the defocused intensity images have been reconstructed from a single hologram [41]. In a recent study, 
a refractive index variation-based single shot TIE set-up has been demonstrated with a liquid crystal variable 
retarder (LCVR), which is cost effective and efficient [42]. 
 In this paper, the TIE-based non-interferometric method for quantitative phase retrieval is reviewed. 
In the subsequent sections the generalized version of TIE solution, different methods for intensity derivative 
estimation, refractive index variation-based TIE, and phase discrepancy due to Teague’s assumption 
estimation have been discussed.

2 Theoretical background

2.1 Phase imaging by TIE
 The well-known TIE equation is given by [13,14],

	 ∇⊥· [Iz(x,y) ∇⊥φz(x,y)] = – 2π
λ  ∂I

∂z  (1)
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where λ is the wavelength of light source and Iz(x,y) and φz(x,y) denote the intensity and phase distributions 
at a particular plane on the optical axis z, respectively. ∇⊥	denotes the gradient operator in transverse plane. 
The phase can be determined from differentiation of intensities at several planes in the near field region. The 
equation can be simplified as two-dimensional (2D) Poisson equation for solving the phase term. For relating 
directly to phase distributions, Eq (1) can be expanded as,
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 It is assumed that the intensity is nearly constant (and equal to I0) such that the first term on the right 
hand side is small compared to the second term. Rewriting the phase distribution at this plane as φ0(x,y), Eq 
(2) can be simplified as,
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Equation (3) is the 2D Poisson equation, and can be easily solved by applying 2D fast Fourier transform 
(FFT) algorithm. Taking Fourier transform of both sides,
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where Φ0 denotes the Fourier transform of φ0, kx and ky denote the spatial frequencies corresponding to the x 
and y axes, respectively. ℑ denotes the Fourier transform operation. For solving the equation, the expression 
is inverse Fourier transformed:
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where 1−ℑ represents the inverse Fourier transform operation. The intensity derivative dI/dz in Eq (3) can be 
approximated by the finite difference method using the two defocused intensities at positions ∆z and –∆z,

 ∂I0
∂z  ≈ IΔz(x,y) – I–Δz(x,y)

2Δz  (6)

Using Eqs (5) and (6), the phase distributions can be obtained directly with two defocused intensity 
distributions. The defocused image stacks are captured by translating the CCD camera along the optic axis. 
2.2 Generalized solution of TIE
 As mentioned above, the TIE is a second order partial differential equation relating the phase 
function and the intensity distribution. In the section 2.1, the TIE equation has been solved by assuming the 
intensity to be uniform, thus taken to be constant. For generalized solution of TIE, two Poisson equations 
would be solved to  obtain  actual phase map. It is usually  solved  under  the Teague’s assumption such       
that I ∇φ in Eq (1) is conservative and can be characterized by an auxiliary function ψ, as
	 ∇ψ = I ∇φ	 (7)
Thus, the TIE can be rewritten as following two Poisson’s equations: 
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and
 ∇2φ = ∇(I –1∇ψ) (9)
 These Poisson equations can be solved using any solver such as the Green’s function method, the 
multi-grid solver, the Zernike polynomial expansion method, the Fourier transform and the cosine transform 
[43-49]. 



780 Alok K Gupta and Naveen K Nishchal

 Though the solution of TIE seems simple, its implementation is difficult because of the associated 
boundary conditions (BC) [50,51]. The typical boundary conditions are: Dirichlet BC, Neumann BC, and 
periodic BC. Researchers have solved the TIE directly also without using the BCs. Gureyev and Nugent 
[46] suggested a way to bypass the difficulty of obtaining appropriate BCs by considering that the intensity 
vanishes at the boundary. Volkov et al [48] proposed another way without any requirement of test object 
or any experimental conditions by suggesting a mathematical way to nullify the energy slow across the 
boundary using symmetrisation of input intensity distributions.
2.3 Intensity derivative estimation in TIE
 For solving the TIE it is needed to know the in-focused intensity I0 and axial intensity derivative 
∂I/∂z. The in-focus intensity can be easily recorded by the CCD camera on image plane. However, the 
intensity derivative along the propagation axis cannot be easily obtained. It is conventionally estimated by 
the finite difference (FD) method, which uses the two out-of-focus images, recorded about the image plane 
with ±∆z defocus distances [12].

 ∂I
∂z  ≈ I∆z(x,y) – I–∆z(x,y)

2∆z  (10)

 The FD-based approximation, as shown in Eq (10), is valid under the limitation of small defocus 
distance if the data are noise free. If there is noise and quantization error in the experimental data, the 
derivative estimation would be unstable [52]. Increasing the defocusing distance provides better signal-to-
noise ratio in the derivative estimation. However, it leads to the breakdown in the linear approximation and 
induces nonlinearity error and loss of high frequency details. Thus, there is a trade-off where ∆z has been 
chosen to maintain balance between the nonlinearity error and the noise effect. The optimal defocusing is 
dependent on the maximum frequency of the object, as well as the noise level [53,54]. There have been 
many efforts to overcome this trade-off [55-57]. Waller et al extended the TIE beyond the small defocus 
limit by considering higher order derivatives, which allow improved noise performances by correcting the 
nonlinearities [56]. In a recent work, Medhi et al used a third order polynomial in z and showed that the 
retrieved phase rides on a characteristically low frequency pedestal. Also, it removes the bias term due to 
the sharp discontinuities of refractive index [58]. To improve the intensity derivative estimation by using the 
multiple defocused intensity distributions has been reported [57]. The longitudinal intensity derivative can be 
estimated as,

 ∂I
∂z  ≈ ∑

i = –n

n
 aiIi∆z(r)

∆z  (11)

 It offers a kind of flexibility in improving the accuracy and noise reduction in derivative estimation. 
Several FD estimation methods have been proposed, such as high order FD [53-55], noise reduction FD [56], 
and least square fitting method [55]. Different techniques for TIE solution, boundary conditions and axial 
derivative have been compared in the Table 1.

Table 1. Comparison of TIE techniques

Problems Methods Pros Cons

Poisson solvers

Green’s function Simple theory Extensive computation
Multi-Grid

Zernike polynomials Simple and fast Low frequency artefacts 

FFT Fast and Easy Periodic BCs
DCT Fast Rectangular aperture required

Iterative DCT Arbitrary apertures Required several iterations
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Required boundary 
conditions (BC)

Homogeneous Dirichlet/
Neumann Easy Boundary phase artefact

Periodic Implementable by FFT 
solver Periodic phase at boundary 

Inhomogeneous  Dirichlet/
Neumann Hard aperture Boundary phase

Axial derivative 
estimation

Two-planes Acquisition time Noise-resolutiontrade off
Multiple-planes Higher resolution More number of  measurements 

2.4 Refractive index variation based TIE
 The monochromatic beam propagating along the z-axis passes through an object and tuneable 
refractive index medium with a thickness L. Under the paraxial approximation, the complex field u(x,y,z) 
after passing the object,
 u(x,y,z) =  u0(x,y,z) e–iφ(x,y) (12)
where u0(x,y,z) is the amplitude and φ(x,y) carries the phase information of the object. After solving the 
propagation with angular spectrum method and taking derivative with n (refractive index of the medium), we 
obtain the differential equation as,

 ∂u(x,y)
∂n  = 

iL
2k0n2∇

2 u(x, y) – ik0Lu(x, y) (13)

 It can be seen that Eq (13) is similar to the paraxial wave equation. So, TIE like equation can 
be derived to show the intensity-phase relation with the variation of refractive index in the medium. The 
modified TIE equation is [32,33],

 ∂I(x,y,n)
∂n

 = 
L

k0n2 ∇·(I ∇φ) (14)

Eqation (14) shows that phase information can be retrieved if the intensity variation is calculated with respect 
to the change in the refractive index.

3 Experimental results

 The schematic diagram of the experimental set-up for TIE phase imaging based on refractive index 
variation is shown in Fig 1. A light emitting diode (LED) (central wavelength 630 nm, FWHM 13.1 nm) 
source has been used as illumination beam. A lens (focal length 75 mm) has been used for collimation of 
beam. The collimated beam is incident on the sample. Microscopic objective lens has been used to magnify 
the micro-sample. Two lenses (focal length 100 mm) of equal focal lengths have been used to make the 4f 
imaging setup to relay the image plane onto the CCD camera (make: The imaging source, 2592 × 1944 pixels, 
pixel size 22 µm). Before CCD, the liquid crystal variable retarder (make: Thorlabs) has been placed to vary 
the refractive index of the medium. The two images have been recorded at two  refractive indices by a CCD

Fig1. Schematic diagram of the experimental set-up. LED: Light emitting diode, CL: Collimating lens, P: Polarizer, 
OL and FL: 4f imaging system, LCVR: Liquid crystal variable retarder [Ref 32]
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camera, which are stored in computer. Then, the TIE has been solved in computer using MATLAB. The FFT-
based Possion solver has been used to retrieve the phase map of the sample. Figures 2(a) and 3(a) represent 
the in-focus images of the USAF resolution chart and micro-lens array, respectively and Figs 2(b) and 3(b) 
show their retrieved phase maps.

(a) (b)
  Fig 2(a). In-focus intensity image of USAF resolution chart and (b) retrieved phase map [Ref. 33]

(a) (b)

Fig 3(a). In-focus intensity image of micro-lens array and (b) retrieved phase map

Fig 4. Schematic diagram of the experimental set-up. LED: Light emitting diode, CL: collimating 
lens, L1 and L2: 4f imaging system, M: Mirror, SLM: Spatial light modulator, CCD: Charge-coupled 
device [Ref 42].

 The set-up for single shot experiment based on SLM is shown in Fig 4. Similar to previous 
experiment, the two lenses of equal focal lengths have been used to make the 4f imaging setup to relay the 
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image plane onto the CCD. In between two lenses of 4 f imaging, a mirror and a liquid crystal SLM (PLUTO, 
make: Holoeye) has been placed. The mirror and the SLM have been given a small tilt to avoid overlapping 
such that the two images have been recorded in one single-shot image.

(a) (b)
Fig 5(a) Single-shot intensity image of glue-dropand (b) Retrieved phase map [Ref 42]

 The single-shot image has been recorded which carries two images at two refractive indices. The 
two images have been separated and similarly the TIE has been solved using MATLAB. The FFT based 
Possion solver has been used to retrieve the phase map of the sample. Figure 5(a) presents a single shot image 
of the ultra-violet glue-drop and Fig 5(b) shows its retrieved phase map. 

4 Discrepancy due to Teague’s assumption

 As we know, the generalized solution of TIE is solved by assuming the Teague’s auxiliary function 
[13]. It is considered that the transverse flux is conservative such that the scalar potential exists which satisfy 
the TIE. Allen et al [59] pointed out a problem with the auxiliary function that it doesn’t always exist since 
the transverse energy flux may not be conservative, and consequently it would yield the results other than 
the exact solution. Schmalz et al [60] provided a detailed explanation based on the Helmholtz decomposition 
theorem and decomposed the transverse flux in terms of the gradient of a scalar potential ψ and the curl of a 
vector potential η:
 I ∇φ = ∇ψ + ∇	×	η	 (15)
 It is clearly visible that the term ∇× η is not considered in Teague’s assumption, assuming silently 
that the transverse flux is not rotational. Zuo et al [61] solved this problem by taking the effect of the missing 
term on phase recovery. They derived the useful condition for the validity of Teague’s assumption:
	 ∇I –1 × ∇–2 [∇·(∇I	×	∇φ)] = 0 (16)
 The Eq (16) shows that if the in-focus intensity distribution is nearly uniform, the phase discrepancy 
resulting from the Teague’s assumption is quite small. However, if the measured intensity distribution exhibits 
strong absorption, the phase discrepancy might be large and cannot be ignored [62]. Zuo et al [61] further 
developed a simple Picard-type iterative algorithm to compensate the phase discrepancy due to Teague’s 
assumption, in which within a few iterations, the phase discrepancy can be reduced to a very minimal level, 
which leads to the exact solution to the TIE.

5 Conclusions
The TIE is propagation based non-interferometric phase imaging method, in which we let the phase 

contrast be formed after slight defocus from the image plane. The TIE is valid under the paraxial approxima-
tion in the near Fresnel region (small defocusing separation). TIE is simply based on propagated intensity 
distribution along the optic axis, which needs two or more intensity distributions. The absolute phase map 
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can be directly recovered without need of phase unwrapping process. A modification in TIE has also been 
discussed where intensity stack has been recorded at different refractive indices. Any phase shifter device can 
be utilized for refractive index variation. Most important thing is that TIE is valid even in the partial coher-
ence illumination. 
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