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Wavefront coding is a hybrid optical-digital imaging system technique which generates aberrations using a phase mask or 
a phase generating device at the exit pupil of an optical system in order to extend its depth of focus. The optical system 
generates an intermediate low-quality image blurred by the aberrations of the added phase and, a sharp final image is 
obtained by a deconvolution process involving the optical transfer function (OTF) of the whole optical system at the 
image plane. Many shapes for the added phase have been proposed and they differ among each other in the quality of the 
decoded images within a given depth of focus as well as the noise and artifacts transferred to the postprocessed image. 
In this work, we will present a new set of phase masks based on Jacobi-Fourier polynomials and show the advantages 
and disadvantages comparing with the commonly used trefoil aberration. © Anita Publications. All rights reserved.
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1 Introduction  

 Wavefront coding (WFC) is a hybrid optical-computational technique using a phase modulating 
device (PM), as a deformable mirror, a liquid crystal device or a phase mask at the exit pupil of an imaging 
system encoding a controlled amount of aberration in order to extend the depth of focus (DOF) of the imaging 
system. The amount of aberration generated by the PM makes the Point Spread Function (PSF) and the 
Optical Transfer Function of the system (OTF) nearly invariant to defocus as well as to misfocus related 
aberration. This technique was proposed by Dowsky and Kathey [1] and it was successfully used in many 
applications as iris recognition [2], infrared imaging [3], fluorescent microscopy [4], ophthalmoscopy [5,6] 
among others. The great advantage of WFC is to increase the performance of an optical systems by increasing 
its DOF and at the same time it allows to reduce its cost and complexity [7]. 
 In a previous work [5], we presented a set of aberrations in the shape of a subset of Jacobi-Fourier 
polynomials to overcome some issues that the trefoil aberration, generates, as noise propagation and artifacts 
in the decoded images. In this work, we will expand the subset to optimize the results in order to get the better 
ecoded images.

2 Background: Cubic and related masks

 The first PM used to demonstrate the ability to increase the DOF of hybrid optical systems was a 
cubic mask in the shape [1]
 S (x, y) = α (x3 + y3), (1)
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where, α represents the strength of the PM, i.e., the half of the peak to valley (P-V) aberration generated by 
the PM. The key to increase the DOF is to get an OTF nearly invariant to defocus at the same time it has no 
zeroes and, therefore, deconvolution is not an ill posed problem. Cubic masks accomplished both conditions. 
Based on these results, other masks, with slight variations of the cubic masks, have been proposed: root 
square [8], sinusoidal [9] the exponential [10], the tangential [11], the logarithmic [12] and the rational [13] 
can be cited among many others. 
 The common feature of all these masks is the typical L shaped PSF. Nevertheless, there are 
differences in the corresponding OTF’s what will translate into different amount of noise and artifacts of the 
decoded images. Next quantitative step in the shape of the PM was found by Prasad et al [14] and they found 
that trefoil PM performs much better than the cubic one. Trefoil aberration does not change the order of the 
polynomial defining the shape, i.e., the radial coordinate is still r3 but the angular dependence changes as 
shown in Table 1:

Table 1. Phase masks

Cubic Trefoil
XY Coordinates x3 + y3 x(x2 _ 3y2)
Polar Coordinates r3(cos3θ + sin3θ ) r3 cos3θ

Fig 1. PSF of cubic PM (left) and trefoil PM (right).

3 Jacobi-Fourier phase masks

 Recently, Nhu et al [8] demonstrated that a smooth shape of the PM at the central part of the pupil 
and a rapid variation at the periphery are important features for a PM to have a good performance. Based on 
these results, we proposed the use of a subset of JFP to improve the performance of a trefoil PM [15]. These 
JFP have the shape
 JFP ( p, m, r, θ ) ∝ J0 (p, p, r) cos(mθ ), (2)
where, J0 (p, p, r) is the Jacobi polynomial Jn (p, q, r) [16] with n = 0, p = q, being p an integer and m = 3. The 
radial dependence of the PMs is shown in Table 2.
 It can be seen that for p = 7 we obtain the trefoil aberration. In references [15,17] we showed that the 
proper choice of the p value is a trade-off among signal to noise ratio, desired depth of focus and presence of 
artifacts for a given f / # of the optical system: In general, we found that small values of p are related with the 
presence of artifacts and noise enhancement but large values of p shorten the depth of focus.
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Table 2. Radial dependence of JFP PM

p Radial dependence
6 r5/2

7 r3

8 r5/2

9 r4

10 r9/2

 In this work, in order to optimize the design of JFP PMs, we will consider p to be a rational number 
multiple of N/2, being N an integer. This provides an extra degree of freedom to optimize the performance of 
WFC optical systems. 
 In order to illustrate the work, we will show numerical simulations for an optical system with PMs 
whose shape has radial dependence between r3 and r4 as in Table 3.

Table 3. Radial dependence of JFP PM in this work#

p Radial dependence
14/2 r3

15/2 r13/4

16/2 r14/4

17/2 r15/4

18/2 r4

4 Numerical Simulations

 In this section, we will show and analyze the performance of the five JFP PMs in Table 2. We 
consider an optical system with f /2.5 and a wavelength of λ = 632 nm. This optical system has been already 
analyzed in ref [15] for integer p values between 6 and 10. For a value of the strength of α = 50 λ and 
considering both noiseless and noisy cases, we found that p values of 6, 7 and 8 performed better. In this 
work, we will consider the same noise values as those provided in ref [15], but we will study the performance 
of JFP PMs with p value between 7 and 9. Figure 2 shows 2D contour maps of the different PMs where radius 
of pupil has been normalized to unity. It can be observed that as p increases the central region becomes flatter. 

Fig 2. 2D colormaps.

 Performance at four different recording planes with an amount of defocus, W20, of 1 λ, 3 λ, 5 λ and 
7 λ will be studied. Here,

 W20 = 
Δz

8λ (f / #)2 (3)

where, Δz is the distance between the paraxial focal plane and the recording plane.
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 The OTFs were computed as the inverse discrete Fourier Transform of the PSF [18]. FFT evaluations 
were performed by routines provided by Matlab and sampling of the pupil plane on a grid of 4096 × 4096 and 
a pixel size at the image plane of 0.79 μm in order to work in the limit of the Nyquist theorem [18,19] and 
avoid extra aliasing due to undersampling of the phase at the pupil of the optical system [20].
 In Fig 3, we plot the optical Modulated Transfer Functions, MTF, for the different defocus values, 
MTF(W20).

Fig 3. MTF(W20) corresponding to the different PMs labeled by p and for different defocus values.

 We can observe that in all cases none of the MTF(W20) has zeroes, and therefore deconvolution 
is not an ill posed problem. As p increases the amplitude of the MTF(W20). increases, and this will have 
an impact on the signal to noise ratio of the coded images, and therefore, on the quality of the decoded 
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images. On the other hand, as p increases, there is a slight loss of invariance in the defocus range. All 
MTF (W20) show ripples or oscillations for low frequencies. The number and height of oscillations decrease 
as p increases. This behaviour is more evident in Fig 4, where we plot the system MTF, MTFsystem (W20), 
defined as:

 MTFsystem (W20) = 
MTF(W20)

MTF(0)
 (4)

Fig 4. MTFsystem(W20) corresponding to the different PM labeled by p and for different defocus values.

 Finally, in Figs 5 and 6, we show decoded images for the different PMs and the different 
defocus values. Figure 5 represents the noiseless case and Fig 6 shows the noisy one obtained by 
adding to the intermediate images random Gaussian noise with zero mean and two different values of 
standard deviation: 0.2% and 1%, of the maximum value of the gray level of the optically coded image.



728 E Acosta, E González Amador, A Padilla and J Arines 

Fig 5. Decoded images with the different PM and different defocus values from intermediate free of noise images. 
First column shows the defocused images of the optical system without PM.

Fig 6. Decoded images with the different PM and two different defocus values from intermediate images 
with 0.2% added noise (upper rows) and 1% added noise (lower rows).
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5 Discussion

 From Fig 5 (noiseless case), we can observe that artifacts (replicas) appear for small values of 
p and they become more visible as defocus increases. This is due to the ripples that MTFs show for low 
frequencies, but resolution is better than that of larger p values because MTFs are practically invariant. On 
the other hand, for large values of p, images suffer distortion and artifacts at the edges of the bars. This is 
due to the small loss of invariance of the MTFs with both p and defocus. Nevertheless, there are no artifacts 
in the shape of replicas because MTFs show no oscillations for low frequencies. Here, we could say that 
p = 15/2 (blue squares) provides the best trade-off artifacts-DOF, better than the proposed p = 16/2 in ref 
[15]. 
 From Fig 6, we can observe that noise minimizes artifacts as well as distortion for small values of 
p and minimizes artifacts for the large ones. Nevertheless, noise propagation is strong for small p values 
what makes the images loose resolution and DOF. The higher the noise, the larger should be p. Here, we 
could say that p = 18/2 (green squares) provides the best trade off artifacts-DOF-noise, as proposed in ref 
[15] for 1% noise, but p = 17/2 (red squares) performs better than p = 16/2 for 0.2% noise.

6 Conclusions

 In this work, we explore the use of an extended subset of Jacobi-Fourier phase masks to both 
optimize image quality and extend the depth of focus in an WFC optical imaging system. For the radial 
part, we used Jacobi polynomials J0 ( p, p, r), being p = N/2, N an integer. For the azimuthal dependence, 
we used cos (3θ ) to compare with the Trefoil Phase Mask ( p = 14/2).
 The optical system we use to simulate the performance of these masks is an optical system with 
f /# = 2.50 and λ = 632 nm. Results are shown for a PM strength α = 50λ that provides depth of focus up 
to 7λ in the best scenario.
 We found that small values of p yield decoded images with artifacts, the smaller the p value the 
higher the amount of artifacts and the larger DOF when noise is zero or neglectable. For higher level of 
noise, higher values of p perform better, i.e. the higher the noise the higher the p value performs better. These 
results agree with the analysis of the MTF plots. For small values of p, the plots show ripples which result 
in the presence of artifacts in the decoded images. Larger p value give rise to softer curves and hence fewer 
artifacts. The higher the p value, the higher the MTF values and hence the best behavior in the presence 
of noise. However, invariance is gradually lost as p increases, which implies that as p increases, the depth 
of focus decreases. In other words, the proper choice of the p value is a trade-off among signal to noise 
ratio, desired depth of focus and presence of artifacts for a given f / # and this choice can be optimized if 
we make use of the set of JFP PM described in this work because we are adding a degree of freedom to 
the formula of JFP PMs proposed in ref [15].
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