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A Double Random Phase Encoding (DRPE) scheme has been proposed based on the use of deterministic phase masks, 
the fractional Fourier transform, and orthogonal encoding and decoding. In the proposed scheme, grey images are 
encrypted using an asymmetric cryptosystem. In order to convert the encrypted information to encoded information, 
Hadamard matrix with orthogonal property is used. In place of traditional masks, deterministic phase masks have been 
employed. Together with the use of orthogonal encoding, security of the proposed system is enhanced albeit at the 
cost of slight complication. The orthogonal encoding comprises only modest linear actions and is easy to implement. 
Numerous simulation results are provided in order to validate the proposed cryptosystem. Results have been provided 
for the mean-squared-error, peak signal-to-noise ratio, correlation-coefficient, histogram analysis, entropy, and sensitivity. 
© Anita Publications. All rights reserved.
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1 Introduction   

 For the security of generated, transmitted, and stored sensitive information, encryption and decryption 
are essential to prevent unauthorized access to the information. Therefore, numerous encryption techniques 
have been developed by researchers for a long time. Algorithms for encryption of information using digital 
processing [1,2] has been commercially exploited in e-commerce, protection of copyrights and trademarks, 
banking, defence, fiber optic communication, internet-of things, earth resources survey using satellites, and 
medical applications etc. However, with the enormous volume of data that is becoming available in the 
present era, the processing speed and power consumed have been considered as bottlenecks for processing of 
images and videos. As a result, researches started investigating optical and hybrid encryption and decryption 
techniques. As is well-known, optical processing methods have several parameters (such as the amplitude, 
phase, wavelength, polarization, and orbital angular momentum) available to increase the key-space and 
therefore security of the cryptosystems. 
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 Double Random Phase Encoding (DRPE) in the Fourier domain has been a commonly used technique 
in optical cryptographic systems. Subsequently, the technique has been extended [3-20] to the Fresnel-, 
fractional Fourier-, gyrator, wavelet-, Hartley-, Mellin-, fractional Mellin-, and other domains to enhance the 
security and speed of the cryptosytems. There are many schemes based on use of joint-transform correlator, 
digital holography, computer holograms, speckles, full phase, watermarking and hiding, compression, and 
chaos etc. Several types of masks other than the random phase mask have also been used. Several books 
and review articles [3-20] are now available on the subject and can be referred to for details.
 Despite all efforts to enhance the security of cryptosystems, information thefts and misuse are 
also on the increase. The attackers keep on designing newer algorithms and systems as attacking tools to 
break into the existing cryptosystems. Therefore, a desirable cryptosystem should withstand various types 
of attacks [8] such as the Brute force-, Differential-, Chosen-plaintext-, Known-plaintext, Chosen-cipher 
text-, and Specific attacks etc. 
 In the present paper, we propose the use of deterministic phase masks (DPMs), and orthogonal 
encoding in the fractional Fourier transform (FrFT) domain. The input image is multiplied with statistically-
independent DPMs and FrFT of the product is obtained to get the encrypted image. To convert the encrypted 
image into an encoded image, orthogonal encoding plays an important role, by using the Hamdard matrix. 
Orthogonal encoding consists of linear actions and is easy to implement. The paper is organized as follows. 
Sec 1 is introductory in nature. Section 2 gives the necessary mathematical background, Sec 3 describes 
the proposed asymmetric scheme, and Sec 4 presents the numerical simulation results and their discussion. 
Performance analysis is discussed in Sec 5. Some conclusions and remarks are given in the last section. 

2 Mathematical Background 
2.1 Construction of the Deterministic Phase Masks (DPMs)[21,22]

  In place of the traditional random phase masks (RPMs), two masks (DPM1,DPM2) [21,22] are used 
in the present asymmetric cryptosystem. The DPMs are statistically-independent of each other. The masks 
are characterized by the value of m (= 2, 3, and 4 in the present case), where m, an integer, is the order of 
encryption. The DPMs are made up of number of sub-masks and are used as keys. Each subkey has a linear 
phase with random orientation and spatial frequency. With respect to m, the NSKs (Number of Subkeys) are 
written as, 
 NSK = (2m × 2m ) (1)
 To construct the DMKs, the input image is fragmented as per the NSK size. Each NSK is equal to 
sub-block of size d as given by Eq (2),
 d = dim/2m  (2) 
where dim is the input image size. DPMs are generated as per the following relation 

 DPM1 = ∑2m   
i=1 ∑2m     

j=1 Mi, j (d × d ) (3)
where Mi, j represents the number of sub-blocks and is given by,

 Mi, j (x × y) = exp[i2π (uk.. x + ɒk . y)] (4) 
Here k is defined in the interval [1, 2m], uk and ɒk are randomly generated in the interval [1, d], and x and y are 
defined in the interval [1, dim]. Representation of the DPM is shown in Fig 1. The DPMs for m = 2,3, and 4 
are shown in Fig 2. Remaining details of the mask generation can be found in Zamrani et al [21].
2.2 Fractional Fourier Transform (FrFT )
 The FrFT [23-27], an integral transform, is a generalization of the normal Fourier transform, and 
has many applications, for example in diffraction theory, digital signal and image processing, image hiding, 
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phase retrieval, optical signal processing. and holography. 

The FrFT of order α of a one-dimensional input function f (x) is defined as,

  F α { f (x)}(u) =∫
∞

–∞
Kα (x, u) f (x) dx (5)

where the kernel function Kα (x, u) is expressed as,

	 	
A exp [iπ (x2 cotφ – 2xu csc φ + u2 cot φ)],  α ≠ nπ;
δ (x – u),  α  = 2nπ;
δ (x + u),  α = (2n+1)π;

 (6)

 A = 
exp –i π sgn sin φ

4
 – φ

2
 

|sin φ|  (7)

Here sgn is the signum function and φ = απ /2, where α denotes the order of the FrFT. A generalization for a 
two-dimensional function is straightforward.

 

Fig 1. Construction of the Deterministic Phase Masks (DPMs)

(a) (b) (c)

Fig 2. Deterministic phase masks (DPMs) for: (a) m=2, (b) m=3, and (c) m=4
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3 Proposed asymmetric cryptosystem
3 1 Encryption and Encoding Process
The flow diagram of the encryption process (Fig 3) is explained in the following steps, 
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Fig 3. Flow diagram of the encryption process (upper part) and the encoding process (lower part): en1, en2, en3, en4, 
and en5 are various stages of the encoding process; (Adapted from Lee and Cho Ref [28]).

Step 1. Let f (x, y) be an input image which is multiplied by the first DPM1 and the product is transformed to 
the FrFT domain with orders (α, β).
Step 2: The transformed output is separated into two parts, as PT (Phase truncation) and MT (Magnitude 
truncation). The MT part serves as a private key (PrK1), whereas the PT part is multiplied with the second 
(DPM2) to obtain,
 I(x, y) = [{FrFT (α, β).{f (x, y). DPM1(x, y)}}.DPM2 (u, ɒ)] (8)
Step 3: I(x, y) is then transformed into the inverse FrFT domain and divided into two parts, MT and PT. 
Whereas the MT part serves as private key PrK2, the PT part is the encrypted image E(x, y). 
 E(x, y) ={FrFT (–α, –β). I(x, y)} (9)
Step 4: To convert the encrypted image into an encoded image, E(x, y) is put through an orthogonal encoder 
described by Lee and Cho [28]. For the orthogonal encoder, Hadamard matrix of order 2, represented by H2, 
is given [29] by Eq (10), 

 H2 H
T
2  = 2I2 (10)

where H2 = 
1 
1  

1 
–1 , I2 represents the 2×2 Identity matrix, and H T is the transpose of H. From the encoded 

data, the real and imaginary parts of the encrypted data are encoded as
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E01 (x) 
E02 (x)   = 1

2
 H2 

rre (x) 
rimg (x)   = 

1
2 

1 
1  

1 
–1

 

rre (x) 
rimg (x)   = 

 1/2 rre (x) + rimg (x)

1/2 rre (x) – rimg (x)  (11) 

where rre (x), rimg (x) represent the real and imaginary parts of the encrypted data, E01(x), E02(x) denote the 
first and second encoded data, respectively, and 1/2 is multiplied for normalization. 
Step 5: Then the complex-encoded data E0(x) is obtained from the real-valued encoded data E01(x) and E02(x).
 E0(x) = E01(x) + E02(x).  (12)
3.2 Decoding-, and Decryption Process
The procedure for decoding and decryption is given below in Fig 4.   
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Fig 4. Flow diagram of the decoding (above left) and decryption (below right) processes; dn1,dn2, and dn3 are the 
stages for the decoding process; (Adapted from Lee and Cho Ref [28]).

Step 1: In the decoder, the real and imaginary parts of E0(x), are decoded using the Hadamard matrix. The 
orthogonal decoding process is given below:

 	
~rre (x) 

~rimg (x)  = H2 
E01 (x) 
E02 (x)  = 

1 
1  

1 
–1

 

E01 (x) 
E02 (x)  = 

E01  (x) + E02 (x)
E01 (x) – E02(x) 	 (13)

Step 2: After the decoding process as in upper portion of Fig 4, the decryption process starts with the cipher 
image which is multiplied by the secret key PrK2 and transformed into the FrFT domain with parameters (α, 
β). It is then multiplied by PrK1, as per Eq (14).
  I(x, y) = [Fr FT(α, β){E(x, y) × PrK 2}] × PrK1 (14)
Step 3: The product received from step 2 of decryption process is transformed into inverse FrFT, to give.
 f (x, y) = {Fr FT (– α, – β )} (15)
After Eq (15), the plain image is recovered back.
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4 Simulation Results of the Cryptosystem

 The proposed asymmetric cryptosystem with the use of orthogonal encoding and decoding, are 
tested by numerous simulations on the MATLAB R2014a. The encryption-, and decryption results are shown 
respectively in Figs 5 and 6. The input images (greyscale Lena image and MRI image of size 256×256) are 
the plain images as shown in Figs 5(a) and 5(b). The deterministic phase masks with encryption order of 4 
are shown in Figs 5(c) and Figs 5(d). Encrypted images of Lena and MRI image are shown in Figs 5(e) and 
5(f), respectively. The encoded images of Lena and MRI image are shown in Figs 5(g) and 5(h), respectively. 

(a) (b) (c)

(d) (e) (f)

(g) (h)
Fig 5. Encryption process: (a) Plain image of Lena (256 × 256), (b) Plain image of MRI scan (256 × 256) (c) Deterministic 
masks m =4 (DPM1), (d) Deterministic masks m = 4 (DPM2), (e) Encrypted image of Lena, (f) Encrypted Image of MRI 
scan, (g) Encoded image of Lena input image, (h) Encoded image of MRI scan input image. 
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  The proposed cryptosystem for the decryption process is represented in Fig (6). Figures 6(a) and 
6(b) show the encoded images and Figs 6(c) and 6(d) show the encrypted images; Figs 6(e) and 6(f) show the 
recovered images of Lena and MRI scan image. 

(a) (b) (c)

(d) (e) (f)
Fig 6. Decryption Process: (a) Encoded image of Lena, (b) Encoded image of MRI scan image, (c) Encrypted image 
of Lena, (d) Encrypted image of MRI scan, (e) Decrypted image of Lena, and (f) Decrypted image of MRI scan image. 

5 Performance analysis

 The quality of the decrypted image is checked by two parameters, (1) Mean-Square-Error (MSE) 
and Peak Signal-to-Noise Ratio (PSNR). MSE and PSNR are evaluated between the original-, and recovered 
images. The MSE is calculated by Eq (16) as given below, 

 MSE = 1
N × M ∑

M

i = 1
 ∑

N

i = 1
| f (x, y) – f ' (x, y)|2 (16)

where M × N is the number of pixels of the original image. Smaller MSE value indicates the high similarities 
between the original and decrypted images. The MSE values are plotted for the correct fractional order (α = β 
= 0.5) and other values in the interval (0.1 to 1.0) in Fig 7. The PSNR is calculated between the original-, and 
the decrypted images by Eq (17). Good quality of the image is characterized by a high PSNR value. Table 1 
represents the MSE and PSNR values. 

 PSNR = 10 log10 
2552

 MSE
  (17) 
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Fig 7. MSE plot of input images (Lena, MRI scan) with the fractional orders of the FrFT.

Table 1. MSE and PSNR values of the images

Parameters Values (Plain Image Lena) Values ( Plain Image- MRI image)
Mean-Square-Error 1.983×10–29 2.23×10–27

Peak Signal-to-Noise Ratio 267.75 dB 234.23dB
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Fig 8. Scatter plots (a, b) for the input image Lena and MRI scan image, respectively; CC analysis ( c, d) for the 
input and encoded Lena image, input and encoded MRI scan image, respectively. 
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(ii) Correlation Coefficient (CC) analysis 
 The CC analysis is conducted by choosing hundred thousand pairs which are randomly picked 
horizontally, vertically, and diagonally neighbouring pixels between the input image and the encrypted 
images. The CC has been calculated by the following relation, 

 CC = 
∑N

i = 1(xi – –x) ( yi – –y)

∑N
i = 1(xi – –x)2  ∑N

i = 1
( yi – –y)2

  (18)

where –x    = ∑N  
i=1 xi and ͞y = ∑N  

i=1 yi are the mean values of xi and yi. 

 From the CC analysis, it is very difficult to find the information. Scatter plots distribution for CC 
analysis are shown in Figs 8(a) and 8(b) for the input images of Lena and MRI scan. Figures 8 (c) and 8(d) 
are the results of CC analysis between the corresponding input-, and encoded images, respectively. 
(iii) Histogram Analysis
 A histogram is an illustration of spreading of the numerical data. This analysis is a noteworthy 
structure in image authorization. Histogram analysis has been carried out for the input image, deterministic 
masks, encrypted images, and encoded images. Figure 8 represents the results. Figures 9(a) and 9(b) show 
the histogram of plain image (Lena) and deterministic masks, respectively. Figures 9(c) and 9(d) show the 
encrypted-, and encoded images. Figure 9 (e) shows the decrypted image. 
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Fig 9. Histogram analysis of: (a) input image, (b) deterministic mask, (c) encrypted image, (d) encoded 
image, and (e) decrypted image.

a. Occlusion Analysis
 In order to validate the robustness of the cryptosystem, occlusion analysis has been carried out for 
the mask. In this analysis, certain portions of the mask are hidden, and the corresponding result has been 
examined. It is seen that the decrypted image is not clear and is degraded considerably. Figure 10 shows the 
results of occlusion analysis. Figure 10(a) shows the 75% hidden portion in the mask, and the corresponding 
decrypted image is shown in Fig 10(b). It can be seen that a small trace of the input image can still be seen.

(a) (b)

Fig 10. Tolerance to occlusion attack (a) mask with 75% occlusion (b) Decrypted image of (a)

b Entropy Analysis

 Entropy expresses the uncertainty of the information in the encrypted image. It is very difficult for 
an attacker to recover the original image if the value of entropy is very high. The entropy for a source m is 
calculated using the following equation:
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 H(m) = – ∑M  
i=1 P(mi)log2 P(mi) (19)

where P(mi) represents the probability of source. The ideal value of the entropy for an encrypted image is 
8. For the proposed asymmetric cryptosystem, the obtained entropy values are 7.06 for the Lena image, and 
6.99 for the MRI scan image. The obtained values clearly indicate that they are very near to the ideal value. It 
proves that the proposed cryptosystem which uses orthogonal encoding produces better randomness.
c Sensitivity Analysis
 The proposed cryptosystem based on the orthogonal encoding and decoding does not work for 
the incorrect fractional orders. If an attacker gets hold of any image, unless the fractional orders are known 
correctly, the input image may not be recovered. The correct fractional orders of the FrFT are α = 0.5 and β = 
0.5. From the analysis (Fig 7), it is clearly observed that our proposed system is highly sensitive to very small 
deviations from the correct fractional orders. 

8 Conclusions and Some Remarks

 This paper proposes the asymmetric cryptosystem with the use of deterministic masks (DMKs) in 
DRPE based upon orthogonal encoding and decoding using Fractional Fourier transform (FrFT). Orthogonal 
encoder uses very easy linear operations with small complications. All the simulation results shown in this 
paper prove that orthogonal encoding and decoding is an influential encryption effect. Hence, the proposed 
orthogonal encoding technique can be used as a low-complexity and effective encryption technique for 
images. Some more papers [30-36] on cryptography may also be noted. 
 We may add that the advances in the area of artificial intelligence also provide tools for the design 
of systems with enhanced security, but also suggest that the classical cryptographic methods are highly 
vulnerable to the tools of deep learning etc [37-42]. Another promising area of investigations that has emerged 
recently, is the marriage of metamaterial research and optical cryptography [43-46], providing avenues for 
designing and fabrication miniaturized optical cryptographic systems. 
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