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We present a data-driven method for capturing the evolution of spatially and temporally varying speckle patterns. Our 
method is based on the dynamic mode decomposition (DMD) technique, which is a powerful framework for analyzing 
the dynamics of nonlinear systems using dimensionality reduction. We describe the steps to be followed for applying 
the DMD framework to experimental as well as synthetic speckle image data and benchmark its performance against 
some well-established speckle analysis techniques. © Anita Publications. All rights reserved.
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1 Introduction

	 Speckle patterns are grainy, fluctuating intensity patterns that are observed when coherent radiation, 
such as a light beam from a laser, is incident on a target object. There are primarily two factors that 
contribute to this phenomenon; the first is the presence of inherent roughness associated with microscopic 
facets and irregularities that are present on the illuminated surface. Roughness features present on the 
illuminated object’s surface cause the scattering of scalar field components that have either random phases 
or amplitudes or both, which then interfere at the detection plane creating a speckle pattern. The other factor 
is associated with samples that possess moving scatterers, perhaps best exemplified by biological samples 
such as live tissue or fruit, for instance, thereby yielding ‘dynamic’ speckle patterns. Speckle analysis is a 
robust, often frugal, non-destructive metrology tool for monitoring a wide range of physical and biological 
effects, especially those that demonstrate transient changes. A large suite of numerical and graphical analysis 
techniques for relating raw speckle images to the target object’s topological and physiological signatures 
have been developed over the last few decades [1-3]. Dynamic speckle imaging (DSI) methods have been 
successfully employed for generating wide-area maps based on locally and globally defined correlation 
parameters, that identify different levels of scatterer activity with high spatiotemporal resolutions. DSI has 
been applied with great promise across diverse scenarios such as the visualization of blood flows in complex 
organ systems, degradation in agricultural produce, detection of corrosion, and the drying/curing of paints 
and functional coatings [4]. 
	 In this paper, we describe the application of the dynamic mode decomposition (DMD) technique to 
analyze dynamic speckle images captured sequentially over time. The DMD tool was originally developed for 
analysis in fluid mechanics [5] and applies to phenomena that exhibit both linear as well as nonlinear dynamics. 
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Essentially, we compute the DMD modes of dynamic speckles and their corresponding eigenvalues, which 
together, capture the dynamic evolution of the sample under investigation. The dynamic modes extracted 
can be used to project large-dimensional data into a system with fewer degrees of freedom. Essentially, 
we compute the DMD of dynamic speckle data to derive the dominant spatial modes of the underlying 
physical phenomenon along with their dynamic evolution expressed in terms of damped sinusoids. Whereas 
a majority of established speckle contrast analyses techniques provide single contrast maps corresponding 
to the dynamic event under study, our proposed DMD framework provides more than one contrast map 
representing multiple dominant spatial modes that may be present in the dynamic phenomenon along with 
the quantification of its temporal variation in terms of their associated temporal frequencies. As a result, 
the proposed method retrieves more information from the dynamic speckle data in comparison to other 
conventional approaches for extracting insights from speckle images. However, it should be noted that the 
physical interpretation of the retrieved information is subject to the process under investigation.

2 Theory

	 The protocol for using speckle to analyze dynamic phenomena primarily involves recording a 
sequence of ‘N’ speckle images, each of size P×Q (say). We construct a column vector of size PQ×1 using 
each frame. Our next step is to stack these column vectors together to form a matrix D (which will be PQ×N 
in size). Each column in matrix D essentially encodes the extent of speckle variations (‘activity’) in the 
temporal domain. We subsequently apply the dynamic mode decomposition (DMD) framework to the matrix 
D [5]. DMD is a dimensionality reduction technique that is purely data-driven, i.e., it does not require any 
knowledge of underlying physics of the dynamics in terms of the governing equations [6]. Two matrices, X 
and X', are further derived from D; X is formed using the first to the second last columns of D whereas X' 
formed using the second column to the last column of D. Both X and X' are of size PQ×(N – 1). The objective 
of DMD approach is to find a best-fit linear operator A which satisfies the relation,
	 X ' = A X.	 (1)
	 A = X ' X+ ,	 (2)
where symbol '+' is the Moore-Penrose pseudoinverse. The sizes of X and X' are very large owing to the 
manner in which they have been constructed. For instance, if 1000 speckle images each of size 256×256 
(pixels) are recorded, the matrix D becomes 65536 × 1000 in size (both X and X' are 65536×999 in size). 
One can readily appreciate the computational expense involved in determining the matrix A, as well as its 
eigenvalues and eigenvectors. The DMD framework overcomes this bottleneck by finding the eigenvectors 
and eigenvalues without explicitly computing the matrix A. This is achieved in the manner described below:
Step 1: The singular value decomposition (SVD) of the matrix X is defined as,
	 X = U ∑V T	 (3)
where U and V are unitary matrices containing the left singular vector and the right singular vector, 
respectively; the superscript ‘T ’ denotes the transpose operation. ∑ represents the diagonal matrix consisting 
of the singular values arranged in the descending order. Both matrices (U and V ) are truncated to include the 
first ‘r’ columns only. Simultaneously, only the first ‘r’ rows and ‘r’ columns of the ∑ matrix are considered.
Step 2: Using Eq (3), Eq (1) can be rewritten as, 
	 U TX ' = U TAU ∑V T	 (4)
Step 3: Equation (4) can be rearranged as,

	 U TAU = U TX 'V ∑ –1 = Ã
Step 4: The matrix Ã is computed by utilitizing the first ‘r’ dominant singular vectors. That is, first ‘r’ 
columns of matrices U, V, and the first r×r block of the diagonal matrix ∑ are used to generate Ã. This is 
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more efficient than calculating A directly. The value of ‘r’ is the deciding factor in determining the dynamic 
modes under investigation.
Step 5: Utilizing the fact that A and Ã both have the same eigenvalues, we derive the eigenvalues and 
eigenvectors (also the DMD modes) of A by performing the eigen decomposition of Ã. The eigenvectors of 
A can be calculated using the formula
	 Ф = X ' V ∑ –1 W	 (6)
where W is the eigenvector of the matrix Ã. Verification of the assumption that Ф represents the exact 
eigenvectors of the matrix A can be found in Tu et al [7]. The columns of the matrix Ф represent the dymanic 
modes of associated with dominant spatial behavior of the dynamic process under observation. An eigenvalue 
corresponding to each mode quantifies the frequency of temporal variation. Each of these modes oscillates at 
a distinct temporal frequency [4]. Figure 1 depicts how we apply the DMD framework for analyzing dynamic 
speckle images. A pseudocode is also provided in Table 1. 

Fig 1. Steps involved in computing DMD on a given speckle sequence.

Table 1. Algorithm to compute DMD on given speckle sequence
Algorithm to compute DMD (Pseudocode)
Initialise a data matrix D
For i = 1: total number of frames
Create a column vector of each frame
D( : , i) = frame in the form of column vector
End
Construct matrix X from D by selecting the first to penultimate columns
Construct matrix X' from D by selecting the second to last columns
% pseudocode for the steps computed in the “DMD engine’’
[U, ∑, V] = svd(X) 
Select the first ‘r’ columns of matrix U and V 
Select the first ‘r’ rows and ‘r’ columns of the matrix ∑
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Project A on to the ‘r’ dimensions to get the matrix Ã using Eq (5) 
Compute the eigen-decomposition of Ã to get the eigen-values “E” and eigen-vectors “W”
Reconstruct the eigen-vectors of the matrix Ã “Ф” using Eq (6)

3 Results 

	 The most robust way to evaluate the performance of the DMD algorithm is to apply it to images that 
have been generated synthetically using known parameters. All simulations were performed using MATLAB 
(MATLAB 2020b, The MathWorks Inc.) on a computer with a 3GHz processor and 8 GB RAM. Several 
methods for simulating dynamic speckle sequences have been reported in literature [8-10]. We have selected 
the method as described in [9] to generate speckles with pre-defined temporal and spatial correlations and the 
reader is directed to the same for further details. Accordingly, the speckle intensity at the image plane can be 
computed as
	 	 I(p, q, t) = | F –1( H( p, q) * F (e jφ (p, q, t )))|2 

where I (p, q, t) represents the intensity of a pixel (p, q) in the tth frame; F and F –1 represent the Fourier and 
inverse Fourier transform operations, respectively; H(p, q) represents the transfer function of the imaging 
system ; φ(p, q, t) represents the random phase of object scattered light recorded at time t. We consider p∈ [0, 
P – 1], q∈ [0, Q – 1], and t ≤ N. The random phase values are considered to be uniformly distributed between 
[– π, π]. The evaluation of phase over time in the generation of dynamic speckles is given by:

	 φ(p, q, t) = φ( p, q, t –1) + G ( p, q, t) (ln(c (p, q, t –1) – ln(c (p, q, t)	 (10)

where G ( p, q, t) is a randomly generated matrix at tth instance with a mean of 0 and variance of 1. Fifty 
speckle images (N = 50), each of size 512×512 were generated. The size of each speckle was set to be equal to 
the pixel size. The stack of speckle images were generated using pre-defined spatial and temporal correlation 
values that were spatially assigned as depicted in Fig 2. The first frame of the generated dataset is shown in 
Fig 3 for illustration.

(a) (b)

Fig 2. (a) Spatial correlation map for N = 50. (b) Temporal intensity correlation for each of the regions marked with 
different colors.
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	 The DMD of simulated dynamic speckle data was computed to obtain a contrast map denoting 
speckle activity. In order to benchmark the efficacy of the DMD approach against other standard qualitative 
speckle contrast descriptor algorithms, we analyzed our simulated speckle dataset with the Fujii and 
Generalized Differences (GD) methods. The contrast maps evaluated using DMD, Fujii, and GD are shown 
in Fig 3. It is evident from the contrast between regions of distinct speckle activity is higher in DMD in 
comparison with those obtained using Fujii and GD. Additionally, the boundaries separating these distinct 
regions are more clearly defined in the output obtained using DMD. The Fujii and GD algorithms produce a 
single image to depict speckle activity whereas the DMD method produces a set of images (corresponding 
to each spatial mode) as shown in Fig 4; as mentioned earlier, each mode denotes the dominant features of 
the spatial constituents of the phenomenon under consideration. The value of ‘r’ is used to select the spatial 
modes of interest. Since DMD is essentially a data-driven technique, the choice of ‘r’ depends on the extent 
of observed activity/phenomenon being studied. For the present simulation r = 5 is considered. It can be 
observed that DMD decomposes the spatial activity of speckles into the background signal (as shown in Fig 
4(a)) and the remaining spatial modes representing foreground activities. 

(a) (b)

(c) (d)

Fig 3. (a) Representative simulated speckle image. Speckle contrast maps obtained using (b) DMD (c) Fujii and 
(d) Generalized Differences.
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(a) (b)

(c)
Fig 4. (a) First (b) second and (c) third spatial modes evaluated for the simulated example.

	 Figure 5 depicts a comparison of the computation times taken by all three algorithms as a function of 
the number of frames. We observe that the DMD method not only produces superior contrast maps, but does 
so within smaller time durations. Although the DMD approach is marginally slower than the Fujii method for 
a larger number of frames, the spatial contrast is found to be higher than the latter. Next, we compared the 
performance of DMD with the Fujii and GD methods using experimentally acquired speckle images. Figures 
6 and 8 show the comparison between the DMD, Fujii, and GD algorithms applied to dynamic speckle 
images of a hydrated maize seed (available in public domain at [11]) and an excised rodent brain (shared with 
us by the authors of [12]). Figures 7 and 9 show the spatial modes corresponding to maize seed and rodent’s 
brain, respectively.
	 The quantitative performance comparison among the speckle contrast imaging algorithms was 
performed using the synthetically generated dataset. The speckle contrast value is evaluated for the contrast 
map images obtained using DMD, Fujii, and GD for all the regions mentioned in Fig 2 (a). The ratio (σ/μ) 
quantifies the noise level in the speckle image and is generically refered to as the contrast. Here σ is the 
standard deviation, and μ is the mean of the speckle intensities. The values are obtained by processing the 
images shown in Figs 3(b), 3(c), and 3(d). The results demonstrate quantitatively that the DMD algorithm 
provides superior contrast in comparison to the GD and Fujii algorithms.



Dynamic speckle imaging based on dynamic mode decomposition	 A21

 

Fig 5. Computation time of different algorithms evaluated as a function of the total number of frames.

(a) (b)

 

(c) (d)

Fig 6. (a) Randomly selected maize seed speckle image (from [8]). Spatial contrast map obtained using (b) DMD (c) 
Fujii and (d) GD.
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(a) (b)

(c)

 Fig 7. (a) First (b) second and (c) third spatial modes of the maizse seed dataset.

Table 2. (a) Speckle contrast values of 3(b) computed using DMD
Region-1 (R1) Region-2 (R2) Region-3 (R3) Region-4 (R4) Region-5 (R5)

Mean (μ) 6.00E-03 4.39E-02 7.62E-02 1.16E-01 1.70E-01
Standard Dev (σ) 0 0.0011 0.0032 0.0072 0.0147
Contrast (σ/μ) 0.00E+00 2.57E-02 4.19E-02 6.25E-02 8.64E-02

Table 2. (b) Speckle contrast values of 3(c) computed using Fujii.
Region-1 (R1) Region-2 (R2) Region-3 (R3) Region-4 (R4) Region-5 (R5)

Mean (μ) 1.05E-01 3.09E-01 4.01E-01 4.84E-01 5.61E-01
Standard Dev (σ) 0.004 0.0088 0.0108 0.0119 0.0119
Contrast (σ/μ) 3.84E-02 2.86E-02 2.70E-02 2.47E-02 2.12E-02
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	 Table 2. (c) Speckle contrast values of 3(d) computed using GD.
Region-1 (R1) Region-2 (R2) Region-3 (R3) Region-4 (R4) Region-5 (R5)

Mean (μ) 1.36E-01 2.97E-01 3.82E-01 4.56E-01 5.25E-01
Standard Dev (σ) 0.0022 0.0058 0.0087 0.0111 0.0129
Contrast (σ/μ) 1.61E-02 1.95E-02 2.29E-02 2.44E-02 2.45E-02

(a) (b)

(c) (d)

Fig 8. (a) Randomly selected speckle image from [9]. Spatial contrast map obtained using (b) DMD (c) Fujii (d) GD

4 Conclusion

	 In this paper, we demonstrate the application of the dynamic mode decomposition (DMD) algorithm 
for generating speckle contrast ‘activity’ maps from dynamic speckle image datasets. The primary advantage 
of this method is that it does not require any knowledge of the equations governing the physical processes 
that result in transient changes of the speckle patterns, i. e, it can be referred to as an ‘equation-free’ modeling 
technique. We do not have to model the dynamics of the system under study every time we change the 
specimen. The measurements obtained are sufficient to compute the matrix A that captures the dynamics in 
the system. The choice of ‘r’ is crucial for identifying the valid spatial modes describing the speckle image 
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(a) (b)

(c)

Fig 9. (a) First (b) second and (c) third spatial modes of speckle images of rodent brain [12].

dataset. The performance of the DMD algorithm was evaluated by benchmarking it against other popular 
methods like Fujii and Generalised Differences (GD). As seen in Fig 5, the computation time taken by DMD 
is significantly lesser (by a factor of ~6) than that of the GD approach, and does not increase non-linearly 
with increasing input frame size. As such, the DMD algorithm’s performance appears similar to Fujii but 
becomes slightly slower for larger frame sizes. The speckle contrast values obtained for the different regions 
of the simulated data (Fig 2) using DMD, Fujii, and GD as mentioned in Table 2 show that the graininess 
of the speckle is higher as compared to both Fujii and GD. Further, algorithms like Fujii, GD discard the 
temporal information and produce only a single contrast map but DMD preserves both the temporal and 
spatial dynamics. DMD decomposes the given data into a set of spatio-temporal dominant coherent features 
or ‘modes’ that can be used to fully describe the target under study and we anticipate that this technique 
will contribute towards deriving deeper insights from dynamic speckle data for monitoring and assessing 
time-varying phenomena. 
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