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Structured light beams have custom-shaped spatial amplitude, phase, and polarization distributions. Generation of various 
types of the structured beams is possible, depending on the spatial beam profile. Such beams have found attractive 
applications in science and technology owing to their unique properties resulting from inhomogeneous beam shaping. 
This paper reviews different types of structured light beams, with numerical simulation, and their recently emerged 
applications. The applications of structured beams in optical information security have been discussed and simulation 
results have been presented. The study would be beneficial for new researchers in this emerging area of ‘Structured 
light’ © Anita Publications. All rights reserved.
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1 Introduction

 The laser was first operated successfully in 1960 to produce coherent light beams which are well-
defined. Since 1960, lasers have occupied a prominent position in many optical technologies. Recently, 
research interest has been growing in light beams with complex wavefront structures [1]. Shaped light beams 
are often known as structured light beams [2,3]. Precise control of parameters such as wavelength, amplitude, 
phase, and polarization of light is crucial for the practical realization of the structured light [4]. In the present 
scenario, structured light has become an essential tool for many optical technologies, summarized in review 
articles [2,3]. Many other properties have also appeared in association with the structured beams, which are 
crucial for the study of optical singularities [5,6], spin-orbit interactions [7], and quantum optics [8]. The 
structured beams have found applications in diverse areas of optics, including optical communications [9], 
manipulation [10], quantum information technology, metrology [11], and microscopy [12].
 Structured light beams have gained importance also because of their unique properties. Poynting 
suggested in 1909 that light may carry angular momentum [13]. Later, Beth [14] demonstrated the rotation of 
a physical object (a quarter-wave plate suspended with a thread) with circularly polarized light and showed 
that the angular momentum of light could result in measurable mechanical torque. In a study reported by 
Allen et al in 1992 [15], it was reported that the total angular momentum of light has both spin and an 
orbital component. Spin angular momentum (SAM) is associated with polarization, whereas orbital angular 
momentum (OAM) is associated with the helical wavefront of light [16-18]. Since then, studies on different 
structured beams with complex wavefront and polarization structures have gained considerable attention. 
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 This review paper summarizes different types of structured light beams and their applications. The 
description of OAM carrying structured beams such as Laguerre-Gaussian (LG) beams, perfect vortex beams, 
hypergeometric Gaussian vortex beams, and Bessel beams have been presented, respectively in Sections 2 
to 5. Other types of structured light beams without OAM, such as Airy beams, Hermite-Gaussian (HG) 
beams, and Ince-Gaussian (IG) beams, have also been discussed, respectively in Sections 6 to 8. Section 9 
explains vectorial structured beams. Use of structured beams in optical cryptography is presented in Section 
10. Section 11 presents some conclusions. Finally, Section 12 contains some remarks.

2 Laguerre-Gaussian beams

 The LG modes have a helical phase profile associated with an optical vortex. An optical vortex is 
produced when the light with a helical wavefront rotates like a corkscrew. The electric field amplitude of LG 
mode, which propagates along the z-direction, can be expressed as [19],

 ELGB (x, y; l ) = 
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π (p + | l |)! 
1

w (z) 
r 2

w (z) 

| l | 

exp 
– r 2

w 2(z)  L
| l |
p  

– r 2

w 2(z) exp 
– i k 0 r 2 z

2(z 2 + z 2
R) – iψ + i l ϕ  

(1)

where ϕ denotes the azimuth angle defined as ϕ =  tan–1(y/x), l is the azimuthal index, and w(z) = w(0)
[(z2 + z 2

R )2 )/ zR2]. Here, w(0) denotes the beam waist and zR denotes the Rayleigh range. L | l |
p  is the 

associated Laguerre polynomial, p is the radial nodes of intensity profile, ψ is Gouy phase given by ψ = 
(2p + | l | + 1) tan–1(z/zR) while r =  (x2 + y2) . LG beam has a phase singularity along its beam axis. At the 
singularity, the phase is indeterminate, and the light amplitude is zero resulting in the doughnut-shaped 
intensity profile. OAM of the LG beams arises from the azimuthal phase dependence. Figure 1(a) shows 
the simulated intensity of the LG beam for l = 1, p = 1, and the corresponding phase profile is shown in Fig 
1(b). Figure 1(c) shows the beam intensity for l = 5, p = 3, while Fig 1(d) shows its corresponding phase.

Fig 1. (a) Intensity, (b) phase profile of the LG beam for l = 1, p = 1; (c) intensity, and (d) phase profile for the high-
order LG beam for l = 5, p = 3.

 The LG beams have applications in diverse areas. The capability of LG beams to trap and manipulate 
the particles has expanded the applications of optical tweezers [20,21]. The LG beams have spiral wavefront, 
which can be used in optical interferometry to overcome a fundamental limitation, namely, to distinguish 
between elevations and depressions in a phase sample [22,23]. LG beams have brought significant innovations 
in quantum optics. For instance, using OAM qubits, quantum-controlled logic gates have been reported 
[24,25]. Using the OAM state of the LG beam, the communication system can provide an infinite bit for data 
encoding resulting in a cost-effective system [26]. Unbounded OAM states of LG beams have significant 
advantages in classical and quantum cryptographic schemes [27]. It has been reported that the OAM of a 
photon could be used to achieve a higher-dimensional system for quantum cryptography which results in 
higher information capacity and higher noise tolerance at a given security level [28]. Classical information 
security schemes based on OAM have also been developed to achieve a high-security holographic encryption 
system [29,30]. The LG beams do have astronomical applications. For instance, a vortex beam can be used to 
probe a weak background signal in the presence of a bright light source to detect an astronomical object [19].
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3 Perfect vortex beam

 Usually, the vortex beams have doughnut-shaped intensity distribution and helical phase structure. 
The vortex core size of these beams depends upon the corresponding topological charge (TC) value. It is the 
most unwanted limitation of higher-order vortex beams in several applications. To overcome this problem, 
perfect optical vortex beam has been proposed [31]. This beam has one circular ring shape of intensity 
distribution and a uniform phase gradient. At the transverse plane, the electric field profile of perfect vortex 
beam corresponding to topical charge l is defined [31] as 

  EPVB = exp – 
(r – r0)2

∆r2  exp(ilϕ) (2)

where r0 and ∆r correspond, respectively to the radius of the toroidal part and its span. The term r can be 
written as r =  (x2 + y2) . The toroidal field part is independent of the TC. Figure 2(a) shows the intensity of 
the perfect vortex beam for l = 3 and the corresponding phase profile is shown in Fig 2(b). Figure 2(c) shows 
the intensity of the perfect vortex beam for l = 10 and its phase is shown in Fig 2(d).

Fig 2. (a) Intensity, and (b) phase profile of perfect vortex beam for l = 3; (c) intensity, and (d) phase profile of perfect 
vortex beam for l = 10.

4 Hypergeometric Gaussian vortex beams

 Hypergeometric Gaussian (HyG) vortex beams are another form of vortex beams that contain 
integer and fractional orbital momentum [32]. They are also known as the Kummer beams. Their complex 
amplitude is described by a degenerate HyG function in the near field. The transverse representation of the 
electric field of the HyG modes in the initial plane (at z = 0) is given [33] by,

 EKB (ρ, ϕ, z = 0) = 
ρ 
w 

m + iγ
 exp 


ilϕ – 

 ρ2 
w2  

 
(3) 

where (ρ, ϕ, z) is defined as the axis of cylindrical coordinates, w plays the role of beam waist corresponding 
to the Gaussian beam, and m is an integer. The value of γ, an integer, controls the strength of the logarithmic 
axicon and determines the amplitude factor's exponent. Kummer beam's profile at any distance z > 0 can be 
expressed with the help of the degenerate HyG function or Kummer function, indicating the justification 
of the beam name. Later in 2012, Bernardo [34] derived the beam solution for finite energy. For the case 
of z = 0, Fig 3(a) shows the intensity of the HyG beam for m = 2, n = 2, γ = 2, and the corresponding phase 
profile is shown in Fig 3(b). Figure 3(c) shows the intensity of the HyG beam for m = 8, n = 6, γ = 4 and the 
corresponding phase profile has been demonstrated in Fig 3(d).
 HyG beams have excellent potential for applications in data transmission [33]. The OAM property 
provides multi-dimensional data transmission freedom, reducing the data transmission cost. Usually, when 
hyperbolic-index fibers are used for multimode data processing, it results in a greater broadening than 
quadratic-index fibers. But if an OAM beam is used for data transition, the infinite orthogonal eigenstate of 
OAM can transmit an infinite number of orthogonal modes simultaneously. Kummer beam does have OAM 
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property and using this beam, it is also possible to transfer data in multimode using hyperbolic-index fibers. 
It results in large information processing in hyperbolic-index fibers than in quadratic-index fibers.

Fig 3. (a) Intensity, and (b) phase of HyG beam for m = 2, n = 2, γ = 2; (c) intensity, and (d) phase of HyG beam for 
m = 8, n = 6, γ = 4.

5 Bessel beams

 In 1987, Durnin [35] reported Bessel beam in which, the electric field in a transverse plane is 
represented by the zero-order Bessel function. The expression of the electric field of a Bessel-Gaussian beam 
with orbital angular momentum is represented by [35],

 EBB (x, y) = J0(αρ) ei (ρ2/ω 2
0) e (ilϕ) (4)

where J0 is the zero-order Bessel function of the first kind and ρ2 = x2 + y2. Here, l is an integer, ϕ is the 
azimuthal angle and ω0 is the beam waist. The symbol α represents the transverse component of the wave 
vector. Figure 4(a) shows the simulated intensity of the Bessel beam for l = 1 and its phase is shown in Fig 
4(b). Figuress 4(c) and 4(d) show, respectively the intensity and phase of the Bessel beam for l = 5.

Fig 4. (a) Intensity, and (b) phase of the Bessel beam for l = 1; (c) intensity, and (d) phase of the Bessel beam for l = 5.

 The intensity pattern of the Bessel beam in a transverse plane is unaltered by propagating in free-
space. In addition, the Bessel beam can carry well-defined OAM. Because of these features, the Bessel beam 
has applications in optical trapping, material processing, and optical coherence tomography. As the Bessel 
beam has a narrow focus and a high gradient of optical power density, it provides an excellent flexible 
micromanipulation system. Researchers have also used ultrashort pulsed Bessel beams for micro-fabrication 
[36]. The efficiency of trapping dielectric beads in all three directions using a Bessel beam is higher than 
normal Gaussian beams [37]. Simultaneous trapping and rotating dielectric particles are possible using 
Bessel beams, as high-order Bessel beam has many ring shape intensity patterns [38,39]. Designing micro-, 
and nano-materials with an accuracy up to the nanoscale can be possible using Bessel beams with their 
non-diffractive property [40]. The elongated focal area of Gauss-Bessel beams is useful in Bragg grating 
engraving [41], designing microchannels [42], and photopolymerization [43]. 
 Bessel beams have self-healing properties and can recuperate their wavefront after deformation 
due to any obstacle [44]. This feature raises a crucial devotion in biomedical physics, laser processing, and 
metrology [45]. Optical coherence tomography is an imaging process of biological tissues, cells and organs. 
Typical Gaussian beams are now used in endoscopic probes that do not provide a wide range of focusing 
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without losing resolution. However, the Bessel beams produce a much more focusing range without losing 
resolution than normal Gaussian beams [46-48].

6 Airy beams

 The study of Airy beam was started in 1979 when Berry and Balazs [49] discovered that the 
motion of a particle under gravity can be expressed as an Airy function. They showed that the Airy function 
has a property that its probability density propagates in free-space without distortion, and with constant 
acceleration. It maintains its form without any outer influence, which is the most remarkable feature of the 
Airy packet. Airy packet is unique in propagating without change of form. The first detection of an optical 
Airy beam was reported by Siviloglou et al in 2007 [50]. It has been shown that the beam can propagate a 
large path without any diffraction and constantly accelerate while propagating. The main difference between 
the Airy beam and the Gaussian beam is that the central part of the Airy beam does not diffract but changes 
its position.
 The Airy beams are useful in manipulation of small particles such as to govern their direction 
along the desired path, maybe a curve path or any bent path. This is useful in the branch of microfluidic 
engineering and medical applications [51]. Airy acoustical beams are capable of manipulating the cross-
section trajectory of any fluid. Depending on this, acoustical tweezers have been reported like acoustical 
sieving and filtering [52]. The Airy beam has properties of self-bending along a parabolic curve direction, 
non-diffracting, self-accelerating, and self-healing, and thus they make it a potential candidate in microscopy 
[53], optically mediated particle clearing, particle transport, and rotation [54]. A biological cell imaging 
system having higher efficiency for imaging in larger abyss of the cell, can be made by Airy beam with light-
sheet microscope [53,55]. It is also possible to make Airy beam having a perpetual but low-intensity profile 
[56]. This beam type greatly contributes to manufacturing micro and nanomaterial [55] and is also used in 
medical laser treatments. The mathematical expression of finite energy Airy beam can be given as [57],

 EAB (ξ, s) = Ai sx – (ξ/2)2 + iaξ ] + Ai [sy – (ξ/2)2 + ibξ ] * exp [b (sx + sy) – b ξ 2 + ibξ 2 – ξ 
3

6
 i ξ (sx + sy)

2
  
(5)

 The term 'Ai' is the Airy function, sx = x/ x0 and sy = y/ y0 are dimensionless transverse coordinates, x 
and y are the transverse coordinates, x0 and y0 are the transverse scale parameters, ξ  = z/kx0

2 is a normalized 
propagation distance, and k =2π/λ is the wave vector. As a result of the finite energy, this beam only maintains 
its non-diffractive properties over a finite distance. Figure 5(a) shows the intensity of the Airy beam for b 
= 0, and its phase is shown in Fig 5(b). Figure 5(c) shows the intensity of the Airy beam b = 0.1 and the 
corresponding phase is shown in Fig 5(d).

Fig 5. (a) Intensity, and (b) phase profile of Airy beam corresponding to b = 0; (c) intensity, and (d) phase profile of 
Airy beam corresponding to b = 0.1.

 The Fourier transform of an Airy function, results in a Gaussian function with a cubic phase factor. 
We know that if we place an image in the focal plane of a Fourier transform lens, we obtain its Fourier 
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transform in the back focal plane of the lens. Therefore, to generate an Airy beam, we have to incident a 
Gaussian function with a cubic phase factor on the front focal plane of a Fourier transform lens, to obtain the 
Airy beam at the back focal plane of the lens. The generation of the Gaussian beam with a cubic phase factor 
can be achieved using a spatial light modulator (SLM) by displaying a cubic phase through a computer-
generated hologram (CGH) on the SLM. 

7 Hermite-Gaussian beams 

 HG beams are the solutions of the paraxial wave equation in Cartesian coordinates [58,59]. HG 
beams also accelerate as their maximum intensity propagates along a hyperbolic curve [57-62]. The complex 
amplitude of the HG beam can be expressed [59] as,

 
EHGB (x, y, z) = Hn

 
x

w (z) 
Hm

 
y

w (z) 
exp 


r 2
w 2

0 
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where Hi (i = m, n) is the ith order Hermite polynomial, w0 is the beam waist, and r =  (x2 + y2) is the 
transverse radial coordinate. Figure 6(a) shows the intensity of the HG beam for n = 1, m = 1 and the 
corresponding phase profile has been shown in Fig 6(b). Figure 6(c) shows the intensity of the HG beam for 
n = 4, m = 3 and the corresponding phase profile has been shown in Fig 6(d).

Fig 6. (a) Intensity, and (b) phase profile of HG beam corresponding to n = 1, m = 1; (c) intensity, and (d) phase profile 
of HG beam corresponding to n = 4, m = 3.

 The HG beams have potential applications, including optical trapping, optical communications, 
and imaging. HG beam can also be helpful [63] in laser ablation propulsion dealing with the propagation of 
an object in space by using laser beam. In the case of a satellite attitude adjustment, space debris removal, 
and near-earth satellite launch, the importance of the laser ablation propulsion process has been increasing 
day-by-day. HG beams show self-healing property [64] which means it can recover its own transverse beam 
profile after encounter with an external influence. Due to this self-healing property, the HG beams have 
attracted attention in biomedical physics, laser processing, and metrology.

8 Ince-Gaussian beams    

 The IG beams were demonstrated by Bandres and Gutiérrez-Vega in 2004 [65]. Ince polynomials 
can be expressed as an IG beam's transverse structure. The IG beam has an intrinsic elliptical conformity. It 
is also a solution to the paraxial wave equation. The electric field of an IG beam can be given [65] as,

 
EIG = D*

 

w0
w (z) 

C m
p  (i ξ, ε) C m
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– r 2
w 2
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 * exp 
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2R(z)
 – i( p + 1) arctn  

z
zr

 
 (7)

here w0 is the beam width at the origin, η angular elliptic variables, zR is the Rayleigh range and R(z) is the 
radius of curvature of the phase front. D is the normalization constant, C m

p (η, ε) is even Ince polynomial of 
order p and degree m, where 0 ≤ m ≤ p. The odd Ince polynomials can be denoted by S m

p (η, ε) in which the 
value of m is 1 ≤ m ≤ p, where the indices (p) have the same parity, and ε is the elasticity parameter. The 
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IG beam is useful in optical trapping applications [66], bioengineering, particle manipulation, and quantum 
entanglement [67]. Figure 7(a) shows the intensity of the IG beam for p = 4, m = 2, and the corresponding 
phase profile has been shown in Fig 7(b). Figure 7(c) shows the intensity of the IG beam for p = 6, m = 2, and 
the corresponding phase is shown in Fig 7(d).

 
Fig 7. (a) Intensity, and (b) phase of the IG beam corresponding to p = 4, m = 2; (c) intensity, and (d) phase of IG beam 
corresponding to p = 6, m =2.

9 Vectorial structured beams

 The structured beams are classified as scalar and vector, depending on the polarization distribution. 
Structured beams with uniform polarization distribution across the transverse plane are known as the scalar 
beams and those with spatially-varying polarization are known as the vector beams. A special class of vector 
beams is a cylindrical vector (CV) beam [68]. The vector beams are the paraxial solutions of the vector 
wave equation and have axial symmetry in both amplitude and phase. Commonly known as CV beams, they 
have radial and azimuthal polarization distribution. In addition to the phase singularity, the CV beams hold 
V-point polarization singularity [69]. The CV beams span the equator of Poincaré sphere. Full Poincaré beam 
is another non-uniformly polarized beam that spans the entire surface of the Poincaré sphere. These beams 
hold C-point polarization singularity [69]. CV beams can be mathematically described using the Jones matrix 
representation. The Jones matrix representation of CV beams is given by,

 ECVB = 

E1

1

E2 
 = 

1 – i
–1 – i  

–1 – i
1 – i  

ELGB (x, y; l1)
ELGB (x, y; l2) exp(iδ)

   (8) 

where ELGB (x, y, l1) and ELGB (x, y, l2) are the complex field amplitudes of LG modes given by Eq (1). 
Appropriate selection of the TCs l1, l2 and additional phase delay δ gives different orders of the polarization 
singularity. For beams with V-point singularity, l1, l2 have equal magnitudes and opposite signs, whereas for 
beams with C-point singularity one of the TCs; l1, l2 remain zero.

 
Fig 8. Intensity and polarization distributions of vectorial structured beam; (a) radially 
and, (b) azimuthally polarized.

 For radial and azimuthal polarization distributions around V-points, the phase delay values are 
respectively δ = π/2 and 3π/2, whereas the TCs remain l1 = 1, and l1, l2 = –1, for both cases. Figures 8(a) and 
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8(b) show, respectively the simulated intensity and polarization distributions of the radially and azimuthally 
polarized CV beams.
 It has been established [69] that the radially and azimuthally polarized beams enhance trapping 
efficiency compared to the linearly polarized beams. It has been shown that a radially polarized beam can 
be used to generate a strong longitudinal field component which can be used for the engineering of tighter 
focusing spots [70]. Attempts are being made [71] to utilize vector beams to achieve higher resolutions and 
image quality. The polarization degrees of freedom of CV beams can be used as a basis to encode information 
and thus can be helpful in optical communication [72].

10 Optical cryptography using structured light

 Optical cryptography [73-77] is a technique to encode and decode information for security purposes, 
using different optical properties like polarization, phase, wavelength, and optical angular momentum etc. 
Each of these properties of light can be utilized as the degree of freedom to encode and decode data. Larger 
availability of degree of freedom is desirable for any practical cryptosystem. Vortex beams have many 
orthogonal OAM eigenstates, a promising parameter for encoding classical or quantum information [27]. 
Recently, OAM holograms have been reported, in which information can be encoded in terms of an array 
of vortices by sampling an image in the Fourier plane and convoluting it with an OAM mode of a particular 
helical mode index [29]. OAM selective holograms have been proposed in which decoding is possible 
only with certain OAM states. Figures 9(a) shows the OAM hologram of letter 'A' and Fig 9(b) shows its 
reconstructed intensity distribution. Figures 9(c) shows the zoomed portion of the green box of the image 
shown in Fig 9(b). 

Fig 9. (a) OAM-hologram of letter 'A', (b) reconstruction of the OAM hologram, and (c) zoomed portion 
of the Fig 9(b).

 The Vortex beams containing OAM show better stability than a normal Gaussian beam in a turbulent 
medium [78,79]. This property is very useful for free-space information processing applications. In this 
regard, a vortex lattice-based binary image encoding scheme [80] has been proposed, where the information 
of low-value pixels is encoded by the presence of vortex of a particular TC, and the high-value pixels are 
encoded by the absence of vortex. As the vortex contains dark spots at the singular phase point, it is easy to 
assign a threshold mean intensity value for a certain region of the lattice which returns a low-value pixel for 
the presence of vortex and high-value pixels for the absence of vortex at that region. This way, successful 
decoding of the binary image has been achieved. 
 Figures 10(a) and 10(b) show respectively the binary image of the numbers '2023' and the required 
phase distribution for encoding the data into the light beam. Figure 10(c) shows the intensity distribution of 
data encoded vortex lattice. This data-encoded light beam has been encrypted by modulating the phase of the 
light beam with an array of vortices of random TC acting as the encryption key. The phase distribution of the 
encryption key is shown in Fig 10(d). Figures 10(e) and 10(f) show, respectively the intensity distributions of 
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the encrypted beam and the encrypted image. This encrypted image is a processed image developed from the 
intensity distribution of the encrypted beam according to the above-mentioned way of mean intensity value 
measurement at the target region. Figures 10(g) shows the decryption key's phase distribution, which is just 
the conjugate of the encryption key. The successful decryption of the encoded information has been done 
when the encoded light beam passes through the decryption key. Figures 10(h) and 10(i) show, respectively 
the intensity distributions of the decrypted light beam and the decrypted binary image.

Fig 10. (a) Phase of encoded light beam containing the binary image of numbers' 2023', (b) intensity distribution of the 
data encoded light beam, (c) processed image from the intensity distribution of the data encoded light beam, (d) phase 
distribution of the encryption key, (e) intensity distribution of the encrypted light beam, (f) processed image from the 
intensity distribution of the encrypted light beam, (g) phase distribution of the decryption key, (h) intensity distribution 
of the encrypted light beam, and (i) processed image from the intensity distribution of the decrypted light beam.

Fig 11. (a) Color image, and (b) phase distribution of the encrypted light beam; (c) intensity distribution of the encrypted 
light beam, (d) interference between the encrypted light beam and spherical beam, and (e) decrypted color image.

 Recently, a Gerchberg-Saxton algorithm-based color image encryption system has been reported 
[81] where the output phase information corresponding to the color image is mapped to an array of 
integer numbers followed by an additional random number distribution used as the encryption key. 
This array of integer numbers has been encoded into the light beam in the form of an array of vortices 
corresponding to the TC, the same as those numbers. Figures 11(a) 11(b), and 11(c) show, respectively 
the color image of the number '15' to be encoded, the phase distribution of the encrypted beam, and the 
intensity distribution of the encrypted beam. The decryption of the information is achieved at the receiver 
end by measuring the TCs of the array of vortices and using the decryption key. The TCs of the vortices 
has been measured using interferometry [82-87]. Figure 11(d) shows the interference pattern between 
the encrypted and spherical beams. The TCs of the array of vortices can be easily measured by counting 
the number of petals of the fringes and the sign by observing the rotation direction of the fringes. Thus, 
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one can easily get the information of the encrypted array of numbers by observing this interference fringe 
and easily decrypt the information using the decryption key. Figure 11(e) shows the decrypted image. 
 Furthermore, several image encryption schemes [88-91] using arbitrary vector beams have been 
reported. Arbitrary vector beams have non-uniform polarization distribution across their transverse plane and 
have been found suitable for image encoding. Schemes based on three-dimensional polarization, geometric 
phase, and vortex spatial filters [92-94] have been suggested. Encryption schemes using vector beams are also 
preferred because of their simple optical implementation and pure intensity measurement-based decoding 
[95-98]. The polarization degrees of freedom of vector vortex beams that carry polarization singularity 
has also been utilized for information encoding [77,99,100]. The non-separability of vector beams can be 
used to encode information for optical communication applications [101,90]. These works demonstrate the 
expanding applications of structured light beams in information security.

11 Conclusions 

 This paper reviews the property and applications of some important structured light beams. Most 
of the beams contain important properties like OAM, self-healing, very narrow focus, highly gradient beam 
profile, and self-accelerating, etc. Structured beams have applications in diverse branches of science and 
technology including biomedical, communications, and quantum systems. Although a number of structured 
light beams and their applications have been reported, some challenges are still present in this field; like 
beam-profile manipulation in three-dimension or discovering new applications that can be realized using 
structured light. The use of structured beams in optical information security has been demonstrated through 
numerical simulations.

12 Some Closing Remarks

 The subject of ‘structured light beams’ has become so vast that the present review is unable do full 
justice to the subject. We feel that within the space available to us, we are constrained to discuss only some 
aspects of the subject and apologize to the authors whose work has not been cited. An article by Kolomiets 
[102] gives an excellent summary of the publications by Kotlyar and his coworkers who have made 
significant contributions to the subject. The book by Kotlyar, Kovalev, and Profirev [103] contains a plethora 
of information on various types of the structured light beams. A more recent book by Kotlyar, Kovalev, and 
Nalimov [104], includes an authoritative account of some more recent advances on the subject. Books by 
Senthilkumaran [105], Gbur [106], and Rosales-Guzman and Forbes [107] also need to be mentioned. 
 Optical vortices have also been used as radial Hilbert filters [108-117] in cryptosystems using 
various transforms. A few more recent papers [118-122] pertinent to the subject may also be noted. Optical 
vortices have also been used in some other recent investigations [123,124]. More recently in 2023, fractional 
vortex speckle patterns have been employed in a cryptosystem [125]. 
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