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We present a demodulation approach for a rotating polarizer-analyzer polarimeter dedicated to linear retardance 
measurements. Our rotating polarizer-analyzer polarimeter analysis is based on retrieving a transparent sample's partial 
Mueller matrix measurement to be later associated with its phase retardation properties. We present experimental results 
showing the feasibility of our proposal. © Anita Publications. All rights reserved.
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1 Introduction

 Polarized light can be used to determine optical properties of samples by analyzing the response of 
the polarized light that is reflected or transmitted by the sample under test. It has been widely used to develop 
new measurement systems for the atmospheric sensing field [1,2] and follow climate variations [3]. In remote 
sensing, polarimetry has also been used to analyze reflective objects [4], and even in the biomedical field, it 
has been proposed as a marker to identify cancerous tissue in its early stages [5].
 Several polarimeters are described in the literature, for example, using a dual rotating retarder 
configuration [6,7], employing phase modulators [8], or by liquid crystal retarders [9,10]. After retrieving 
the Mueller matrix, the decomposition algorithms separate the information into three properties known as 
diattenuation, retardance, and depolarization [11-15], and each of these properties can be associated with 
the physical properties of the sample under test. More specifically, the retardance property is helpful for 
glucose measurement and also can be associated with stress analysis. One type of polarimeter commonly 
used employs a rotating polarizer and an analyzer that Azzam proposed in 1978 [6]. He showed theoretically 
the feasibility of the implementation and its capabilities to retrieve the partial Mueller matrix and Jones 
matrix coefficients through common transformations. Later, several authors followed the Azzam's approach 
[15-21].
 In our proposal, we employed the rotating polarizer-analyzer system considering the sample under 
test as a linear retarder. With this representation, although we have a partial Mueller matrix polarimeter, we 
can retrieve the fast axis orientation and its linear retardance property to analyze transparent samples with 
retardance properties. The implementation presents several advantages compared with other systems that 
employ retarders with a strong dependence on the wavelength, and our approach has potential usage for 
large bandwidth spectroscopic measurements. The other advantage is the reduced cost of implementation by 
employing linear polarizers only. 
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 The paper is organized as follows: in section 2, we show our theoretical approach and the demodulation 
algorithm. Then, experimental results obtained with a layered retardance phantom are presented in section 3. 
Finally, conclusions and final remarks are given in section 4.

2 Rotating polarizer-analyzer polarimeter sensitive to linear retardation parameters

 The approach for retrieving the linear retardance information consists of a polarization state generator 
with a light source at working wavelength λ, a linear polariser LP(0°) oriented at angle 0° (employed as 
orientation reference) and a linear polarizer LP(θ) rotating at a rate θ. The polarization state detection unit 
consists of a linear polarizer LP(4θ), rotating at a rate 4θ and an intensity detector that could be a camera or a 
photodetector. The sample is considered as a linear retarder LR(θs, δs) with properties of fast axis orientation 
θs and linear retardance δs. Figure 1 shows the diagram and the theoretical parameters involved in the system.

Fig 1. Rotating polarizer-analyzer polarimeter. LP: represents a Linear Polarizer, θ is the fast axis orientation of 
the linear polarizer; LR is a linear retarder, the angles δs and θs represent linear retardance and fast axis orientation, 
respectively. 

The Mueller matrix of a linear polarizer LP(θ) for a given angle θ is [12,13]
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while for a linear retarder LR(θs, δs) is given by [12,13]
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(2)
where θs is the fast axis orientation and δs the linear retardance. Considering non-polarized light as input, Sin= 
[S0, 0, 0,0]T, and the output Stokes vector, Sout, is

 Sout = LP(4θ) ∙ LR(θs, δs) ∙ LP(θ) ∙ LP (0) ∙ Sin, (3)
moreover, the detected intensity, Iout is the first element of Sout, as
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 Iout (θ) = 
S0
16 2 + 2cos(2θ ) + 

1
2 (1 + cosδs) cos(4θ) + (1 + cosδs) cos(6θ)

  + (cos2 (δs/2) + cos(4θs) sin2(δs/2)) cos(8θ) + sin(4θs) sin2 (δs/2) sin(8θ)

  + 2cos(4θs) sin2(δs/2) cos(10θ) + sin(4θs) sin2 (δs/2)sin(10θ)

  + cos(4θs) sin2 (δs/2) cos(12θ) + sin(4θs) sin2 (δs/2)sin(12θ) (4)

 As the detected intensity is modulated by the rotation rates of the polarizer-analyzer, it can be 
modeled as a series of harmonics that can be analyzed as a Fourier Serie as

 Iout(θ) = a0/2 + ∑
6

k = 1
[a2k cos(2kθ ) + b2k sin(2kθ )]. (5)

 As the output signal is composed of sine-cosine functions with different amplitudes, each coefficient 
can be calculated from the experimental data to obtain the retardance information of the sample as

 tan (4θs) = 
b10
a10

and

 cos(δs /2) = 2 
a4
a2

 (6)

 By this procedure, we can retrieve the linear retardance parameters of the sample. The approach 
does not consider the initial angle of the rotating polarizer and analyzer; both elements need to be aligned 
with respect to the first polarizer. 

3 Experimental implementation and Results

 We employed a He-Ne laser with a wavelength of λ = 632.8 nm as a light source. The beam is 
spatially filtered and expanded to 25 mm in diameter. To acquire the images, we used an 8 bit CMOS camera 
(model acA2000-340km, Basler) with 2048×1088 pixels and an imaging system focusing on the sample 
location. The imaging system provides a spatial resolution of 14.25 cycles/mm corresponding to a line width 
of 35.08 microns by placing a standard USAF resolution chart at the sample plane. The polarizers used in 
the system are the standard polarizer sheets working in the visible range (Thorlabs-LPVISE2×2) with an 
extinction ratio of 1000:1, according to the provider.

Fig 2. Retardance Layered Phantom. Fig (a) shows the distribution of different materials in the sample. Region 
1 corresponds to air, region 2 the glass slide, and regions 3-6 correspond to the overlaps of different number of 
cellophane layers; Fig (b) shows a lateral view of the layer's distribution.

 For experimental validation, we performed a measurement employing a layered retardance phantom 
presented in Fig (2). We made the phantom by overlapping transparent cellophane tapes as commonly used 
in photoelasticity experiments due to the induced birefringence [22]. Figure 2 (a) shows an acquired frame, 
where each region is labeled for reference. Region 1 corresponds to air, region 2 corresponds to the glass 
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slide, and regions 3 to 6, the corresponding overlap of different number of layers of the cellophane tape as 
shown in Fig 2 (b).
 Figure 3 (a) shows the intensity modulation obtained from region 1 corresponding to air (red line) 
and region 5 corresponding to cellophane tape (blue line). Figure 3 (b-c) presents the Fourier coefficients ak 
and bk used for the retardance calculation. 

Fig 3. Intensity modulation obtained at region 1 – air (red line) and region 5 (blue line) and its 
corresponding Fourier series coefficients ak, bk.

 Figures 4 (a) and (b) show the spatial distribution of the fast axis orientation 4θs and linear retardance 
parameter δs/2. It can be noted that the retardance in the air and glass remains minimum while in the layered 
parts vary depending on the analyzed region.

Fig 4. Fast axis orientation and linear retardance information of the sample. 

4 Conclusion and Final Remarks

 We developed a linear retardance-sensitive polarimeter based on a rotating polarizer-analyzer 
configuration. One of the main advantages of our proposal is that we acquire the retardance information of 
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the sample without using retarders which are highly wavelength-dependent. As a result of this improvement, 
our proposal has a potential usage for a large bandwidth instrument implementation. 
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