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A large number of guided wave photonic devices are based on coupling of guided modes between closely spaced 
waveguides or between guided modes of the same waveguide. Coupled mode analysis has been the most widely used 
method to study such coupling in which the interaction leads to transfer of power from one waveguide to the other or 
between modes of the same waveguide due to index perturbations. We present the coupled mode theory for evanescent 
field coupling between modes of two waveguides placed close to each other in context to the most versatile coupled 
mode device, a two-waveguide directional coupler. Its variants can be used to design a number of guided wave coupled 
photonic devices. We will illustrate by presenting a few such devices like switches and modulators, filters, polarizers 
and multiplexers for silicon photonic integrated circuits. © Anita Publications. All rights reserved.

Keywords: Coupled mode theory, Coupled mode devices, Switches and Mode division multiplexers.

1 Introduction

 Coupling of modes between waveguides or within guided modes of a waveguide has been an 
important study in fibre and integrated optics and is essential for the design of a large number of guided wave 
devices in contemporary photonic integrated circuits. Coupling is broadly of two types, the evanescent field 
coupling between modes of two adjacent waveguides or fibres and coupling between modes of the same 
fibre or waveguide due to periodic index perturbations. A large number of integrated optical devices such 
as directional couplers, power dividers, modulators, switches etc. consist of coupled waveguides in which 
the interaction of the evanescent tails of the guided modes of neighbouring waveguides leads to coupling of 
power from one waveguide to the other. Similarly, periodic gratings in optical fibres or waveguides like fibre 
Bragg gratings and long period gratings result in coupling between co-propagating or counter-propagating 
guided modes of the waveguide itself. Coupled Mode Theory [1-5] has been the most widely used analytical 
method for the study of coupled optical waveguides and waveguide modes. It is an analytical method which 
can be implemented for analysis of mode coupling in which the interaction of the evanescent tails of the 
guided modes of neighbouring waveguides leads to transfer of power from one waveguide to the other or 
when power is coupled between modes of the same waveguide due to index perturbations. In this article, we 
will discuss in detail coupled mode theory in context to the most successful and versatile coupled waveguide 
device, the directional coupler which works on evanescent field coupling between modes of two waveguides 
placed close to each other. Although in its simplest form it acts as a beam splitter, its variants can be designed 
to be used as more complicated devices such as switches and modulators, filters and polarizers.
 Over the last decade, there has been growing interest in silicon-on-insulator (SOI) integrated optics 
because of its low loss in the telecommunication wavelength of 1550 nm and compatibility with the existing 
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state-of-the-art CMOS fabrication technology. More recently, a complimentary platform of silicon nitride 
(Si3N4) photonics also compatible with the foundry-scale processes has emerged as an integration platform 
with low propagation losses over a wide wavelength range from 400 nm to 2350 nm. Hence, for all illustrative 
examples in our discussions on coupled mode analysis we have used silicon on insulator waveguides. We 
also present designs of some recently designed waveguide devices on the silicon-on-insulator and silicon 
nitride platforms based on interesting variants of the simple directional coupler. 

2 Coupled mode theory

 Figure 1 shows typical dielctric channel waveguides, specifically chosen as a silicon-on-insulator 
(SOI) waveguide with a silicon high index guiding layer (refractive index ~3.48) on a silica substrate 
(refractive index ~1.44) with an air/silica cover. The waveguides support propagating guided modes with 
specific electric and magnetic field configurations which are solutions of the Maxwell’s equations with 
appropriate boundary conditions and propagate along the waveguide with only a phase change defined by the 
corresponding propagation constants.

(a) (b)

Fig 1. Typical silicon on silica insulator (SOI) (a) ridge or strip waveguide and (b) rib 
waveguide with silica or air /cover.

 For waveguides with two-dimensional confinement, shown in Fig 1, analytical solutions are not 
always possible and numerical techniques such as Finite Element Method (FEM) or Finite Difference 
Method (FDM) need to be used to study the modes of the waveguides. All mode field calculations for two-
dimensional waveguides here are based on FEM built in the FIMMWAVE solver of the Photon Design 
Software [6]. The modes supported are, in general, designated as quasi-TE and quasi-TM depending on their 
dominant field components. Figure 2 shows the variation of the electric and magnetic fields of the TE modes 
supported by such a single mode waveguide with thickness h = 220 nm and width w = 430 nm. The figures 
clearly show that the fields extend evanescently into the cover and substrate regions. 

220 nm

430 nm

Fig 2. Modal profiles of the dominant fields, Ex and Hy, of the TE mode in a typical single moded silicon on silica strip 
waveguide with silica cover at λ = 1550 nm. Refractive indices of silicon and silica are taken as 3.47571 and 1.44402 
at λ = 1550 nm.
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 When one or more such waveguides are placed in close proximity, as shown in Fig 3, they are 
coupled through their evanescent fields and power is exchanged between these waveguides as the guided 
modes propagate along these waveguides. The complete coupled waveguide geometry can be studied by 
obtaining a formal solution of the Maxwell’s equations with boundary conditions to obtain the modes of the 
complete structure referred to as supermodes. However, Coupled Mode Theory (CMT) has been extensively 
used as a mathematical tool for analysis of wave propgation in coupled waveguides. Coupled Mode Theory 
is based on the assumption that the mode fields of individual waveguides do not change in the presence of 
the other waveguides and evolution of amplitudes of these modes in the coupled system is obtained as the 
solution of a set of coupled first order differential equations. This provides a clear and intuitive understanding 
of propagation and exchange of power among coupled waveguides. The solution also shows that the 
supermodes of the complete coupled system can be expressed as a linear combination of the individual 
waveguide modes. It may be mentioned that a modal analysis of the coupled waveguide configuration using a 
Variational Analysis with the trial field as a linear combination of the individual waveguide fields also yields 
the same results as coupled mode theory [7-9].

 
Fig 3. A typical configuration of two coupled silicon strip waveguides with top view of propagating intensity 
showing exchange of power due to evanescent coupling.

 To resent the coupled mode analysis we consider the coupled waveguide configuration as shown in 
Fig 3. It is assumed that the guided total field in the coupled structure can be represented as the sum of the 
individual waveguide modes (each waveguide assumed to be single moded). Hence, we can write 
 

→
E (x, y, z) = A(z) 

→
E 1 (x, y)e–jβ1z + B(z) 

→
E 2 (x, y)e–jβ2z

 
→
H(x, y, z) = A(z) 

→
H1 (x, y)e–jβ1z + B(z) 

→
H2 (x, y)e–jβ2z (1)

where A(z) and B(z) represent the amplitudes of the propagating mode in waveguide1 (WG1) and waveguide2 
(WG2), respectively. 

→
E 1 (x, y), 

→
H1 (x, y) and 

→
E 2 (x,y), 

→
H2 (x,y) are the transverse mode field profiles of the 

individual waveguides, which are assumed not to change in the presence of the second waveguide, and β1 and 
β2 are the corresponding propagation constants. The propagation constants are often expressed in terms of an 
effective index neff as β = k0 neff, where k0 = 2π/λ. All the fields satisfy the Maxwell’s equations

 
→
∇ × 

→
E  = – jωμ0 

→
H  and 

→
∇ × 

→
H  = jωε0 n2 →E  (2)

Substituting the field of Eq (1) into the above Maxwell’s equations one obtains,

 (ẑ × 
→
E 1) 

dA
dz  + (ẑ × 

→
E 2) 

dB
dz  = 0 (3)

 (ẑ × 
→
H1) 

dB
dz  – jωε0 (n2 – n 2

1) A
→
E  + (ẑ × 

→
H2) 

dB
dz  – jωε0 (n2 – n 2

1) B
→
E 2 = 0 (4)

where n2 (x, y) is the transverse refractive index profile of the coupled waveguide configuration, while n 2
1 (x, y) 
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and n 2
2 (x, y) are the refractive index profiles of WG1 and WG2, respectively. Following the analysis given by 

Rumpf [10], we substitute the above equations into the following equations

 ∫
∞

– ∞
 ∫

∞

– ∞
[

→
H1 • (Eq. 3) – 

→
E 1 • (Eq. 4)] dx dy = 0 (5)

 ∫
∞

– ∞
 ∫

∞

– ∞
[

→
H2 • (Eq. 4) – 

→
E 2 • (Eq. 5)] dx dy = 0 (6)

 After some algebraic manipulations the following coupled equations for the amplitudes A(z) and 
B(z) are obtained;

 
dA
dz  + e12 

dB
dz  e–j(β2 – β1)z + jk11 A + jk12 B e–j(β2 – β1)z = 0 (7)

 
dB
dz  + e12 

dA
dz  e+ j(β2 – β1)z + jk22 B + jk21 B e+ j(β2 – β1)z = 0 (8)

where κpq and epq (p, q = 1 or 2) are defined as,

 κpq = 
ωε0 ∫

∞

– ∞
 ∫

∞

– ∞
[n2(x, y) – n 2

q(x, y)] 
→
E p (x, y) • 

→
E q (x, y) dxdy

2 ∫
∞

– ∞
 ∫

∞

– ∞
 ẑ • [

→
E p (x, y) × 

→
Hp (x, y) dxdy

 (9)

 epq = 
∫
∞

– ∞
 ∫

∞

– ∞
 ẑ • [

→
E p (x, y) × 

→
Hq (x, y) + 

→
E q (x, y) × 

→
Hp (x, y) dxdy

2 ∫
∞

– ∞
 ∫

∞

– ∞
 ẑ • [

→
E p (x, y) × 

→
Hp (x, y) dxdy

 (10)

 The terms e12 and e21 are an overlap of the fields of the two waveguides and define the excitation 
coefficients of the mode of one waveguide by the mode of the other waveguide and e11 and e22 are unity. If 
the waveguides are sufficiently apart, e12 = e21 ≈ 0 and these terms are neglected in conventional coupled 
mode analysis. The terms κ12 and κ21 are the coupling coefficients which define the coupling between the 
waveguides, while κ11 and κ22 give the small perturbation correction to the propagation constants of the 
modes of the individual waveguides due to the presence of the other waveguide. If the waveguides are 
sufficiently apart, very often, in coupled mode analysis these terms are also neglected. The denominator in all 
the expressions is related to the normalization factor of the orthogonal modes of the waveguides. If the mode 
fields are normalized such that the power carried by the mode is 1 Watt, then

  ∫ ∫
∞

– ∞
 ẑ ∙ [Ep (x, y) × H *

p (x, y)]dxdy =1W (11)
and the factor in the denominator is 2. 
 Alternatively, the corrections to the propagation constants κ11 and κ22 can be included in defining the 
propagation constants of the mode fields 

→
E 1 and 

→
E 2 in Eqs (1) as;

 
→
E (x, y, z) = A(z) 

→
E 1 (x, y) e–j

→
β 1z + B(z) 

→
E 2 (x, y)e–j

→
β 2z

 
→
H(x, y, z) = A(z) 

→
H1 (x, y)e–j

→
β 1z + B(z) 

→
H2 (x, y)e–j

→
β 2z (12)

where the corrected propagation constants are given by 
→
β 1 = β1 + κ11 and 

→
β 2 = β2 + κ22. Doing so and 

neglecting the overlap integrals e12 and e21, the coupled Eqs (7) and (8) reduce to the following simple forms
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dA
dz  = – jκ12 Be–j(

→
β 2 – 

→
β 1)z 

 
dB
dz  = – jκ21 Be+ j(

→
β 2 – 

→
β 1)z (13)

 The above equations can be combined to form the following uncoupled second order differential 
equation for A(z),

 
d2A
dz2  – j∆β 

dA
dz  + κ2A = 0 (14)

where κ2 = κ12 × κ21 and Δβ = 
→
β 2 – 

→
β 1. For synchronised waveguides with ∆β = 0 or in the approximation 

that e12 = e21 ≈ 0, it can be shown that κ12 = κ21= κ and the general solution for A(z) and B(z) are obtained as 

 A(z) = ei(Δβ/2)z [a1 e–jγz + a2 e+ jγz]

 B(z) = 1κ ei(Δβ/2)z 
 

∆β
2

 + γ 
a1 e–jγz + 

∆β
2

 – γa2 e+ jγz
 (15)

where,

 γ = 

∆β
2 

2
 + κ2

 By use of the initial conditions, A(0) = A0 and B(0) = B0, , one can obtain the two constants a1 and 
a2 and hence the evolution of the mode amplitudes A(z) in WG1 and B(z) in WG2 are obtained as

  A(z) = cos(γz) + j 
∆β
2γ

 sin(γz) A0 – j κγ sin(γz) B0

 B(z) = – j κγ sin(γz)A0 + cos(γz) + j 
∆β
2γ

 sin(γz) B0 (16)

which can be written as a transfer matrix given by

	 
A(z)
B(z)

 = 


cos(γz) + j 

∆β
2γ

 sin(γz)

– j κγ sin(γz)
 

– j κγ sin(γz)

cos(γz) + j 
∆β
2γ

 sin(γz)	
A0

B0
 (17)

 For synchronous waveguides (or phase matched waveguides) with ∆β = 0, this reduces to 

	 
A(z)
B(z) = 

cos(κz)
– j sin(κz) 

– j sin(κz)
cos(κz) 	

A0

B0
 The powers carried by the modes propagating in the individual waveguides, WG1 and WG2 are 
given by P1 = |A(z)|2 and P2 = |B(z)|2, respectively. If initially power is launched only in WG1, i.e. B0 = 0, the 
evolution of amplitudes in the two waveguides is given by

 A(z) = cos(γz) + j 
∆β
2γ

 sin(γz) A0 B(z) = – j κγ sin(γz)A0 (18)

and power in the two waveguides is given by

 P2(z) = 
P0

1 + 
(∆β)2

4κ2 

 sin2(γz)	and P1(z) = P0 – P2 (19)

where P0 is the power initially launched in WG1. Hence, there is a periodic exchange of power between the 
two waveguides with maximum power transfer occurring at the coupling length defined by Lc = π/2γ. It may 
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be noted that, at the coupling length, z = Lc, in non-synchronous waveguides (with ∆β ≠ 0) the power transfer 
to WG2 is not complete; however, at z = 2 Lc the power returns completely to WG1. For synchronous or phase 
matched waveguides (with ∆β = 0), Eq (19) reduces to 
 P2(z) = P0 sin2(κz) and P1(z) = P0 cos2(κz) (20)
showing that complete power is transferred to WG2 at z = Lc = π/ 2κ and returns to at z = 2Lc, implying 
that it is possible to have a complete exchange of power between the waveguides. Also, for synchronous 
waveguides at an interaction length of z = Lc /2 one obtains a 3dB coupler in which the power is equally 
divided between the two waveguides, with an additional phase factor of (–j) or (– π/2) in the modal field of 
WG2. It may be noted that at twice the coupling length the power returns to WG1 with an additional phase 
factor of π in the amplitude.

3 Supermodes and coupled mode theory

 As mentioned earlier, one can use Maxwell’s equations to obtain the electromagnetic modes, 
referred to as supermodes, of the complete coupled waveguides configuration to study propagation. These 
supermodes can also be obtained in terms of the modes of the individual waveguides by the coupled mode 
analysis by solving the coupled mode amplitude Eqs (13) as follows: we redefine new variables a(z) and b(z) as

 a(z) = A(z) e–j
→
β 1z and  b(z) = B(z) e–j

→
β 2 z (21)

Equation (12) can be re-written as

 
→
E (x, y, z) = a(z) 

→
E 1 (x, y) + b(z) 

→
E 2 (x, y)

 
→
H(x, y, z) = a(z) 

→
H1 (x, y) + b(z) 

→
H2 (x, y) (22)

and the coupled equations for a(z) and b(z) are obtained from Eqs (13) as

 
da
dz  = – j

–
β 1a – jκb 

 
db
dz  = – j

–
β 2b – jκa (23)

These can be combined to form the following second order differential equation for a(z)

 
d2a
dz2  + j(–β1 + 

–β2) 
da
dz  – (

–β1 
–β2 – κ2)a (24)

which leads to two solutions of the form
 a(z) = as e–jβs z and a(z) = aa e–jβa z (25)
where, βs and βa are given by 

 βs,a = 
–β1 + 

–β2

2  ±  

∆β
2 

2 
+ κ2  = 

–β1 + 
–β2

2  ± γ (26)

and corresponding a(z) and b(z) are given by

 b(z) = as 
∆β
2κ

 + 
γ
κ e

–jβs z and a(z) = aa 
∆β
2κ

 – 
γ
κ	e–jβa z

 This implies that the coupled waveguide configuration supports two ‘supermodes’ with the modal 
fields given by
→
E s (x, y, z) = as[

→
E 1 (x, y) + (bs/as) 

→
E 2 (x, y)] e–jβs z and →

E a (x, y, z) = as[
→
E 1 (x, y) + (ba/aa) 

→
E 2 (x, y)] e–jβs z

→
Hs (x, y, z) = as[

→
H1 (x, y) + (bs/as) 

→
H2 (x, y)] e–jβs z and →

Ha (x, y, z) = as[
→
H1 (x, y) + (ba/aa) 

→
H2 (x, y)] e–jβa z

(27)
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where bs
as

 = 
∆β
2κ

 + 
γ
κ	

and ba
aa

 = 
∆β
2κ

 – 
γ
κ. Hence, the modal field profiles of the supermodes of the total coupled 

configuration can be expressed in terms of the modal fields of the individual waveguides. The constants as 
and aa are determined by the normalization. 

 Note that the difference in the propagation constants of the two supermodes, βs – βa = 

∆β
2 

2
  + κ2  

will be minimum, when ∆β = 0, or when the two waveguides are synchronous or phase-matched. This criterion 
is used to design phase matched waveguides in design of photonic devices based on coupled waveguides 
since the individual waveguide propagation constants 

–β2 and 
–β1 are perturbed by the presence of the other 

waveguide. It may also be noted that, for large values of ∆β, it is possible to write 
γ
κ = 1 + 

∆β
2κ 

2
  ≈ 

∆β
2κ 

 
and 

hence, the transverse mode profile for 
→
E s (x, y) is dominantly 

→
E 2 (x, y) while for 

→
E a (x, y) it is 

→
E 1 (x, y); note 

that we have considered β2 > β1. 
 If the two waveguides are identical or synchronous, i.e., with ∆β = 0, it can be seen, bs = as and ba 
= – aa; that the two normalised supermodes can be written as,

 
→
E s (x, y, z) = 

1
2

 [
→
E 1 (x, y) + 

→
E 2 (x, y)] e–jβs z →

E a (x, y, z) = 
1
2

 [
→
E 1 (x, y) – 

→
E 2 (x, y)] e–jβs z

 
→
Hs (x, y, z) = 

1
2

 [
→
H1 (x, y) + 

→
H2 (x, y)] e–jβs z →

Ha (x, y, z) = 
1
2

 [
→
H1 (x, y) – 

→
H2 (x, y)] e–jβa z  (28)

with the propagation constants given by βs = β0 + κ and βa = β0 – κ. Hence, for phase matched waveguides, 
the modal field of the “symmetric supermode” is the sum of the mode profiles of the individual waveguides 
while for the “antisymmetric mode” it is the difference. It may be mentioned that although the subscripts 
‘s’ and ‘a’ are used in general for the supermodes, the modal profiles are symmetric and antisymmetric only 
when the waveguides are identical. 
 If power is launched into the phase matched coupled waveguide configuration by the modal field of 
WG1, then at z = 0 one can write 

 
→
E 1 (x, y) = cs 

→
E s (x, y, 0) + ca 

→
E a (x, y, 0) = cs 

1
2

 [
→
E 1 (x, y) + 

→
E 2 (x, y)] + ca 

1
2

 [
→
E 1 (x, y) + 

→
E 2 (x, y)]

(29)
where cs and ca are the excitation coefficients of the symmetric and antisymmetric mode. A simple comparison 
shows that cs = ca = ( 2)–1 or the “symmetric” and “antisymmetric modes” are equally excited and each 
carries half the power or 0.5 P0. 
 If one of the waveguides (WG2) supports more than one mode as in a configuration often used for 
mode division multiplexing by evanescent coupling from a single mode waveguide, the total field of the 
coupled configuration can be written as

 
→
E (x, y, z) = A(z) 

→
E 1 (x, y) e–j

–
β 1 z + ∑n Bn (z) 

→
E 2n (x, y) e–j

–
β 2n z 

 
→
H(x, y, z) = A(z) 

→
H1 (x, y) e–j

–
β 1 z + ∑n Bn (z) 

→
H2n (x, y) e–j

–
β 2n z  (30)

 However, it can be shown that if the propagation constants of the multimode waveguide (WG2) 
are well spaced, there is an interaction or exchange of power with only the specific mode which is phase 
matched to the mode in WG1. The evolution of power in such a coupled system can also be studied by use of 
the two-mode coupled mode theory developed above by use of only the phase matched mode for the second 
waveguide.
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4 Numerical simulations for two evanescently coupled waveguides 

 As mentioned earlier, the most successful and versatile coupled waveguide device is a directional 
coupler which makes use of evanescent field coupling between modes of two waveguides placed close to each 
other. In this section, we present results of some numerical simulations for two coupled waveguides which 
validate the various salient features obtained by coupled mode theory. We consider the typical directional 
coupler configurations formed with silicon on silica waveguides with silica cover. Figure 4 shows an identical 
waveguide directional coupler configuration formed by two silicon strip waveguides with a separation S. For 
a typical separation S = 250 nm, the exchange of power between the waveguides is shown when power is 
launched in WG1. As predicted by the coupled mode analysis there is a periodic exchange of power between 
the waveguides with complete power transfer at the coupling length.

Fig 4. Cross-section and top view of a directional coupler formed with two identical silicon strip waveguides. 
The intensity profile of the propagating field through the coupled waveguides when power is launched shows a 
complete exchange of power; the line plots show the variation of power in WG1 (red cont) and WG2 (blue dashed) 
with propagation length.

 A similar set of simulations for a directional coupler with two non-identical waveguides is shown in 
Fig 5. The silicon strip waveguides are assumed to be of different widths. As predicted by the coupled mode 
analysis there is still a periodic exchange of power between the waveguides but only a small fraction of the 
complete power is transferred to the second waveguide at the coupling length. However, at two times the 
coupling length, power completely returns to the launching waveguide.
 Synchronous waveguides in a directional coupler are not necessarily identical waveguides but 
waveguides which have the same propagation constants, i.e. ∆β = 0. As an example, we take a look again at 
two waveguides of unequal widths as shown in Fig 5 in which the refractive index of the guiding strip in the 
narrow waveguide (WG2) is increased to 3.5510 while for WG1 it remains as 3.4757 to obtain synchronous 
waveguides at the wavelength of 1550 nm. Again, as predicted by the coupled mode analysis there is a 
periodic exchange of power between the waveguides with complete power transfer at the coupling length 
as shown in Fig 6. Refractive index in silicon can be tuned thermally or by carrier injection while in some 
electro-optic materials like Lithium Niobate by application of an electric field.
 It was also noted in section 2 that when power is input into a coupler from one waveguide,WG1, at 
twice the coupling length the power returns to WG1 with an additional phase factor of π in the amplitude as 
compared to the case in which it would have traversed the same length in WG1 itself. This is clearly seen in 
the numerical simulation results shown in Fig 7.
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Fig 5. Cross-section and top view of a directional coupler with non-identical silicon strip waveguides. The intensity 
profile of the propagating field through the coupled waveguides when power is launched in WG1 shows that only 
a small fraction of power is coupled; the line plots show the variation of power in WG1 (red cont) and WG2 (blue 
dashed) with propagation length. 

Fig 6. Cross-section and top view of a synchronous non-identical silicon strip waveguides directional coupler with 
index n1 = 3.551 for phase matching. The intensity profile of the propagating field through the coupled waveguides 
when power is launched in WG1 shows complete exchange of power; the line plots show the variation of power in WG1 
(red cont) and WG2 (blue dashed) with propagation length.

 The characteristics of the supermodes defined by coupled mode analysis can also be seen in the 
simulated results. The propagation constants or effective indices of the two supermodes vary with the 
waveguide spacing. An increase in waveguide spacing, S, essentially reduces the coupling coefficient, κ, and 
hence the effective indices of the two supermodes converge to the values corresponding to the individual 
waveguides. Figure 8 (a) and (b) shows the variation of effective index of the two supermodes with spacing 
for both identical and non-identical coupled waveguides geometries.
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Fig 7. Power propagating through WG1 and identical waveguide coupler with input from WG1. Showing that at twice 
the coupling length the power returns to WG1 with a phase difference of π in the amplitude. An expanded view of the 
inset shows the phase difference with clarity.

                                       (a)                                                                                                (b)
Fig 8. Variation of the effective indices of the TE and TM supermodes with the waveguide spacing for (a) identical 
waveguides (W1 = W2 = 430 nm) coupler and (b) non-identical waveguides coupler (W1 = 430 nm and W2 = 400 nm) 
at 1550 nm wavelength.

 The modal fields of the supermodes of the coupled waveguide configuration with identical 
waveguides are shown in Fig 9. As predicted by the coupled mode analysis, the mode profile of the symmetric 
and antisymmetric supermodes correspond to the sum and difference, respectively, of the mode profiles of the 
individual waveguide modes.

Fig 9. Modal fields of the symmetric and antisymmetric TE supermodes of the coupler with identical waveguides.

 If the coupled waveguides configuration consists of non-identical waveguides with a large 
difference in the individual waveguide effective index (∆neff = 0.178219) as shown in Fig 10, the “symmetric 
supermode” and “anti-symmetric supermode” mode fields match the mode profiles of the wider and narrower 
waveguide, respectively.
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Fig 10. Modal fields of the symmetric and antisymmetric TE supermodes of a coupler with non-identical waveguides 
of different widths.

5 Coupled waveguide photonic devices

 In this section, we present various coupled waveguide geometries which are essentially variants 
of the simple directional coupler and can be used for various applications like power dividers or splitters, 
switches, phase shifters, polarizers and mode division multiplexing. 
5.1 Directional couplers for power dividing/splitting
 The directional coupler in its simplest form can be used as a beam splitter or power divider by 
appropriate choice of the interaction length between the waveguides. Figure 11 shows typical directional 
couplers of varying interaction lengths and hence, coupling ratios formed with identical SOI waveguides of 
the type shown in Fig 4 with spacing S = 250 nm. The effective indices of the symmetric and antisymmetric 
supermodes are obtained as 2.32107 and 2.29503, respectively giving a coupling length of 29.75 µm. As 
predicted by the coupled mode analysis an interaction length of half the coupling length, Lc/2, gives a 3dB 
coupler with power equally divided in the two arms, for an interaction length equal to the coupling length 
power is completely transferred to the second waveguides and at twice the coupling length, power completely 
returns to the launching waveguide. The interaction lengths need to be corrected by ~ 5 µm to take into 
account the coupling, which occurs in the arms of the S-bend required for isolating the two waveguides. 

 

Fig 11. Typical identical waveguides directional coupler configurations with varying interaction lengths: Lc/2 for a 
3dB coupler, Lc for complete transfer of power to the coupled waveguide and 2Lc for power to return to launching 
waveguide.

Fig 12. Typical Mach Zehnder configuration with 3dB couplers for power division in the two 
arms of the phase shifter section.
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 A 3dB directional coupler forms an important component of a typical Mach-Zehnder Interferometer 
(MZI) in integrated optics. For switching applications, the conventional MZI configuration shown in Fig 12 
utilizes two 3dB couplers separated by a phase shifter section, with active control in either one arm or in both 
arms to form a switch.
 If the phase accumulated by the two arms in the phase shifter section are equal or an integral multiple 
of 2π, the whole structure, the input and output directional coupler along with the phase shifter section will 
behave as a single directional coupler with interaction length equal to the coupling length and the input power 
gets transferred to the other coupled waveguide resulting in a cross-state. On the other hand, if the phase 
accumulation difference between the two arms of the phase shifter section is an odd multiple of π, the power 
is obtained at the output from the same waveguide resulting in a bar state. 
5. 2 Coupled waveguide switch based on phase change material 
 Optical phase change materials (O-PCMs), which can be reversibly transitioned between the 
amorphous and crystalline phase by slow/fast heating, have recently emerged for various photonic applications. 
O-PCMs exhibit a very large difference in both the real part (greater than a factor of 1.5) and the imaginary 
part (at least an order of magnitude) of the refractive index between the two states. A high differential loss 
between the states of an O-PCM like Ge2Sb2Te5 (GST) can be used to realize an optical ON-OFF switch in 
SOI waveguides. To achieve this Dhingra et al [11] have proposed a coupled waveguide configuration of the 
type shown in Fig 13, where the mode of the primary 500 nm wide silicon waveguide ((WG1) can be coupled 
to the mode of the waveguide formed by ITO-GST-ITO stack (WG2) through appropriate phase matching. 
The bottom and top ITO layers can also act as the electrodes for the application of required voltage to change 
the state of GST via Joule heating. For GST, the complex refractive indices at 1550 nm are given as 7.45+ 
j1.49 and 4.6+ j0.12 for the crystalline and amorphous state, respectively and 1.9595+ j0.0023 for ITO. The 
coupled waveguides are phase matched for GST in the crystalline state and the length L is chosen as the 
corresponding coupling length to ensure that power is completely out-coupled from the silicon waveguide. 
For GST in the low loss amorphous state, the corresponding ∆β is large and no power is out-coupled from 
the primary silicon waveguide. Hence, in a device length of only 2.5 µm, a high extinction ratio of 36dB and 
a low ON-state insertion loss of 0.72dB are obtained.

Fig 13. Side view of the proposed ON-OFF switch on a 500 nm wide silicon waveguide evanescently coupled to 
the ITO-GST-ITO overlay waveguide and its performance characteristics.

5. 3 Coupled waveguide phase shifter based on phase change material 
 Recently Dhingra et al [12] have proposed a design of a compact phase shifter based on an O-PCM 
for use in one arm of a conventional MZI configuration on the silicon nitride (refractive index: 1.9793) 
platform, shown in Fig 14, for 2 × 2 switching with low insertion loss and crosstalk. The chosen OPCM, 
Ge2Sb2Se4Te1 (GSST), offers a low loss in the telecommunication band in comparison to GST in both 
amorphous and crystalline state. The complex refractive indices of GSST at wavelength 1.55 μm are taken 
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as 5.074 – j0.425 and 3.413 – j0.00018 in its crystalline and amorphous phase, respectively. The design of 
the phase shifter is based on evanescent coupling between a silicon nitride waveguide and silica-GSST-silica 
waveguide as shown in Fig 15 similar to the design of the ON-OFF switch discussed in Section 5.2. However, 
in this design, the waveguides are phase matched with the O-PCM waveguide in its amorphous state to allow 
coupling where the waveguides are highly phase mismatched in the crystalline state to avoid interaction.

Fig 14. The conventional MZI configuration with typical silicon nitride on silica strip 
waveguides of dimensions 400 nm × 600 nm with active phase control on one arm to create 
a 2×2 switch.

Fig 15. The phase shifter section for active phase control with a silicon nitride waveguide of dimensions 
400 nm×600 nm coupled with GSST overlay of 58 nm separated by a silica buffer of thickness 600 nm for 
active phase control on one arm of the MZI to create a 2×2 switch.

Fig 16. Field (Hy) through the coupled waveguide phase shifter section for GSST in (a) 
crystalline state and (b) amorphous state. The phase difference of π can be seen between 
the propagating field after coupling back at twice the coupling length in the phase matched 
coupler (b) and propagating straight through in (a).
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 As predicted by coupled mode theory, the power launched in accumulates an additional phase of 
π after propagating through an interaction length equal to twice the coupling length with the O-PCM in 
amorphous state in comparison to the propagation through the same length in WG1. This leads to a phase 
difference of π between the two arms in the amorphous state for a phase shifter length of only ~ 21.88 μm, 
whereas no interaction in the highly lossy crystalline state ensures no phase difference and low insertion 
loss. Figure 16 clearly shows the difference in the accumulated phase in the two states. Hence, for GSST in 
crystalline state, the switch will be in the cross state for either input whereas for GSST in its amorphous state 
will give a bar state.
5. 4 Coupled waveguide based TE-pass polarizer
 Metal-clad waveguide polarizers are perhaps the most studied with either the metal layer directly 
deposited on the cover or separated by a high index or low index buffer layer. However, the design of such 
polarizers has been usually based on parametric simulations. Now with an understanding of surface plasmon 
modes supported by a metal dielectric waveguides, these polarizers can be understood in terms of coupling 
between the guided TM mode of the dielectric waveguide and the lossy surface plasmon TM mode of a 
dielectric-metal-dielectric (DMD) waveguide [13]. Figure 17 shows a TE-pass polarizer designed for SOI 
waveguides based on evanescent coupling between the SOI dielectric waveguide and a specifically designed 
DMD waveguide for phase matching between the guided TM mode of the dielectric waveguide and surface 
plasmon TM mode supported by the DMD waveguide [14]. The single moded silica-silicon-silica waveguide 
with width 500 nm and thickness 210 nm supports one TE and TM mode with ne (TE) = 2.4074 and ne (TM) 
=1.7038 at 1.55 μm. With the metal layer directly deposited on the silica cover the effective index of the TM 
mode supported by the DMD waveguide SiO2 –Au–Air is much lower than that of the silicon waveguide. 
To increase this value for phase matching a higher index buffer of silicon nitride (Si3N4) with optimized 
thickness needs to be added as shown in Fig 17 and the phase matched plasmonic ridge waveguide is now the 
SiO2 –Si3 N4 – Au–Air waveguide.

Fig 17. TE-pass polarizer for SOI waveguides. The TM mode of the input waveguide is completely 
attenuated by coupling to the phase matched lossy TM mode of the SiO2 – Si3 N4 –Au–Air plasmonic 
waveguide.

 The finally designed TE–pass polarizer section supports one TE mode with ne (TE) = 2.4094 which 
is the same as that of the silicon input waveguide and two TM supermodes with effective indices, nes (TM0) = 
1.8296 – j0.014 and nea (TM1) = 1.6746 – j0.014. The TE mode is not coupled out and is transmitted without 
any change through the polarizing section. The TE mode is not coupled out and is transmitted without any 
change through the polarizing section. The TM mode is periodically coupled to the lossy TM mode of the 
plasmonic waveguide and hence by appropriate choice of the length l can be completely suppressed. The 
simulated performance of the polarizer is shown in Fig 18. The TE mode is transmitted without any change 
through the polarizing section while the TM mode is periodically coupled to the lossy TM mode of the 
plasmonic waveguide and hence in a short length l ~ 5 μm can be completely suppressed. 
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Fig 18. Simulated performance of the TE-pass polarizer for SOI waveguides. The TM mode of the input waveguide 
is completely attenuated by coupling to the phase matched lossy TM mode of the SiO2 – Si3N4 –Au–Air plasmonic 
waveguide in a polarizer section of length ~ 5 μm while the TE mode is transmitted without change. 

5. 5 Mode division multiplexers in optical interconnects
 As also mentioned in section 3, if one of the waveguides (WG2 ) supports more than one mode and 
the effective indices of the modes are well spaced, it is possible to couple power by evanescent coupling 
to any one of the modes. This can be done by choosing the single mode waveguides (WG1 ) to be phase 
matched to a specific mode of WG2. Figure 19 shows the effective index of various TE modes supported 
by the strip waveguide as a function of the strip width. A multimode waveguide (WG2) with strip width 
of 900 nm supports three TE modes with effective indices ne (TE0) = 2.72166, ne (TE1) = 2.31472 and ne 
(TE2) = 1.605359. The fundamental mode (TE0) of the input single mode waveguides with strip width of 
433 nm and 252 nm are phase matched (i.e. with same effective index) to TE1 mode and TE2 mode of WG2, 
respectively, as shown in the Fig 19. Hence, it is possible to couple/out-couple power between these single 
mode waveguides and the specific phase matched mode of the multimode waveguide. The simulated results, 
clearly showing coupling to a specific mode, are shown in Fig 20.

Fig 19. Variation of the effective index of possible guided TE modes as a function of strip width in a 220 nm thick 
SOI strip waveguide. The corresponding asymmetric directional couplers for evanescent coupling to different 
modes by choice of the appropriate width of the single mode input waveguide for phase matching are also shown.

 This concept of coupling from different input waveguides to different modes of a multimode 
waveguide can be used to design compact add-drop multiplexers for mode division multiplexing in multimode 
SOI waveguide for on-chip and inter-chip optical interconnects [15,16]. Mode Division Multiplexing (MDM) 
offers increased bandwidth on a multi-mode trunk waveguide by use of different guided modes to carry 
different data channels coupled through different single-mode waveguides. Two independent channels can 
be coupled/decoupled from/to two collaterally arranged single-mode SOI waveguides (WG1 and WG3) to a 
multimode SOI trunk waveguide (WG2) as shown in Fig 20.
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MUX DeMUX

Fig 20. Propagation of power from TE0 mode of WG1 to TE1 mode of WG2 and subsequent out-coupling to WG1 and 
propagation of power from TE0 mode of WG3 to TE2 mode of WG2 and subsequent out-coupling to WG3. Configuration 
for mode division multiplexing by coupling two independent channels from collaterally placed single-mode SOI 
waveguides (WG1 and WG3) to a multimode SOI trunk waveguide (WG2). 

 Figure 21 shows the design of proposed mode division (de)multiplexer based on this concept 
in which a simultaneous insertion/extraction of power carried by the TE0 mode of WG1 and WG3 can be 
achieved to/from the selected modes of the trunk waveguide while the power in the TE0 mode of the trunk 
waveguide is inserted/extracted through adiabatically tapered section connecting it to a 500 nm waveguide 
[15]. The total coupling length of the proposed (de)multiplexer section is ~ 24 μm and the complete device 
exhibits low insertion loss less than 0.26dB and crosstalk better than –36dB at the design wavelength of 1550 
nm. The number of mode channels can be further increased by increasing the number of collateral coupler 
section along the trunk waveguide [16].

 
Fig 21. Prospective view of the proposed mode (de)multiplexer for three-mode multiplexing and simulated results 
showing the propagation of the modes through the trunk waveguide coupled/decoupled by evanescent coupling 
through phase matched mode single mode input waveguides at 1550 nm. 

6 Summary
 In summary, we have presented a detailed analysis of coupled mode theory for evanescent field 
coupling between modes of two dielectric waveguides placed close to each other in context to the most 
versatile coupled mode device, a two-waveguide directional coupler. The salient features emerging from the 
analysis have been illustrated by comprehensive numerical simulations using the Photon Design software 
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which is based on the Finite Element Method and Eigen-Mode expansion techniques. The dielectric 
waveguides chosen for our illustrative examples are the Silicon-on-Insulator (SOI) waveguides which form 
the backbone of the silicon photonics integrated circuits. It has been a fascinating journey for us across two 
decades to realize how the simple variants of the directional coupler can be used to design a number of 
guided wave photonic devices. We have presented a few such coupled waveguide device configurations for 
applications as power dividers, switches, phase shifters, polarizers, and mode division multiplexers.
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