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Singular optics has become a widely researched area because of many applications of optical vortices and the orbital 
angular momentum. In optics, singularity emerges in connection with optical fields with spatial inhomogeneity. For this 
reason, the concept of light beam shaping occupies a prominent position in singular optics. One of the important aspects 
of current research is the efficient technique to realize vector fields of light having structured polarization. This paper 
describes the dual-pass phase modulation technique for generating vector fields having phase and polarization singularities. 
Simulation and experimental results of singular beams have been presented. © Anita Publications. All rights reserved.
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1 Introduction
 Advancement in technology to produce well-defined light beams has attracted significant attention. 
For this reason, laser beams have occupied prominent positions in many optical technologies. Different 
parameters describing optical fields can be tailored spatially and temporally. Intensity, phase, and polarization 
are the parameters of light that can be shaped uniquely for a purpose. Such light beams are referred to as 
structured light or tailored light [1]. Many efforts are being made for the wavefront shaping of laser beams 
[1-3]. 
 Recent efforts have uncovered many new features of optical fields which are associated with their 
unique spatial distribution such as optical singularity [4,5]. The foundation for the study of optical singularity 
or wavefront dislocations was laid by the pioneering work of Nye and Berry in 1974 [6]. Later, Coullet 
et al introduced the term 'optical vortex' for phase singularity. At the singular points, the phase remain 
indeterminate [7]. A point in optical field at which both phase and polarization singularity simultaneously exist 
is referred to vector-vortex [8]. Vector fields of light have spatially inhomogeneous polarization distributions. 
Light beams embedded with singularity are referred to as the singular beams. Many active investigations 
on fundamental theories and applications of singular beams are currently undergoing in various platforms 
[9-11].
 Singular beams have brought up many innovations among them the most attractive is their association 
with the orbital angular momentum (OAM) of light [12]. In 1992, Allen et al realized in their study that 
the light with helical wavefront carries well-defined OAM per photon [13]. The combination of the concept 
of OAM with the idea of optical vortices have created new possibilities in classical and quantum optics 
[12,14-17]. Singular beams have found applications in optical manipulation [18], optical communications 
[19], metrology [20], and microscopy [21]. They play a crucial role in the study of light-matter interactions, 
spin-orbit interactions [22], and quantum optics [23]. Significant developments with the fundamental theories 
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and applications of singular beams have been reported in recent articles [24-28]. An efficient and convenient 
technique for beam shaping is a prerequisite for emerging innovations and applications of singular beams. 
In recent years, spatial light modulators (SLM) have become popular for beam shaping because of their 
capability to control the wavefront of light flexibly [29,30]. The wavefront of incident laser beams can be 
converted to helical that holds an optical vortex. Further, different techniques can be applied to utilize the 
SLM to manipulate the polarization distribution of light [31,32]. A common way to realize vector fields is 
through the superposition of scalar fields on an orthogonal polarization basis. Off late, non-interferometric 
approaches such as the technique of dual-pass phase modulation have emerged to simplify the optical set-
ups for the efficient generation of vector fields with singularity [33,34].
 This paper describes the generation of singular beams using SLM. The technique of dual-pass phase 
modulation has been explained, which can be used to realize vector-vortex beams. This technique uses a 
compact and non-interferometric experimental set-up with a single SLM. The presented methods are useful 
for generating different orders of singular beams. The rest of the paper is organized as follows: Sections 2 
and 3 describe the optical singularity and singular beams, respectively. The generation of singular beams 
using SLM has been presented in section 4. Finally, some conclusions are drawn in Section 5. 

2 Optical singularity

 In optics, a singularity refers to a point in the electromagnetic field at which some parameters that 
describes the field becomes indeterminate; however, a circulating gradient of parameter surrounds the singular 
point. Commonly known singularity points in optics are associated with the phase and the polarization 
[4,25,26]. 
2.1. Phase singularity
 In the optical field, the point of phase singularity occurs where the phase is indeterminate and the 
gradient of phase circulates around the singularity [35,36]. At the phase singularity, the amplitude of light 
remains zero, which appears as isolated dark intensity spots. The optical vortex is formed at the singularity 
because of the helical wavefront of light. The optical fields can have different orders of phase singularity 
depending on the wavefront helicity. Phase singularity can also be found in the optical fields formed by 
interference of multiple beams [37].
2.2. Polarization singularity
 The state of polarization (SOP) of light can be characterized by two parameters: the orientation angle 
of the major axis and the ellipticity angle of the polarization ellipse. Polarization singularities arise because 
of the ambiguity in parameters used to characterize the SOP in a vector field of light [38,39]. Depending 
on the polarization distribution of the optical field around the singularity points, they can be classified as 
C-points or V-points. At a C-point, the SOP is circular, and therefore the azimuth of the polarization ellipse is 
indeterminate. Polarization distribution around a C-point consists of SOPs with spatially varying orientation 
angle and non-zero ellipticity angle. The orientation angle becomes indeterminate at a V-point. It arises in 
a vector fields where the SOPs are predominantly linear. V-point occurs at an intensity null-point around 
which the orientation angle of SOPs undergoes rotation [40-42]. Optical fields may also possess L-line 
singularity where the handedness of polarization ellipse remains undefined.

3 Singular beams

 For decades, singular beams which hold optical singularities have been a topic of considerable 
interest. Such beams can be homogeneously polarized or inhomogeneously polarized and can be referred 
to as (scalar) vortex beams and vector-vortex beams, respectively) [29]. They are described in the following 
sub-sections:
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3.1 Vortex beams
 Optical vortex beams are produced when the light with helical wavefront rotates like a corkscrew 
around the phase singularity that lies along the propagation axis [13]. Vortex beams have many unique 
properties among which their association with singularity and the OAM are most widely explored. 
 Laguerre-Gaussian (LG) modes have a helical phase profile, hence holds an optical vortex [14]. 
They are the paraxial solutions of the scalar Helmholtz equation. The electric field amplitude of LG mode 
which propagates along the z-direction, can be expressed as, 

 E LG (x, y, l ) = 
2p!

π (p + |l | )! 
1

w (z) 
r 2

w (z)  
|l |

 exp 
– r 2

w 2 (z) 
L | l |

p   
2 r 2

w 2 (z)  exp 
i k 0 r 2 z

2(z 2 + z 2
R)

 – i ψ + i l ϕ    (1)

 In this equation, r = x 2 + y 2 and ϕ denotes the azimuth angle, given as ϕ =  tan–1 (y/x). l is the 
azimuthal index, also referred to as the topological charge (TC). The term w(z) is the 1/e radius of Gaussian 
term, which is given by w (z) = w (0) [(z2 + ZR

2)/ZR
2]1/2, where w(0) denotes beam waist and ZR is the 

Rayleigh range. ψ is Gouy phase given by ψ = (2p + | l | + 1) tan–1(z/ zR). The term Lp
| l | is the associated 

Laguerre polynomial where p denotes the radial index.
 TC is an important parameter of vortex beams that specifies the order of phase singularity and the 
amount of OAM carried by the beam [36,43,44]. Figure 1 shows the phase and intensity profiles of different 
orders of vortex beam. They have a doughnut-shaped intensity profile resulting from the phase singularity. 

 
Fig 1. Vortex beams of different orders of topological charge

 As illustrated in Fig 1, the singularity in phase arises at a point around which the phase changes 
by the signed integral multiple of 2π. The magnitude of TC is equal to the number of windings of the phase 
per revolution around the singular point. The direction in which the phase increases gives the sign of TC. 
For an opposite sign of TC, the phase increases in the opposite direction around the singular point. 
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3.2. Vector-vortex beams
 Vector-vortex beams have spatially inhomogeneous polarization distribution and have both phase 
and polarization singularity [8]. Their unique properties are of great interest for various applications such 
as focusing, microscopy, optical manipulation, material processing, and imaging [45]. A special class of 
vector-vortex beams are cylindrical-vector (CV) beams [46]. They are the paraxial solutions of the vector 
Helmholtz equation and have axial symmetry in both amplitude and phase. Commonly known CV beams 
have radial and azimuthal polarization distributions. In addition to phase singularity, they hold V-points. 
CV beams, when projected onto a Poincaré sphere, span the equator. Another type of vector-vortex beams 
that hold C-points and spans the entire surface of the Poincaré sphere are the Full Poincaré beams [47]. 
Mathematically, the vector-vortex beams embedded with V-points and C-points can be described by the 
superposition of LG modes in the circular polarization basis. Their optical fields can be represented using 
the Jones matrix as follows:

  
E LG

1

E LG
2  = 


1 – i
–1 – i  

–1 – i
1 – i  

E LG (x, y; l1)
E LG (x, y; l2) exp(iδ)

 (2)

where ELG (x, y, l1) and ELG (x, y, l2) denote the complex field amplitudes of LG modes given by Eq (1). 
Appropriate selection of TCs l1, l2 and additional phase delay δ in Eq (2) describes beams with different 
orders of polarization singularity. A V-point is created when l1 and l2 have equal magnitudes but opposite 
sign. While in the case of a C-point, either of TCs l1 or l2 remains zero. The simulated intensity and 
polarization profiles of the commonly known vector-vortex beams are shown in Figs 2 and 3. CV beams 
are presented in Fig 2. In this figure, the CV beams presented in rows (a) to (d) are referred to as Type I, II, 
III, and IV, respectively [27,33]. Each of them has different polarization distributions around the V-points. 
Type I and Type III represent well-known azimuthally and radially polarized beams, respectively. They have 
Poincaré-Hopf or V-point singularity index +1, whereas it is –1 for Type II and Type IV. Figure 3 shows 
the Poincaré beams. Rows (a-b) represent the polarization distributions referred to as star, while the rows 
(c-d) represent lemon. C-point singularity index of lemon is 1/2, whereas it is –1/2 for the star [27,48].

Fig 2. Simulated intensity and polarization distributions of CV beams having V-points. Rows (a) to 
(d) correspond to Type I, II, III, and IV, respectively. Column (i) shows the total intensity of beam. 
Columns (ii)-(vii) show the intensity when the beam is analyzed using a QWP and a polarizing filter at 
different sets of retardation and polarizer alignment angle. Column (viii) shows polarization distributions. 
Columns (ix) and (x) present polarization azimuth angle and ellipticity angle distributions, respectively.
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 Polarization singularity index is the measure of periodic variations in the SOP around the singular 
point. The index sign depends on the direction in which the major axis of the polarization ellipse changes 
gradually around the singular point. Its magnitude depends on the amount of rotation of the major axis around 
the singularity. For CV beams, the ellipticity angle of the polarization ellipse at different spatial locations 
remains uniformly zero while it is non-uniform for the case of Poincaré beams. It has been illustrated in 
the polarization distributions shown in Figs 2 and 3.

Fig 3. Simulated intensity and polarization distributions of Poincaré beams having C-points. Rows (a-b) represent 
star, and (c-d) represent lemon. Column (i) shows the total intensity of beam. Columns (ii)-(vii) show the intensity 
when the beam is analyzed using a QWP and a polarizing filter at different sets of retardation and polarizer 
alignment angle. Column (viii) shows polarization distributions. Columns (ix) and (x) represent polarization 
azimuth angle and ellipticity angle distributions, respectively. Red and blue colors in polarization distribution 
represent the opposite sign of ellipticity angle.

4 Generation of singular beams

 There has been an effort to generate singular beams in an efficient and controlled way owing to 
various applications. Recent advances in techniques of beam shaping have made singular beams a practical 
reality. Laser beams with dislocations can be generated using diffractive holograms consisting of fork-shaped 
gratings or spiral Fresnel zone plates [11]. Spiral phase plates or vortex phase masks have also been used 
to convert the laser beam into a helical wavefront [49]. CV beams can be realized using Q-plates [48]. 
Recently, electro-optic devices such as SLM have gained importance for their ability to flexibly generate 
different orders of singular beams [50,51]. The SLM and the technique of dual-pass phase modulation for 
realizing vector-vortex beams have been described in the subsequent sections.
4.1 Spatial light modulator
 SLMs are pixelated displays that can be used for phase-only modulation of incident light beam 
[50,52]. They act as a phase retarder that induces phase delay to an incoming light wave. Birefringent 
characteristics of liquid crystal (LC) based SLM allow phase modulation of specific polarization component, 
which can be utilised for polarization shaping [51]. LC molecules are rod-shaped and have variations in the 
refractive index, which is maximal along their long axis, also referred to as the slow axis . In this study, a 
reflective-type LC SLM (Pluto Holoeye, Germany) has been used to generate singular beams. This SLM 
has a resolution of 1920×1080 pixels and a pixel pitch of 8.0 µm. Mathematically, the Jones matrix of a 
phase-only SLM can be represented as follows [50].
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J = 


exp{i ϕ (x, y)}

0
  0

1 
 (3)

where ϕ(x, y) is the phase delay introduced by the SLM. Control of phase delay at each pixel of the SLM’s 
display allows spatially dependent phase modulation. The induced phase delay is controlled through the 
computer-generated hologram (CGH), which can be displayed on the screen of a computer to which the 
SLM is connected as the second screen. The CGH consists of an 8-bit image having 256 gray levels from 
0 (black) to 255 (white), which is usually associated with the discrete increments of the phase shift value 
from 0 to 2π through a linear relationship [53,54]. Desired two-dimensional phase profile distributions can 
be modulated into the light by simply displaying the CGH onto the SLM.
4.2 Dual-pass phase modulation technique
 SLM can be used for the polarization shaping of light beam through on-axis configuration [32,33]. 
For realizing CV beams, modulation of both the orthogonal polarization components is required. The LC 
SLM used in this study modulates only one of the components at a time and, therefore, the technique of 
dual-pass phase modulation is incorporated to achieve the modulation of both orthogonal polarization 
components [33]. CV beams and Poincaré beams can be realized through the superposition of two LG 
modes on a circular polarization basis. The optical field components E o

1 and E o
2 of the resultant beam can 

be represented in terms of Jones formalism as,

  
E o

1 (x, y)
E o

2 (x, y) = 1
2

 


1 – i
–1 – i  

–1 – i
1 – i  

Ax exp{i ϕx (x, y)}
Ay exp{i ϕy (x, y)} 

 (4)

where ϕx(x, y), ϕy(x, y) denote the phase distributions and Ax, Ay denote amplitudes. The optical fields E o
1 and 

E o
2 , when propagates a short distance; then the resulting field at that distance can be estimated by Fresnel 

diffraction solution.
 The schematic of the experimental set-up for realizing vector-vortex beams using the technique of 
dual-pass phase modulation is shown in Fig 4(a). The picture of the actual set-up is shown in Fig 4(b). In 
this case, CGH to be modulated into the SLM is prepared using the grayscale image of phase distributions, 
ϕx and ϕy, which are placed side-by-side. A collimated laser beam diameter of ~ 4 mm is directed towards 
the SLM’s display through a non-polarizing beam splitter (Thorlabs BS013 of size 25.4 mm). The beam is 
linearly polarized at 45o with the slow axis of SLM. In the first reflection, the SLM modulates only one of 
the components and simply reflects the other. After transmitting through a half-wave plate (HWP), the beam 
is redirected using a right-angle prism (Thorlabs PS911 of size 25 mm) towards the other half of the SLM’s 
display to modulate the other component. Thus, after the second reflection, the PVDs ϕx(x, y) and ϕy(x, y) are 
modulated into the x- and y-components of the light beam, respectively. The beam then transmits through 
a quarter-wave plate for polarization basis conversion. Additional phase-shift and flip is introduced in the 
wavefront of light after it transmits through prism. The CGH is designed accordingly for its correction. A 
radially polarized vector field is generated by modulating the phase distributions as follows:
  ϕx = tan–1(y/ x)
 ϕy = tan–1(y/ x) + π/2 (5)

 The CGH displayed onto the SLM for this case is shown in Fig 4(c). The intensity distributions 
of the resulting beam are captured at different orientations of the polarizer to analyze the polarization 
distribution. The captured intensity distributions have a petal-shaped pattern because of the spatially varying 
polarization as shown in Figs 5(a)-(d). The intensity distribution captured without the polarizer is shown 
in Fig 5(e). The polarization distribution of a radially polarized beam is presented in Fig 5(f ). It shows the 
dark intensity region at the center, which results due to the presence of vortices that indicate the presence 
of phase singularity. At this point, the optical field has both phase and polarization singularities. 
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Fig 4. (a) Schematic of the experimental set-up, P: Polarizer, HWP: Half wave plate, RAP: Right angle prism, 
and QWP: Quarter wave plate, (b) picture of actual set-up, and (c) CGH displayed onto the SLM.

Fig 5. Results of experimentally generated radially polarized CV beam. (a-d) show the recorded intensity 
distribution at different orientations of a linear polarizer and (e) intensity without using a polarizer. (f) shows 
simulated polarization distribution. (h-k) shows distributions of polarization angle parameters. (h) and (j) present 
simulation results. (i) and (k) present experimental results. 

 To further analyze the quality of the beam, the distribution of angular parameters of polarization 
ellipse has been obtained through Stokes polarimetry [33]. Since the generated beam is radially polarized, the 
major axis orientation of the polarization ellipse has azimuthal angle dependence and lies within [–π/2 π/2] 
as shown in Fig 5(h). Since the SOP of a vector beam is predominantly linear, the ellipticity angle remains 
uniformly zero as shown in Fig 5(j). These parameters are experimentally measured and are presented in 
Figs 5(i) and (k). It can be observed that the simulated and experimentally obtained distributions are in good 
agreement with each other and hence verify the generated radially polarized vector field. The technique of 
dual-pass phase modulation can also be used to produce arbitrary vector beams, which have recently gained 
significant interest in information encoding and security applications [51,55,56].
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5 Conclusion and remarks

 SLM offers convenience and flexibility for generating singular beams. The technique of dual-pass 
phase modulation requires a single LC SLM for realizing vector-vortex beams. Since it is a non-interferometric 
approach, it allows stable phase modulation and are less sensitive to external vibrations. This feature helps 
generate high-order singular beams. Besides, the alignment is more convenient than the techniques based 
on the superposition of scalar modes. The technique of dual-pass phase modulation can be also used to 
generate non-singular vector beams. Therefore, it could be a subject of interest in other areas of optics.
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