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This paper reviews the potential of photorefractive single crystals for optical limiting applications and highlights the 
optical limiting characteristics of undoped and iron doped Bi12SiO20 (BSO), a photorefractive single crystal belonging 
to Sillenite family. The contribution of two-photon absorption from two channels: first from valence band to conduction 
band and the other from an extrinsic silicon-vacancy to conduction band assisted by charge carrier absorption from the 
trap states of BSO is presented. These processes lead to highly effective nonlinear absorption across the visible region 
of the electromagnetic spectrum. The specific role of iron doping in enhancing the effective nonlinear absorption by 
charge carriers as well as intraband absorption for ns laser pulses at three different excitation wavelengths of 532, 600 
and 683 nm is discussed. © Anita Publications. All rights reserved.
Keywords: Bi12SiO20 single crystal, Optical limiter, Nonlinear absorption, effective two-photon absorption, Trap level 
assisted Charge carrier absorption.

1 Introduction 

	 Optical limiter, an optical analogue of electrical limiter used to safeguard many electrical devices, 
works in the optical region of the electromagnetic spectrum by exploiting the nonlinearities of the materials. 
With the advent of high-power laser sources over wide range of wavelengths and pulse durations, the 
necessity for protection of sensors and eyes has enormously increased over the last few decades [1,2]. In 
this context, optical limiters have received significant attention over the past few decades [3-16]. An ideal 
limiter exhibits a linear transmission below a threshold and clamps the output to a constant above it, thus 
providing safety to sensors or eyes. The minimum criteria identified for a material to act as an effective 
optical limiter are (i) Low limiting threshold and large dynamic range (ii) High optical damage threshold 
and stability (iii) Sensitive broadband response to long and short pulses (iv) Fast response time (v) High 
linear transmittance throughout the sensor band width, optical clarity, and robustness [17,18]. Wide variety of 
organic and inorganic materials are being studied to achieve efficient optical limiting [19]. Various approaches 
have been developed towards better optical limiting based on, e.g., electro-optical [20], magneto-optical 
[21], and all-optical [22-26] mechanisms. The all-optical limiters rely on materials that exhibit one or more 
of the nonlinear optical mechanisms like: Two-photon absorption (TPA), Reverse Saturable Absorption 
(RSA), Free carrier absorption, Thermal defocusing and scattering, Photorefraction, Nonlinear refraction, 
Induced scattering [27]. Enhancement in optical limiting has also been achieved by coupling two or more 
of these mechanisms, like Self-defocusing in conjunction with TPA [28], TPA of one molecule with excited 
state absorption (ESA) in another molecule [29]. Different experimental geometries like cascaded limiters 
[30,31], nanofluids [32] have been also studied to achieve large figure of merit and dynamic range [3-16].
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	 The first experimental demonstration of optical power limiter reported by Leite et al [33] is based 
on the laser induced thermal lens effect using 488 nm cw Ar+ laser beam as incident light and nitrobenzene 
as the linearly absorbing medium with an aperture in front of the detector. Though the change of power 
through the aperture was only 3% of the total input power change at high input levels, the original idea 
and setup is still the basis of most popular optical limiting designs using organic dye solutions [34-42], 
semiconductors [43-46] and other materials [47,54] as linearly absorbing media. Despite the wide varieties 
of semiconductor [41-57] and organic systems like modified porphyrins, pthalocyanines [58-61], arrays 
of Porphyrins [62,63], metal nanoclusters [64,65], binary/ternary semiconductor nanocrystals, core-shell 
nanocrystals [66-69], nano particles of the oxide nanocrystals [70,71] studied for optical limiting properties, 
bulk photorefractive materials have a significant place owing to their significant band structure in addition 
to the electro-optic and photoconductive capability. In the present review, the optical limiting characteristics 
of photorefractive crystals are discussed and a quantitative model based on the band theory explaining the 
unexplored nonlinear absorption characteristics of BSO crystals is presented. 

2 Photorefractive materials for nonlinear optical applications

	 Photorefractive materials are a class of electro-optic photoconductive materials with many 
interesting phenomena, and applications in nonlinear optics and photonics which include phase conjugation, 
optical interconnections, optical spatial solitons, and optical signal processing [72-77]. The phenomenon 
of photorefraction arises on the nonuniform illumination of such materials and with the diffusion of the 
ensuing photogenerated carriers towards lesser-illuminated regions with the associated electric fields that, 
through the Pockels effect, cause localized changes in the refractive index. This photoionization occurs from 
relatively deep energy levels within the bandgap that are not normally thermally ionized. The light induced 
absorption due to the photoinduced charge transport has been studied widely in the field of photorefractive 
nonlinear optics because it plays an important role in the construction of passive optical limiters and optical 
threshold elements in optical processing systems [72-77].
	 In photorefractive materials, at higher input intensities, the mechanism of charge carrier generation 
and transport process involves impurity levels which lead to the greater possibility of the combined effect 
of trap assisted charge carrier absorption (TACCA) and TPA [78-82]. Here, the former is an accumulative 
nonlinearity, which requires time for energy transfer from field to medium and hence depends on energy 
density deposited in the medium. This nonlinearity can also be nonlocal due to the drift or diffusion of 
photogenerated charge carriers in the medium and hence can in principle only depend on the input fluence. 
The latter is an instantaneous nonlinearity, which depends on the input light intensity, can be effective over 
broadband of the spectrum and for very short pulses. TPA can also act as a significant loss mechanism 
when a material is subjected to a strong beam of photons of energy hω, with hω < Eg < 2hω, where Eg is 
the energy gap of the material. High sensitivity optical storage by the photorefractive process using multi-
photon absorption was demonstrated in LiNbO3 and in KTN by Linde et al [84]. Permanent and reversible 
changes of refractive index of pure and doped LiNbO3 have been obtained by multi-photon absorption that 
results in increased sensitivity for optical storage and holography [85].
	 Of all the sillenite family crystals having the general formula of Bi12MO20 where M = Si, Ge, Ti etc., 
Bi12SiO20 are considered attractive candidates for variety of applications due to their strong photorefractive 
properties. Higher photosensitivity, fast response time, comparable electro-optic coefficient with other crystals 
of the family and interesting piezoelectric, optically-active and many other interesting properties like beam 
deflection, switching, holography, phase conjugation and optical memories made BSO crystals the most sought 
after crystals for optical applications [72-74,86]. It has been reported that out of three non-zero electro-optic 
coefficients r41, r52, and r63, the element r41 is important for device applications [6]. Bi12SiO20 (BSO) has 
cubic symmetry, belonging to point group 23. In BSO the standard photorefractive effect is based on the 
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absorption of photons by impurity levels. One can improve the performance by means of increasing the 
impurity levels by doping. In BSO, many trap levels in the energy gap predicted from the spectral response 
of the photoconductivity [73,74] and the traps with high concentration were observed experimentally [75]. 
In addition of distinguishable shallow trap levels reported, there also appears to be many overlapping levels 
at deep energy levels below the conduction band [74,88-90]. Attard [91] predicted the Fermi level shift in 
BSO via photon induced trap occupation. The shift of Fermi level is dependent on the density of trap sites 
in the bandgap, the radiation induced occupation density, and the energy levels of the traps. Investigations 
report that photorefractive materials doped with iron leads to favourable photorefractive properties such 
as small response time and high sensitivity [78]. It is also shown that optical properties and light induced 
absorption changes are affected due to iron doping [79]. Investigations on the possibilities for practical 
applications of sillenites have revealed that doping can conveniently be used to modify the absorption in a 
way suitable for the application. In BSO too, doping with various elements leads to significant changes in 
the electrical, photoelectrical, and optical properties. Nagao and Mimura [80] have investigated the influence 
of many transition metals on the transmission and photoresponse of BSO. The general conclusion made 
about photoresponse is that the transition metal impurities in BSO crystals quench the photoconductivity. 
An intuitive explanation proposed for the quenching is the formation of recombination centers [81]. When 
the light intensities are strong enough, effects that are caused by TPA can become important [82] and can 
also be enhanced by the existence of intermediate energy levels inside the forbidden bandgap because of the 
impurities. It is found that addition of significant amount of Fe3+ ions as impurities can easily change the 
valence state and may play a critical role in charge carrier mobility as well as intensity dependent absorption. 
A study to this effect [87] in pure BSO crystal examined the CW recording under applied electric field at 
low intensities of a CW laser.
	 In this special issue paper, the optical limiting behavior exhibited due to combined effect of TPA, 
free carrier absorption and trap assisted charge carrier absorption (TACCA) in photorefractive crystals of 
undoped and iron doped BSO in the visible spectral range using 6 nanosecond pulses at 532, 600 and 683 
nm is presented. An excellent passive limiting behavior is demonstrated using these crystals in visible region. 
A quantitative modeling based on the band theory of solids accounting for the absorptive changes due to 
combined effect of TACCA and TPA with the precise role of the internal defects due to impurity centers 
present in the crystal lattice, is presented.

3 Optical limiting and nonlinear absorption characteristics of undoped and iron doped BSO crystals 

	 In this section, we describe optical limiting and nonlinear absorption study of undoped and doped 
BSO crystals carried out by us. An undoped BSO crystal bought from M/s Fujian Castech Crystals Inc., 
China with dimensions of 10 mm×10 mm× 5 mm, and a Fe-doped BSO crystal obtained from Alabama 
University, USA [83] with dimensions 5 mm× 4 mm× 4 mm were used in this study [83]. These crystals were 
cut to have thickness of 1 mm along c-axis and used for optical limiting and nonlinear absorption studies. The 
surfaces of both the crystals were polished to minimize the scattering. Optical limiting studies are also done 
with 4 mm thick crystals. The amount of iron incorporation in the Fe-doped crystal was determined using 
Inductive Coupled Plasma - Atomic Emission Spectroscopy (ICP-AES). The result showed that 150-ppm Fe 
was incorporated in the crystal as impurity. In principle, during the growth of iron doped BSO crystals, Fe can 
replace either Bi or Si. However, from ICP - AES study, it was found that the doped crystal grown from melt 
was having no Si deficit. Hence, it can be assumed that Fe atoms occupied only the Bi sites in Fe-doped BSO 
crystal. The crystal structures of both pure and iron doped BSO studied using single crystal X-ray diffraction 
technique revealed body centered cubic structures with lattice constants of (10.0935 ± 0.003)Å and (10.0335 
± 0.006)Å, respectively. A slight variation in the lattice constant of the iron doped BSO without any change in 
the crystal structure from that of pure BSO crystal, confirms the doping of iron. The optical absorption spectra 
of undoped BSO and Fe-doped BSO, represented as BSO and BSO:Fe, respectively, are shown in Fig 1. 
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Fig 1. Absorption spectra of BSO and BSO:Fe. The three arrows represent the excitation 
wavelengths used in the study. Top X-axis shows the photon energy in eV. 

	 The absorption spectra of both the crystals show a very large absorption above 3eV which matches 
well with the reported values [90,98]. As one can see from Fig 1 a long tail in the absorption edge goes all 
the way to 900 nm (1.38eV). This implies that both the crystals possess large number of donor sites. The 
absorption centers/traps responsible for the absorption in the above region are reported as due to either silicon 
vacancy complex or bismuth substituting for silicon or Fe3+ impurities. And these absorption centers are raised 
to conduction band by optical excitation with photons in energy region 1.7eV to 3.5eV [25]. The change in 
the absorption spectrum with various metals as dopants and different growth conditions has been reported 
earlier in various photorefractives like BaTiO3, LiNbO3 and in PbBaNb2O6 [85-87] with major variation in 
the visible region. Doping of impurities like iron [76], cobalt and transition metals [88] has been reported 
to change the optical absorption spectrum in the visible region. From the absorption coefficient the ground 
state absorption cross-section (σ0) of undoped and iron doped BSO is calculated and is presented in Table 1.

Table 1. Ground state absorption cross-section of BSO and BSO:Fe at the three excitation 
wavelengths of 532 nm, 600 nm and 683 nm.

λex (nm)
σ0 (× 10–20 cm2)

BSO BSO:Fe
532 9.15 8.53
600 3.30 6.34
683 2.49 5.34

	 Frequency doubled Nd:YAG laser at 532 nm (Continuum 660 B-10, 10 Hz, 6 ns FWHM, 100 mJ/
pulse and Spectra-Physics INDI-40, 10 Hz, 6ns 500 mJ/pulse) is used for the experimental studies of optical 
limiting (OL) and open aperture Z-scan studies, Figs 3-5. The second harmonic of Nd:YAG sources are 
used in turn to pump a RhB dye laser and a Raman Shifter filled with H2 gas generating 600 nm and 683 
nm excitation wavelength, respectively [72,89,90]. Optical limiting properties are studied by keeping the 
sample at the focus of f/5 geometry as a standard because human eye is equivalent to f/5 optical geometry 
[106,107]. The input energy is varied using calibrated neutral density filters, while the output is collected 
using a calibrated fast photodiode (FND 100). The input energy where the transmitted output becomes half 
of the linear transmittance is called the limiting threshold (I1/2) of the material and an important factor for 
choosing a material as optical limiter. Each experimental point shown in the OL curves is an average of 128 
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laser pulses to get a better signal to noise ratio. The experiments are repeated to ascertain the reproducibility 
and to determine the error. Nonlinear absorption studies were performed using standard open-aperture 
Z-scan studies [93]. Optical limiting (OL) and nonlinear absorption measurements are performed with 
<110> direction of the crystal coinciding with the Z-axis of the beam propagation. Open aperture Z-scan 
studies are done with 1 mm thick crystals and OL curves are recorded with both 1 and 4 mm thick crystals. 
The sample satisfied the “thin” sample condition L < n0z0, where L is the sample thickness, n0 the linear 
refractive index and z0 the diffraction length of the focused beam for Z-scan studies. No external electric 
field is applied across the crystal. Beam fanning is observed in the far field from BSO:Fe while performing 
OL and Z-scan measurements. Proper precautions are taken to collect all the transmitted light by bringing the 
collecting lens closer to sample and by using large diameter lens for collecting the output. Optical limiting 
behavior of BSO and BSO:Fe at 532 nm and 600 nm with 4 mm crystal is shown in Fig 2. The damage 
threshold is identified as the intensity at which a strong scattering appeared at the output followed by the 
darkening and a physical damage formed on the surface of the crystal. The optical limiting performance 
and the damage threshold have increased considerably with the presence of iron impurity. The limiting and 
damage thresholds of the crystals are given in Table 2.

Fig 2. Optical limiting response of BSO (ο) and BSO: Fe (•) at (a) 532 nm and (b) 600 nm with 4mm thick crystals.

Table 2. Ground state absorption cross-section of BSO and BSO:Fe at the three excitation 
wavelengths of 532 nm, 600 nm and 683 nm.

λex (nm)
Limiting Threshold (Jcm–2) Damage Threshold (Jcm–2)

BSO BSO:Fe BSO BSO:Fe
532 3.38±0.4 1.29±0.2 9.6±0.3 15.6±0.2
600 5.88±0.5 3.29±0.3 6.4±0.2 10.6±0.3
683 --- --- 4.7±0.2 7.7±0.3
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Fig 3. Open aperture Z-scan curve of (a) BSO and (b) BSO: Fe at 532 nm, 6ns pulses. Solid lines show the 
theoretical fits. 

Fig 4. Open aperture Z-scan curve of (a) BSO and (b) BSO: Fe at 600 nm, 6ns pulses. Solid lines show the 
theoretical fits.

	 The limiting threshold (I1/2) is decreasing, and the damage threshold increases with iron incorporation 
in these crystals. As one moves towards the longer wavelengths, the I1/2 increases gradually and the damage 
threshold decreases. To understand the role of different nonlinear absorption processes leading to the 
observed optical limiting behaviour, the open-aperture Z-scan was performed. The nonlinear absorption 
behaviour of BSO and BSO:Fe at 532 nm, 600 nm and 683 nm excitation wavelengths is shown in Figs 
3, 4, and 5, respectively. The symbols at the intensities as shown by the labels inside the figures represent 
the experimental data at the intensities as shown by the labels inside the figures. The lines overlapping the 
experimental data are the theoretical fits generated using equivalent five-level energy diagram of the energy 
band structure of BSO.
	 At room temperature, BSO with an optical bandgap of 3.25 eV, behaves as a two-photon absorber at 
532, 600 and 683 nm as the band gap obeys hω < Eg < 2hω. However, the contribution of the photoinduced
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Fig 5. Open aperture Z-scan curve of (a) BSO and (b) BSO: Fe at 683 nm, 6ns pulses. Solid lines show the 
theoretical fits.

 

Fig 6. (a) Band model of BSO with all possible photo induced excitation and relaxation possibilities and (b) the 
equivalent five level diagram used for the modeling

charge carriers from the extrinsic silicon-vacancy center deep into the conduction band is generally 
overlooked while estimating the nonlinear absorption process. The presence of luminescence center and 
the shallow electron traps in BSO makes it a complex material to be modelled as a simple two-parabolic 
band model predicting a scaling relation for the degenerate TPA coefficient for both semiconductors and 
dielectric materials with gaps ranging from 1.4 to 3.7 eV [28,108,95,109]. In addition, the shallow traps are 
well-known to contribute to absorption. BaTiO3 [110] and BSO [111] have shown the excitation of charges 
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from shallow traps to the conduction band [112]. The domination of photogenerated carrier absorption with 
nanosecond pulsed lasers has been reported earlier [28] in direct band gap semiconductors. The transfer of 
the conduction electrons to trap levels and the recombination with the valance band (VB) holes increases 
with the number density of excited electrons in the conduction band (CB).This leads to more absorption of 
the electrons from the trap levels to the conduction band. However, for very short pulses (ps), transitions 
from lower conduction band to trap levels can be neglected. Pure TPA is reported in another crystal of 
sillenite family Bi12GeO20 (BGO) at 532 nm using a 16 ps pulse width Nd: YAG laser [96].

	 The energy band structure [88,113,114] and the equivalent five level energy diagram used to explain 
the nonlinear absorption are shown in Fig 6 (a) and (b), respectively.
	 In Fig 6, VB is the valence band, TL is the trap level, DL is the donor level, CBL represnts the 
lower energy levels of the conduction band and CBH represents the higher energy levels of the conduction 
band. The following assumptions are made to explain the observed optical limiting and nonlinear absorption 
behavior of these crystals: (i) Extrinsic silicon-vacancy center is taken as donor level. Two paths of TPA 
are taken into consideration one from VB to CB and the other from donor level to CB. (ii) All the shallow 
and deep trap levels from which light induced absorption are considered to be originating from a single trap 
level (TL). (iii) Recombination rate of excited levels with valance-holes from the deep level of the crystal 
is exceptionally small [101]. (iv) Thermal excitation/decay effects are neglected in the modeling as they 
are of the time scale of few ms to s. The extrinsic center (silicon–vacancy complex) is considered as N1 
from where the photo absorption is possible. The shallow traps, deep traps and secondary photorefractive 
centers are taken as TL (N4). σLH and τ1 represent the contributions of free-carrier absorption coefficient 
and recombination times, respectively within the conduction band. All these processes were incorporated 
in the rate equations as given below: 

	
dN0
dt  = 

βv I 2

2ℏω  + 
N2
τCV

	 (1)

	
dN1
dt  = 

βd I 2

2ℏω  – 
σ0 I N1

ℏω  + 
N2
τCD

	 (2)

	
dN2
dt  = 

βv I 2

2ℏω  + 
σ0 I N1

ℏω  – N2 
1
τCV

 + 
1
τCD

 + 
1
τCT + 

N3
τ1  – 

σLH I N2

ℏω  ± 
σTL I N4

ℏω 	 (3)

	
dN3
dt  = 

βd I 2

2ℏω  + 
σLH I N2

ℏω  – 
N3
τ1 	 (4)

	
dN4
dt  = – 

σTL I N4

ℏω  + 
N2
τCT

	 (5)

where σ0 is the absorption cross-section from the donor levels, βv is the two photon absorption coefficient 
from the valence band to the conduction band, βd is the two photon absorption coefficient from the donor 
levels to the higher conduction band leading to an effective two photon absorption coefficient, βeff = βv + 
βd, σTL is the charge carrier absorption cross-section from the trap levels (TL) to the lower conduction band 
(CBL), σLH is the free carrier absorption cross-section within the conduction band similar to the intraband 
absorption. Both these absorptions are effectively considered as σ1eff. Ni’s are the corresponding carrier 
densities in different states, τi’s are the lifetimes of the states. 1/τCT is the crossing rate to TL from lower 
levels of conduction band CBL to N4, 1/τCV is the crossing rate from CBL to VB, 1/τCD is the crossing rate 
from CBL to DL. Intensity transmitted through the sample, as measured by the open aperture z-scan method 
is given by

	
dI
dz = – σ0 IN1 – σLH IN2 – σTL IN4 – βeff I 2	 (6) 
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with I = I00 × 


w2
0

w2(z) 
× e–(t 2/τp2) × e–(2r 2/w2 (z))	 (7)

and w(z) = w0 1 + 
 

z
z0

 
 

2 ; z0 = π 
w2

0 n0

λ
; βeff = βv + βd

where I00 is the peak intensity, w0 is the beam waist at focus, w(z) is the spot size along the propagation 
direction, z0 is the Rayleigh range of the focused beam and τp is the laser pulse duration. The refractive index 
n0 of BSO at 532, 600 and 683 nm and is taken as 2.6, 2.55, and 2.52 respectively [116]. The differential 
equations are solved numerically using Runge-Kutta fourth order method. The carrier density [117] of the 
extrinsic absorption center N1 is taken as ~ 1019 cm–3. At higher intensities, BSO shows nanosecond timescale 
relaxation rates [118]. Nanosecond and picosecond recombination rates have been also reported for KNbO3 
[119,120] and BaTiO3 [121] at higher intensities. Since the intensities used in the present study are high 
(> 108 Wcm–2) for linear optical effects, the following relaxation (recombination) times, τ1 = 0.1psec, τCD 
= 10 nsec, and τCV = 10 nsec [108,109] are used for the theoretical modeling. The excited charge carrier 
relaxation τCT is taken as ~ 60 psec from the pump-probe measurements.

Table 3. Nonlinear absorption cross-sections of BSO and BSO:Fe at the three excitation wavelengths of 532 nm, 
600 nm and 683 nm. 

λex 
(nm)

βeff 
(cm/GW)

BSO BSO:Fe
Intensity 

(GWcm–2)
σ1eff ×10–19 

(cm2)
Intensity 

(GWcm–2)
σ1eff ×10-19 

(cm2)

532 4.47
0.21 15 0.36 41
0.70 21 0.67 91.8
1.23 43 --- ---

600 5.02
0.54 16.8 0.43 39.2
0.98 39.4 0.94 54

683 4.36
0.31 8.0 0.26 10.5
0.52 11.0 0.41 16.5

	 The values of effective two-photon absorption cross-section obtained from the theoretical fits for 
the best fit parameters were compared with that from the well-established simple two-parabolic band model 
describing semiconductors and dielectric materials [28,108,109]. The scaling relation for the degenerate 
TPA coefficient is given by

	 β(ω) = Kpb 
Ep

n 2
0 E3

g
 F2 

ℏω
Eg 

	 (8)

where Eg is the optical bandgap and Kpb is the Kane momentum parameter with a value of 1940 in the 
units of cm/GW(eV)5/2. The dispersion of the TPA is governed by F2, which is a function of the ratio of 
the photon energy to the bandgap of optically coupled states only. 

	 F2 = 
(2x – 1)3/2

(2x)5  for 2x > 1	 (9)

	 For the energy gaps of 3.25 eV and 2.65 eV, the value of βeff = βv + βd, for the three excitation 
wavelengths of 532 nm, 600 nm and 683 nm is 1.567, 5.029 and 4.466 cm/GW, respectively. These values 
confirmed from the open aperture Z-scan measurements with 25 ps pulses at 532 nm [124] are used to 
estimate the absorption from the trap levels summarized by σ1eff. From Table 3, it is evident that the overall 
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photo induced carrier absorption termed as trap assisted charge carrier absorption (TACCA) increases with 
increasing laser intensity for all the three excitation wavelengths. The iron doping has resulted in enhanced 
σ1eff by a factor of 1.25 to 4 confirming that the BSO crystals are a very good candidates for nonlinear 
absorption applications.

4 Conclusion

	 This review shows that the undoped and doped BSO crystals show an excellent broadband nonlinear 
response in the visible wavelength region. Low limiting thresholds and high damage threshold with iron 
doping makes these overlooked single crystalline photorefractive material suitable for limiting purposes 
even for short pulse duration and high energy sources over broadband region. The crystals showed a very 
strong nonlinear absorption with major contribution from TPA assisted by intraband carrier absorption 
and charge carrier absorption from trap levels. In view of the recent developments of material synthesis 
leading to nanocrystals, the photorefractive materials can be synthesized in nanoform that can be dispersed 
into different films paving the way for a large area application. Moreover, the nano crystals are potential 
candidates to invoke nonlinear scattering that can augment the inherent TPA and TACCA.
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