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Optical instruments are used for observation and spectroscopy apart from host of many other applications. Both in 
observation and spectroscopy it is important to know how closely two objects, or two spectral lines can be resolved 
by the instruments. There had been a number of criteria of resolution: two most often used are Rayleigh criterion and 
Sparrow criterion. Rayleigh criterion of resolution has no mathematical support but is often used due to its simplicity. 
Sparrow criterion gives the lowest limit of resolution. Further in seeing, the nature of illumination of the object has 
profound effect on the limit of resolution. Rayleigh criterion tacitfully assumes incoherent illumination, while the Sparrow 
criterion can be applied to incoherent, partially coherent and coherent illuminations. Applicability of Rayleigh criterion 
can be extended to partially coherent and incoherent illuminations by a simple modification. The paper through the 
tutorial approach describes the resolution of optical instruments used for seeing and spectroscopy. © Anita Publications. 
All rights reserved.
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1 Introduction

 I chose this topic due to my early interest in this topic under the guidance of Professor Sodha. 
He himself has written many papers on the resolving power of spectroscopic instruments. That was the 
active period of research on this topic [1-17]. Resolution has been described in terms of either Rayleigh or 
Sparrow criteria of resolution. With the passage of time different criteria emerged for the assessment of the 
performance of optical instruments. There, however, been intermittent publications on resolution [18-21]. 
Most recent one is due to Cremer and Masters which is a survey of the field of research on resolution with 
emphasis on the resolution of microscope [22]. Ever since the path breaking research on the development 
of optical microscopes and theory of imaging by Abbe, the resolution of microscope has kept pace with 
the advances in biology and medicine. Alternately it may be argued that the advances in microscopy, and 
advances in biology and medicine are interlinked.
 Optical instruments are used for both imaging and non-imaging applications. While discussing the 
resolving power of instruments, it would be assumed that the performance of the optical instruments is 
diffraction-limited. In principle, resolving power should depend on the performance of both the instrument 
and the detector. It would however, be assumed that the detector is an ideal detector capable of resolving 
details presented by the instrument. Therefore, the diffraction effect on the optical instruments will only be 
considered.
 Ideally a point object should be imaged as a point. But this is not true, because only a part of a 
spherical wave emanating from the point source is captured by the instrument. The diffraction occurs when 
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the wavefront is limited in transverse dimension by the mountings of the optics or the optics itself. Further, 
the effect of diffraction in far field is of importance, and hence only the Fraunhofer diffraction by the limiting 
aperture is considered. Assuming the limiting aperture to be circular, an image of a point source instead 
being a point turns into an irradiance distribution, which is called the Airy pattern. This comprises of a 
central disc surrounded by fringes of decreasing irradiance. The image of a point is thus approximated by the 
size of the central disc. However, the irradiance distribution as a whole plays a role in the resolving power 
of the instrument. If the limiting aperture is not of circular shape but is of rectangular shape, the irradiance 
distribution changes.

2 Image of a point source

 Such a situation would arise when a telescope is used to view a star or binary stars. A telescope 
makes an image of each star, assumed to be a point. The irradiance distribution in the image of a point source 
formed by a diffraction-limited system is expressed as

 I = I0 
2J1(kaω)

kaω 
2

where k = 2π
λ  is the propagation parameter, 2a is the diameter of the imaging system (exit pupil) and ω = sin–1


r
υ; r is 

the radial distance from the optical axis and υ is the distance from the center of the optical system to the point where 
the image is formed. I0 is the irradiance at the center of the pattern. The function J1(kaω) is the Bessel function of 
first order and first kind. This distribution was first obtained by Airy and is known as the Airy pattern. It has a 
maximum irradiance I0 at the center that drops to zero when kaω= 1.22 π. The irradiance oscillates between 
zero and some finite decreasing irradiance values. In other words, the image of a point source formed by 
a diffraction-limited optical system consists of a bright disc, called the Airy disc, surrounded by rings of 
decreasing irradiances. Writing kaω = δ, the irradiance distribution is expressed as 

 I = I0 
2J1(δ)

δ 
2

 The curve centered at δ = 0 in Fig 1 (a) shows the normalized irradiance distribution. The first 
zero corresponding to δ = δmin occurs for δmin = 1.22π. The full width at half maximum (FWHM) of the 
distribution is ~ 1.03 π . This distribution is also known as the point spread function of the system.
 However, if the limiting aperture is rectangular of size 2a × 2b instead of circular aperture of 
diameter 2a, the irradiance distribution is given by

 I = I0 
sinα

α 
2 


sinβ

β 
2

where α = kax/υ, β = kby/υ, and (x, y) are the coordinates of a point in the image plane at which the irradiance 
is I. The first zero of irradiance distribution corresponds to α = β = π.

3 Imaging of a pair of point sources under partially coherent illumination and with a constant 
background

 It is assumed that the irradiances of the point sources are unequal (1:p) and there is a background 
irradiance. Under such a situation, the irradiance distribution at the image plane can be expressed as 

 I = I0 
2J1(δ)

δ 
2
 + pI0 

2J1(δ – ∆δ)
δ – ∆δ 

2
 + 2 p I0 γ

2J1(δ)
δ

 2J1(δ – ∆δ)
δ – ∆δ

 + qI0

where p and q are less than unity, qI0 is the background irradiance and γ is the spatial degree of coherence 
between the wavefields from the two-point sources. The normalized resultant irradiance distribution Ires is 
given by
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 Ires = I
I0

 = 
2J1(δ)

δ 
2
 + p 

2J1(δ – ∆δ)
δ – ∆δ 

2
 + 2 p γ 2J1(δ)

δ
 2J1(δ – ∆δ)

δ – ∆δ
 + q

This is a general expression. When γ =1, both the wavefields are coherent and hence their amplitudes add, 
resulting in an irradiance distribution, which is given by

 Ires = 
2J1(δ)

δ
 + 

p 2J1(δ – ∆δ)
δ – ∆δ 

2
 + q

When γ = 0, both the wavefields are incoherent and hence their irradiances add, resulting in an irradiance 
distribution, which is given by

 Ires = 
2J1(δ)

δ 
2
 + p 

2J1(δ – ∆δ)
δ – ∆δ 

2
 + q

 Figure 1 (b) shows the variation of resultant irradiance distribution of two-point sources of equal 
irradiances (p =1) for various values of the spatial degree of coherence and in the absence of background 
(q = 0):- the normalized resultant irradiance distributions due to two-point sources have been drawn for a 
fixed separation of Δδ = 1.22π.
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Fig 1. Normalized irradiance distribution in the image of (a) a point source, (b) two point sources 
angularly shifted by 1.22 π for different values of the coherence function.

4 Criteria of resolution

 There are several two-point source resolution criteria reported in the literature. According to 
Rayleigh criterion of resolution, the two-point sources are just resolved when the diffraction pattern due to 
one-point source falls on the first minimum of the diffraction pattern due to the second point source [23,24]. 
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This results in a dip in the resultant diffraction pattern. There is no dip in the resultant irradiance distribution 
when Sparrow criterion is applied [7]. The Dawes criterion applies to the angular separation of closely spaced 
double stars using a telescope [25]. The angular separation in radians is given by 1.02λ/2a, where a is the 
radius of the aperture and λ is the wavelength of light. It is close to the full width at half maximum (1.03π) of 
the point-spread function and corresponds to a 5% dip between the maxima when the point-spread function 
is the Airy pattern. Schuster [26] proposed the criterion that two-point sources are resolved if the main lobes 
of their point-spread functions do not overlap. This is equivalent to twice the Rayleigh criterion spacing.
 Houston [27] suggested comparing the distance between the central maxima of the resultant 
irradiance pattern with the full width at half maximum of the individual point-spread functions. If the former 
is greater than the latter, the sources are said to be resolved. This is thus very close to the Dawes criterion.
 Abbe was the first to extend two-point resolution to fully coherent illumination with special reference 
to the microscope. Buxton’s criterion [28] deals with the amplitude diffraction patterns and defines two- point 
sources to be resolved when the closest points of inflexion of the diffraction patterns coincide.
 A modification of Rayleigh criterion of two-point source resolution applicable to both coherent and 
partially coherent illumination is described by Born and Wolf [29]. This modified version has been used by 
Bhatnagar, Sirohi and Sharma [14], and Nayyar and Verma [15].
 There have been many other ways to look at the issue of resolution. The existence of an ultimate 
absolute limit for resolving power is investigated by Harris utilizing the ambiguous image concept, viz., 
different objects cannot be distinguished if they have identical images [30]. According to Toraldo di Francia, 
two-point resolution is impossible unless the observer has a priori an infinite amount of information about the 
object [31]. McCutchen mentions that in principle one can construct a super-resolving optical system that can 
resolve details finer than the diffraction limit [32]. Using Fourier transforms and coherence theory, Lukosz 
showed that the optical systems can far exceed the classical limit of resolution [33,34].
 Most often used criteria of two-point source resolution are due to Rayleigh and Sparrow. Though 
not explicitly stated these are applicable to incoherent illumination. Both the criteria apply when the sources 
are of equal brightness and in the absence of background irradiance. These are described in detail in next 
sections and the Rayleigh criterion and its modified version will be used in the subsequent sections.
4.1 Rayleigh criterion of resolution
 According to Rayleigh criterion of resolution, the two-point sources of equal brightness are just 
resolved when the irradiance distribution due to the first point source falls on the first minimum of the 
irradiance distribution due to the second point source. Since the first minimum of irradiance distribution 
occurs at δ =1.22π, the normalized resultant irradiance Ires, at the condition of just resolution, ∆δ = kaω = 
1.22π →→ ω = 0.61λ/a, is expressed as 

 Ires = 
2J1(δ)

δ 
2
 + 

2J1(δ – 1.22π)
δ – 1.22π 

2

 The resultant irradiance distribution exhibits a dip of about 26.5% of the maximum value. Therefore, 
the Rayleigh criterion can be stated in some-what different way, i.e.,the two-point sources are just resolved 
when there is a dip of 26.5% in the resultant irradiance distribution. Rayleigh criterion in this form will 
be used to study resolution of point sources of unequal brightness and in the presence of background in 
incoherent, coherent and partially coherent illumination.
4.2 Sparrow criterion of resolution
 According to Sparrow criterion of resolution, the two-point sources of equal brightness are resolved 

when there is no dip in the resultant irradiance distribution, i. e. 
d 2Ires
dδ2 |δ=

δmin

2
 = 0. This certainly gives a 
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smaller value of the resolution, i.e., ∆δ = 0.95π. The angular separation of two sources, according to Sparrow 
criterion, is given as ω = 0.47λ/a. Figure 2 (a & b) show these two criteria. Notice that the resultant irradiance 
is higher than the maximum irradiance of any one of the sources when Sparrow criterion of resolution is 
satisfied. 

N
or

m
al

iz
ed

 Ir
ra

di
an

ce
 

Delta (Radians)

(a)

N
or

m
al

iz
ed

 Ir
ra

di
an

ce
 

Delta (Radians)
(b)

Fig 2. Resolution by (a) Rayleigh criterion, and (b) Sparrow criterion.

 When a constant background is added to the irradiance distributions due to point sources, the relative 
magnitude of the dip decreases, requiring larger angular separation for just resolution according to Rayleigh 
criterion. This is due to loss of contrast. 
 Table 1 gives the limit of resolution of two point-objects under coherent and incoherent illumination 
for both the circular aperture and the slit aperture.

Table 1. Limit of resolution-Rayleigh vs Sparrow criterion

Circular Slit
 Rayleigh - Incoherent Δδ = 1.22π Δδ = π
Rayleigh - Coherent Δδ = 1.64π Δδ = 1.42π

 Sparrow - Incoherent Δδ = 0.95π Δδ = 0.83π
Sparrow - Coherent Δδ = 1.46π Δδ = 1.33π
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5 Resolution of two-point sources of equal brightness under partially coherent illumination
 The normalized resultant irradiance distribution can be written as 

 Ires = 
2J1(δ)

δ 
2
 + 

2J1(δ – ∆δ)
δ – ∆δ 

2
 + 2 γ 2J1(δ)

δ
 2J1(δ – ∆δ)

δ – ∆δ
When Rayleigh criterion of resolution is invoked, we have

 0.735 = 
2J1(∆δ/2)

∆δ/2 
2
 + 

2J1(∆δ/2)
∆δ/2 

2
 + 2γ 2J1(∆δ/2)

∆δ/2

 2J1(2∆δ)
∆δ/2  = 2(1 + γ) 

2J1(∆δ/2)
∆δ/2 

2

This equation can be solved iteratively to find the value of ∆δ.

6 Two incoherent sources of unequal brightness

 When two incoherent sources of different brightness are considered, Rayleigh criterion can still 
be applied. The two sources will be just resolved if the dip is 73.5% of the maximum of the weaker source. 
Figure 3 (a) shows the resultant irradiance distributions for two incoherent sources which are angularly 
shifted such that kαω = 1.22π but have brightness ratio of 1, 0.8, 0.5, 0.3 and 0.1. It is seen that the value of 
dip keeps on decreasing with the reduction of brightness ratio and at brightness ratio of 0.3 and lower, the 
two sources cannot be resolved. However, if the angular separation is increased, the sources are resolved as 
shown in Fig 3 (b). Interestingly the two sources are just resolved when their brightness ratio is 0.8 and the 
angular separation ω is such that kαω = 1.22π, which is the case for the sources of equal brightness.
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Fig 3. Normalized resultant irradiance distributions of sources with varying brightness ratio 
and angular separation such that kαω = 1.22π, and (b) with varying angular separations.
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 It may be remarked that the stars (point sources) were resolvable according to Treanor [35] if the 
maximum of the diffraction pattern of a fainter star coincided with the first minimum of the diffraction 
pattern of the brighter one and the maximum of the fainter star was greater than the first sidelobe of the 
brighter star. This statement, however, does not seem to be supported if we carefully examine Fig 3 (a).

7 Improving the resolution 

 The resolution of an optical system can be improved if the dimensions of the diffraction pattern are 
decreased, i.e. the irradiance distribution is made narrower. Of course, it becomes narrower if the aperture 
of the system is increased. This is not always an acceptable solution. However, there are ways of achieving 
this without increasing the aperture size. For this to happen, the pupil transmittance instead of being unity is 
varied by using designed filters [20,21]. The simplest case is when the transmittance of the central portion of 
the pupil is taken as zero. The central obscuration of pupil is often due to the design of certain telescopes and 
microscopes.
 The normalized irradiance distribution in the Fraunhofer pattern of an obscured pupil (aperture) is 
given by

 Ires = 
1

(1– ε2)2  + 
2J1(δ)

δ
 – ε2 2J1(εδ)

εδ 
2
 0 ≤ ε ≤ 1

where ε, the obscuration ratio, is the ratio of the diameter of circular obstruction to the diameter of clear 
aperture 2a. 
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Fig 4. Irradiance distributions for (a) various values of obstruction ratio, and (b) obstructed 
and obstructed phase-shifted aperture.
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 Figure 4 (a) shows the irradiance distributions for different obscuration ratios (ε = 0, 0.2, 0.4, 0.6, 
0.8). Due to the obscuration, there is a loss of light. Though the central lobe gets thinner with increasing 
obscuration, the irradiance also increases in second and higher lobes of the distribution.
 The irradiance distribution can be modified by phase-shifting the transmittance of central portion 
of the aperture. As an example, circular portion of half the radius of the pupil has been phase-shifted by 
π. In this case there is no loss of light. Figure 4 (b) shows the irradiance distributions for an unobstructed 
aperture, an obstructed aperture with ε = 0.5 and π phase-shifted aperture of radius 0.5a. It is obvious that the 
central lobe is thinner but the irradiance of the first side lobe has considerably increased. As such, this kind 
of modification does not lead to any significant improvement in the resolution and has delirious effect when 
the sources are of unequal brightness. 

8 Resolution of two coherent sources

 When the sources are coherent or the two object points are illuminated by a coherent wave, then 
their amplitudes rather than their irradiances add. Figure (5) shows the resultant irradiance distribution when 
the two sources are angularly separated such that kαω = 1.22π. Incoherent point sources were just resolved, 
according to Rayleigh criterion, for this angular separation. However, coherent sources are not resolved, and 
a larger angular separation is required to resolve them. When the angular separation is such that kαω = 1.64π, 
the dip in the resultant irradiance distribution is about 26% and hence the two coherent points are just resolved 
according to Rayleigh criterion of resolution. This expression gives the separation between two points which 
are just resolved as 0.82 λ0 /μsinθ, where μsinθ is the numerical aperture of the object. This is slightly larger 
than that given in the book ‘Principles of Optics’ by Born and Wolf. Their value is 0.77 λ0 /μsinθ, which was 
obtained by the solution of a transcendental equation that did not take into account the negative values in the 
amplitude distribution. To make this matter clear, the amplitude distributions due to both the point objects 
are also shown in green in Fig 5. Note that the maximum irradiance in the resultant irradiance is not unity, 
and the minimum does not appear where the two amplitude distributions intersect. Further, the Sparrow 
criterion gives the condition kαω = 1.46π. Young et al have carried out experiments in which test charts were 
illuminated by laser radiation and visual observation were made [12]. They estimated the angular separation 
at resolution to be about 1.6π. 

Fig 5. Rayleigh and Sparrow criteria under coherent illumination.

 Figure 6 (a) shows the variation of limit of resolution, Δδ, with degree of coherence, γ, using 
Rayleigh criterion Imin/Imax = 0.735 for various of irradiance ratio, p, of two sources. Gamma equal to one 
(γ =1) corresponds to coherent sources and γ = 0 to incoherent sources. Figure 6 (b) gives the variation 
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of limit of resolution with background for γ = 0 and γ = 1: background 1 corresponds to the case when 
the background irradiance is equal to the irradiance of any one of the point sources: both the sources 
are assumed to have the same irradiance. It may be noted that the minimum irradiance of 0.735 of the 
maximum, could not be obtained for background equal to 3 when the sources are incoherent.
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Fig 6. Variation of the limit of resolution (a) with γ for various values of irradiance ratio and 
(b) with background for γ = 0 and 1.

9 Resolving power of spectroscopic instruments

 Most of the instruments employ a narrow slit source (a line source) and the image of the slit, 
considering diffraction, is the spectral line. The instruments utilize dispersive elements to separate out the 
spectral components: the dispersive elements may include prism, grating, Fabry-Perot interferometer etc. The 
instrument should be able to resolve spectral lines corresponding to two closely separated wavelengths λ1 and 
λ2. The resolution of the instrument is, therefore, defined as |λ1 – λ2|. However, it is customary to express the 

resolving power as 
–λ

|λ1 – λ2|
 = λ

Δλ
, where –λ is the mean wavelength. 

 If we consider a 60°-prism used at minimum deviation condition in a spectrometer, the irradiance 
distribution in the image of the slit is given by sinc2(x) function: the beam is limited by the dimensions of 
the prism. Figure 7 shows the normalized irradiance distributions for wavelengths λ and λ + Δλ, and the 
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normalized resultant distribution when the irradiance distribution is given by sinc2(x). At the condition of just 
resolution, the dip in the normalized resultant distribution is ~19%.
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Fig 7. Irradiance distributions in the image when the incident radiation is dispersed by a 60° prism.

Using Rayleigh criterion, the resolving power R of the 60°-prism spectrometer is given by 

 R = 
λ

Δλ = t 
dμ
dλ

where t is the prism base length and 
dμ
dλ  is the chromatic dispersion of the material of the prism. The resolving 

power of prism is different in different regions of the spectrum.
 When a plane grating is used as a dispersive element, the incident collimated beam is diffracted by 
the grating elements. The diffracted beams are collected by a lens and the irradiance distribution at the focal 
plane, due to multiple beam interference, is given by 

 I(δ) = I0 
sin2(Nδ/2)
sin2(δ/2)

where N is the number of grating elements, the phase difference between any two adjacent beams is δ = 
2π
λ  

dsinθ; θ is the angle of diffraction. Figure 8 (a) shows the diffraction patterns of gratings with different values 
of N. For smaller value of N, there are secondary maxima between the principal maxima. As N becomes very 
large, the diffraction pattern becomes very narrow. Different wavelengths in the incident beam are diffracted 
at different angles. The resolving power of the grating is given by 

 R = 
λ

Δλ = m N
where m is an integer called the interference order, usually very small not exceeding 3. Resolving power of 
a grating spectrometer is the same over the whole spectrum.
 A Fabry-Perot (F-P) interferometer consists of two high reflecting mirrors aligned parallel to each 
other and whose separation could be varied. A plane parallel plate of thickness t and refractive index n whose 
surfaces are coated to provide high reflectivity is called F-P etalon. Incident beam is multiply reflected: the 
amplitudes of multiply reflected beams decrease geometrically. Essentially an infinite number of beams 
participate in interference both in reflection and in transmission. The irradiance distribution in transmission 
of a F-P etalon is given by 

 I(δ) = I0 
1

1 + F sin2(δ/2) :  δ = (2π/λ) 2nt cosθt = 2mπ

where θt is the angle of refraction inside the plate, m is the fringe order and the parameter F is defined as 
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F = 4R/(1– R)2: R is the reflectivity of the surfaces. This distribution is also called Airy distribution. Full 
width at half maximum (FWHM) of this distribution is 4/ F . Two wavelengths are just resolved when the 
diffraction patterns of the two wavelengths are separated by FWHM. The resolving power is then expressed as

 R = 
λ

Δλ = m 
π
2 F = mF

 Prior to F-P interferometer or etalon, multiple beams were created by employing high reflectivity of 
a surface at larger angles of incidence such as in Lummer-Gehrcke (L-G) plate. Because of oblique incidence 
and finite length of the plate, only finite number of beams participate in interference. However, multiple beam 
interference in both transmission and reflection could be simultaneously seen or recorded. The irradiance 
distribution, both in reflection and transmission (when the first reflected beam is blocked) is of the type

 I(δ) = I0 
1 + FN sin2(N δ/2)

1 + F sin2(δ/2)

where FN = (4RN)/(1– RN)2 and N is the number of beams. The phase difference δ is given by δ = 2π
λ  2nt cos θt. 

Using the same argument as used for F-P interferometer, the resolving power of L-G plate is given by 

 R = 
λ

Δλ = m 
π
2 F – 2N2 FN  = mF'

where F' is the finesse of the L-G plate.
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Fig 8. Normalized irradiance distributions for (a) the grating (b) the Fabry-Perot interferometer 
and L-G plate in transmission.
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 Figure 8 (b) shows the normalized irradiance distributions for the Fabry-Perot interferometer as well 
as for L-G plate in transmission, both assumed to have a reflectivity of 0.95. The distributions are obtained 
when the surfaces of F-P interferometer and L-G plates are assumed free from any surface defects. There 
have been many studies on the effects of surface imperfections and misalignments [6,36,37]. 
 In a Fourier transform spectrometer (FTS), an irradiance record is made when one of the mirrors of 
a Michelson interferometer is translated over a length L and the spectrum is obtained computationally from 
the record. Due to finite traverse of the mirror, there is an instrumental sin c function, which governs the 
resolving power. The resolving power of an FTS is,

  R = 
λ

Δλ = 2L
λ

.

10 Conclusions

 This paper presents the study of resolution of optical instruments used for both seeing and 
spectroscopy. 
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