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We implement experimentally a method for characterizing the two-point coherence properties of fields in two 
dimensions from measurements of their irradiance at different propagation distances. This method is a form of phase 
space tomography, based on a definition of the ambiguity function that is appropriate beyond the paraxial regime. In the 
experiment, a combination of two cylindrical lenses is used to create focused fields that vary slowly in one direction, 
so they behave approximately like two-dimensional fields. Four types of light sources (an incandescent lamp, a white 
LED, a green LED, and a green laser) with different coherence properties were measured. The results of the method for 
nonparaxial fields are compared to those based on the paraxial approximation. © Anita Publications. All rights reserved. 
Doi: 10.54955/AJP.33.3-4.2024.205-217
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1 Introduction

 It is an honor to be invited to contribute to this Special Issue that celebrates the many contributions 
of Prof Anna Consortini both to optical science and its dissemination throughout the world. One of us (MAA) 
has had the privilege of knowing Prof Consortini for almost 30 years. During my student years we had a few 
discussions at a couple of conferences. Immediately following my Ph D defense I traveled to Italy, and I 
visited Prof Consortini at the University of Florence. She showed me her laboratory and the very interesting 
work she was doing. One thing that I will always remember is that she was the first person to introduce 
me to her colleagues as “Dr Alonso”. Since then, I’ve been extremely lucky to collaborate extensively with 
Prof Consortini, not on research (yet) but on optics education aimed especially at young scientists from 
economically developing countries. At these events, I typically teach theoretical aspects, while she coordinates 
laboratory sessions to illustrate optical phenomena such as diffraction. An expert in the propagation of light 
through the atmosphere, Prof Consortini always stresses the importance of understanding the mathematical 
foundations of wave propagation and the corresponding statistical aspects [1,2]. We, therefore, thought that 
it would be appropriate to contribute to this Special Issue a description of the experimental implementation 
of a method for characterizing partially coherent light through its propagation properties. 
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 Phase space tomography is a technique used in a range of different physical contexts for 
characterizing partially coherent wave fields in space or time, as well as quantum mixed states [3-9]. Let us 
focus on the context of spatially partially coherent optical fields, where the spatial coherence of a beam in 
the frequency domain is characterized by a quantity known as the cross-spectral density [10]. Phase space 
tomography allows retrieving the cross-spectral density from measurements of the local spectral density (i.e. 
the irradiance component at the corresponding frequency) at planes corresponding to different propagation 
distances. Each of these measurements gives access to projections or sections of a phase space representation 
such as the Wigner function [11,12] or the ambiguity function [12,13].
 The mathematical framework of phase space tomography was suggested in 1987 by Bertrand and 
Bertrand [3]. The idea is that different measurements correspond to projections of the Wigner function in 
different directions in phase space, so that this function can be estimated from a number of such measurements 
by using the inverse Radon transform [14]. This method was first used to characterize temporal coherence 
in short pulses [5], as well as the quantum state of a light mode [6]. Its use for the characterization of 
the spatial coherence of paraxial optical fields was proposed by Nugent [4] and implemented by Raymer’s 
group [7,8], who also noted that the direct use of phase space tomography is limited to one transverse 
dimension, and that its extension to two transverse dimensions would require also many measurements with 
different sets of cylindrical lenses. Cámara et al [15] implemented a method where the cylindrical lenses 
are replaced with spatial light modulators, allowing a more efficient characterization of the Wigner function 
and hence the field. A similar study of beam characteristics of semiconductor lasers was also based on the 
construction Wigner distribution function by intensity measurements in the paraxial regime [16]. Another 
study combined the transport of intensity equation, which allows phase retrieval given intensity measurement 
and boundary conditions, with the Wigner distribution function for analyzing phase retrieval under partially 
coherent illumination [17]. Similarly, a series of studies retrieved the Wigner distribution function from 
three-dimensional intensity measurements combined with a non-linear iterative projection algorithm by 
considering the imaging system effect, such as an aperture [18-20].
 A formally equivalent but mathematically simpler approach to phase space tomography was 
proposed by Tu and Tamura [21] based on the ambiguity function [13], which is the Fourier transform in both 
the position and direction variables of the Wigner function. In this approach, one-dimensional (1D) Fourier 
transforms of the measured irradiances of a two-dimensional (2D) paraxial field at different distances give 
directly slices of the ambiguity function along radial lines in phase space. The ambiguity function can then 
be estimated by interpolating from these slices. The spatial coherence of the paraxial field is then found as the 
Fourier transform of the ambiguity function over the angular separation direction [21]. Whether, it is based 
on the Wigner or ambiguity functions, the standard formalism for phase tomography is limited to the paraxial 
domain. A theoretical generalization to the nonparaxial regime was proposed by Cho and Alonso [22], based 
on a generalized ambiguity function for nonparaxial fields.
 The goal of this study is to provide an experimental implementation of phase space tomography for 
light sources with different coherence levels, and extract their cross-spectral density by employing both the 
paraxial [21] and nonparaxial [22] approaches, such that their results are compared for real sources whose 
light is not strictly paraxial. Furthermore, Wigner functions are also calculated to verify the reconstructed 
ambiguity functions. Section 2 discusses the methods of calculation. Section 3 demonstrates the experimental 
setups and results. Section 4 discusses the findings of the study. Finally, Section 4 provides some concluding 
remarks.

2 Theoretical Background

A. Partially coherent beams in 2D
 Consider a stationary partially coherent scalar field with cylindrical symmetry, such that it only 
depends on a transverse variable x and the propagation direction z. The field is assumed to propagate towards 
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larger values of z, but it is not necessarily paraxial. To within second-order coherence theory, this field is 
described by the cross-spectral density [10], W(x1, x2; z; ω), which describes the statistical correlation of the 
field at the points (x1, z) and (x2, z) at the frequency ω. This function is defined as
 W(x1, x2; z; ω) = 〈U*(x1; z; ω) U(x2; z; ω)〉, (1)
where the brackets represent a time average, and U(xi; z; ω) is the scalar complex field amplitude at position 
(xi; z) for frequency ω. When the two points x1 and x2 coincide, the cross-spectral density reduces to the 
spectral density, which is the component of the irradiance at frequency ω measured at the point in question:
 S (x; z; ω) W(x, x; z; ω) = 〈|U(x ; z; ω)|2〉.	 (2)
In what follows we drop the dependence in ω for brevity.
B. Phase space tomography for paraxial fields
 The ambiguity function is a phase space distribution proposed within the context of radar that was 
later introduced for the study of optical fields [13]. For a paraxial partially coherent optical field, it can be 
defined in terms of the cross-spectral density as

 Ap (x', z; p') = k
2π

 ∫ W (x –  x'
2

, x + 
 x'
2

; z) exp (–i k x p')dx, (3)

where the variables x' and  p' can be regarded as separations in the spatial and directional domains, respectively, 
and k = ω/c = 2π/λ is the free space wavenumber, with c being the speed of light and λ the wavelength. The 
ambiguity function has the property of describing paraxial propagation in terms of a simple rearrangement 
of its arguments:
 Ap (x', z; p') = Ap (x'– zp', 0; p' ). (4)

 These two equations are the key to Tu and Tamura’s phase space tomography approach [21]: by 
setting x' = 0, we see that the Fourier transform of the spectral density at propagation distance z gives the 
ambiguity function at z = 0 (or z0) at a radial slice with slope – z in the phase space (x', p'), that is

 Ap (–zp', 0; p') = k
2π ∫ S (x, z)exp(–ikxp')dx. (5)

 Figure 1 illustrates the relationship between the spectral density and the ambiguity function. 
Therefore, if the spectral density is measured at a sufficient number of propagation distances, the ambiguity 
function is determined at a series of radial slices, from which the remaining values can be estimated through 
interpolation. The cross-spectral density can then be estimated from the inverse of Eq (3), namely

 W (x –  x'
2  , x +  x'

2 ; z) = ∫ Ap (x', z; p') exp (–ikxp' )dp' .   (6)

 

(a) (b)

 Fig 1. Relationship between (a) spectral density and (b) an ambiguity function: the Fourier transform of the 
cross-sections of distance zi of the spectral density correspond to radial slices of the ambiguity function.
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C. Phase space tomography for nonparaxial fields
 Note that the approach just described cannot be applied in the nonparaxial regime, since for the 
ambiguity function defined in Eq (3), nonparaxial propagation does not simply correspond to a rearrangement 
of arguments, as in Eq (4). However, a nonparaxial version of the ambiguity function can be defined in terms 
of the correlation of the plane-wave components of the field [22]. This nonparaxial generalization does 
satisfy an argument rearrangement property:
 Anp (x', z; τ') = Anp (x'– zτ', 0; τ'), (7)
where the variable τ' corresponds to a difference in the tangents of the angles of propagation of two plane 
wave components of the field. It is this nonparaxial generalization that is related to the spectral density 
through a Fourier transform:

 Anp (–zτ', 0; τ') = k
2π ∫ S (x, z)exp(–ikxτ' )dx. (8)

 The correlation of plane wave components of field is the inverse Fourier transform of the nonparaxial 
ambiguity function [22]:

	 A* 

θ – 

–α (τ', θ)
2 

 A 

θ + 

–α (τ', θ)
2  

	=	 k
2π

 4 cos2θ – τ' 2

2 cos2 θ
 ∫ Anp (x',0;τ ') exp(–ikx' tan θ)dx', (9)

where θ is the angle between the direction of propagation of plane waves and the z axis, and α(τ', θ) = 
2arcsin(τ'/2cos θ) is a function of τ' and θ from a change of variables. The cross-spectral density can then be 
calculated from the angular spectrum correlation as [22]

 W(x1, z; x2, z) = ∫ ∫ 〈A* (θ1) A (θ2)〉 exp{ik[x2 sinθ2 – x1 sin θ1 + z(cos θ2 – cos θ1)] dθ1 dθ2. (10) 

D. The Wigner Function
 The Wigner function is a phase space distribution introduced within the context of quantum physics 
[11] and then applied (or introduced independently) to a range of other fields, including optics a wave-optical 
foundation for the heuristic formalism of radiometry [12,23-25], given that its properties resemble those of 
the radiance [26,27].
 Let us consider first the paraxial regime. The Wigner function, written here as Bp(x, z; p), is related 
through Fourier transformation over both x' and p' to the ambiguity function

 Bp(x, z; p) = k
2π

 ∫ ∫ Ap (x', z; p')exp[i k (x p'– x' p)]dx' dp', (11)

where x represents a position and p a propagation direction. As mentioned earlier, the Wigner function 
behaves like a radiance, that is, as a weight for the rays specified by their position (x, z) and direction p. 
The integral of the Wigner function over all directions (that is, projecting it onto the position axis) gives the 
spectral density,

 ∫ Bp(x, z; p)dp = S (x, z). (12)

 Paraxial propagation corresponds also to an argument rearrangement for the Wigner function 
according to the rectilinear propagation of rays:
 Bp(x, z; p) = Bp(x– zp, 0; p) . (13)
 Equation (12) and Eq (13) allow calculating the spectral density from the knowledge of the Wigner 
function at any plane z = z0. While the description above is valid for paraxial fields, a nonparaxial version 
of the Wigner function, denoted here as Bnp(x, z; τ), has been defined [28] that is related to the nonparaxial 
ambiguity function through a relation identical to Eq (11) with Ap replaced with Anp. This nonparaxial Wigner 
function satisfies the analogue of the projection property in Eq (12) and of the rectilinear propagation property 
in Eq (13), both with p replaced by τ.
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3 Experimental Results
A. Experiment setups
 In the experiment, a green LED (λp = 555 nm, U = 2.8 V, I = 20 mA), a white LED (U = 3.0 V, I = 
20 mA), an incandescent lamp (U = 1V, I = 260 mA), and a laser (λp = 532 nm, P = 6 mW), are selected as 
test light sources. Figure 2(a) shows the experiment setup for measuring the first three (partially coherent) 
sources. A horizontal slit (HS) is placed in front of the light source (LS) to confine the field into a general 
line shape. An iris is used to block the stray light not falling onto the following lenses. The combination of 
a horizontal cylindrical lens, CL1 (f = 150 mm), and a vertical cylindrical lens, CL2 (f = 100 mm), creates 
the 2D light fields. A 2D charge-coupled device (CCD) array (Imaging source DMK-31BF03, 1024X768) 
moves near the focus distance z0 along the z axis to detect the spectral density. The entire line-shaped field is 
captured by the CCD array, so there is no need to move the CCD along the x direction. Figure 2(b) illustrates 
the experiment setup for measuring a coherent source (a green laser). A neutral density filter (ND) is inserted 
in front of the laser to minimize the CCD saturation. Additionally, a beam expander (BE), which consists of 
two collimating lenses and a pinhole, is placed after the ND to expand the laser beam.

(a)

(b)

Fig 2. Experimental setups for measuring optical fields of (a) partially coherent and (b) laser sources.

B. Irradiance distribution
 The intensity of the optical field of each light source is measured at a number of positions near the focal 
point z0. In other words, a stack of intensity distributions are measured in the focal region. In the experiment, 
Nincandescent = 63, NwhiteLED = 69, NgreenLED = 61, and Nlaser = 57. The increments for the displacements are of d 
= 200 µm near z0 and d = 500 µm into the far field. Table 1 summarizes the measurement distance ranges and 
the estimated nonparaxial angles.

Table 1. Measurement distance ranges and nonparaxial angles of each light source

Parameters Incandescent White LED Green LED Laser
Distance z (mm) [–15.8, 9.8] [–17.8, 10.8] [–12.8,11.5] [–14.8,7.5]

Half beam angle (°) 9 7 11 9

 Figure 3 shows the cross-sections of the irradiance distribution of light sources near z0 captured by a 
CCD. Figure 4 shows top views of irradiance distributions in the x and the z directions. The irradiance values 
of each measurement are summed over the narrow width along the y axis to obtain a 1D distribution along 
the x axis. Subsequently, a stacking of the 1D distributions gives the 2D distribution.
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(a) (b)

(c) (d)
Fig 3. Cross-sections of irradiance distribution at the plane z = z0 measured on a CCD in unit of mm of (a) 
an incandescent lamp, (b) a white LED, (c) a green LED, and (d) a laser.

(a) (b)

(c) (d)
Fig 4. Top views of the irradiance distribution for (a) an incandescent lamp, (b) a white LED, (c) a green 
LED, and (d) a laser.

 The procedure that follows for calculating the ambiguity function and from it the cross-spectral 
density requires specifying the wavelength of the light. For the green LED and the laser, the quasi-
monochromatic approximation is valid, so we can simply use their central wavelengths (555nm and 532nm, 
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respectively). The white LED and the incandescent lamp, on the other hand, have broader spectra. To process 
the data, we make a gray world approximation in which we assume that the spectral density distribution is 
approximately the same for all frequency components. The calculations then focus on the retrieval of the 
cross-spectral density for λ = 500 nm.
C. Reconstruction of the ambiguity function
 To calculate the ambiguity function, a discrete Fourier transform (DFT) is taken on each 1D 
irradiance distribution at different distance. Then, the coordinates of p′ (or τ′) and x′ of the discrete ambiguity 
function values are identified. Finally, a combination of the DFT radial slices leads to the ambiguity functions. 
To avoid an oversampling at x ′ = 0, only the DFT value at x ′ = 0 measured at z0 is taken. Figure 5 illustrates 
the top views of the real part of the reconstructed ambiguity functions at z0. Notice that up to now the 
reconstruction is independent of whether the paraxial or nonparaxial approaches are being used.

(a) (b)

(c) (d)

Fig 5. Real part of the ambiguity functions at z0 reconstructed from (a) an incandescent lamp, 
(b) a white LED, (c) a green LED, and (d) a laser.

D. Cross-spectral density
 If we assume we are in the paraxial regime, the cross-spectral density at z = z0 is calculated from the 
reconstructed ambiguity function by taking the Fourier transform over p′. Figure 6 illustrates the amplitude 
and phase of the results. The horizontal axis represents the x coordinate in mm and the vertical axis represents 
the x' coordinate in mm.

To extract the cross-spectral density based on the method for a nonparaxial field, the angular 
spectrum correlation is first calculated by taking one-dimensional Fourier transform over an ambiguity 
function and then applying an envelope over the Fourier transformed ambiguity function. Figure 7 illustrates 
the amplitudes of angular spectrum correlations. One axis represents the coordinate and the other axis 
represents the θ coordinate.
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(a)

(b)

(c)

(d)
Fig 6. Amplitude and phase of the cross-spectral density function at z0 based on a method for a 
paraxial field reconstructed from (a) an incandescent, (b) a white LED, (c) a green LED, and (d) a 
laser. Here, x is the centroid of the two points and x' is the separation of the two points.
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(a) (b)

(c) (d)

Fig 7. Amplitude of the angular spectrum correlation reconstructed from (a) an incandescent, (b) a white LED, 
(c) a green LED, and (d) a laser.

(a) (b)

(c) (d)

Fig 8. Amplitude of the cross-spectral density error by using the paraxial method, reconstructed from (a) an 
incandescent, (b) a white LED, (c) a green LED, and (d) a laser.
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 The nonparaxial cross-spectral density is then calculated from angular spectrum correlations and is 
compared with those calculated by using the paraxial method. Table 2 lists amplitude errors of normalized 
cross-spectral density of each light source based on the paraxial method. The cross-spectral densities 
calculated by using the two methods are normalized, and then the difference is estimated by ∆CSDpeak = 
|CSDpeak−p − CSDpeak−np|. The shapes of the cross-spectral densities resulting from both methods look similar, 
which might due to the relatively small half beam angles created in the experiment. Figure 8 illustrates the 
amplitude difference of the cross-spectral density by using the paraxial and nonparaxial methods.

Table 2. Amplitude errors of normalized cross-spectral density of light sources based on the paraxial method
Parameters Incandescent White LED Green LED Laser

Error 0.01 0.006 0.015 0.08

 Note that there can be some experimental sources residual error. One of them is the possible 
misalignment of the two cylindrical lenses, which would cause asymmetrical beams down the optical path. 
Another is saturation of the CCD occurring near the focal point of the two cylindrical lenses. Finally, some 
light leaks outside the CCD toward the far end of the measurement range for the incandescent lamp, the white 
LED, and especially for the green LED.
E. Result Verification
 Wigner functions are calculated by a 2D DFT on the ambiguity functions. Figure 9 illustrates the top 
views of reconstructed Wigner function at z0. The horizontal axis represents the x coordinate in mm and the 
vertical axis represents slope (which is dimensionless).

(a) (b)

(c) (d)

Fig 9. Wigner function at z0 reconstructed from (a) an incandescent, (b) a white LED, (c) a green LED, and (d) a laser.
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 As discussed in Section 2, the projection of a Wigner function on the x axis gives the irradiance 
distribution of a linear field. Here, projections of the Wigner function at different distances z are calculated by 
shearing the Wigner function at z0 following Eq (12). Then, the field is recovered for verifying the ambiguity 
functions. The measured fields and the reconstructed fields from Wigner functions are firstly normalized, and 
then one is subtracted from the other. Figure 10 shows the estimated errors. The reconstructed fields, except 
that of the laser, have an error within 15%. The reconstructed laser field has more significant errors due to its 
spiky and noisy shape.

(a) (b)

(c) (d)

Fig 10. Isometric views of difference between measured field distributions and those recovered from Wigner 
functions of (a) an incandescent, (b) a white LED, (c) a green LED, and (d) a laser.

4 Discussion and Conclusions

 This study provides a review of the technique of phase space tomography for the retrieval of the cross-
spectral density for fields with cylindrical symmetry, and reports on the first experimental implementation of 
one such technique valid in the nonparaxial regime. The results of this method are compared with those based 
on the paraxial approximation. Both methods rely on taking the inverse Fourier transform of the measured 
irradiance distributions over a range of propagation distances. In the experiment, four types of light sources 
with narrow and broad spectrum are measured.
 The resulting cross-spectral density estimates for both methods are fairly similar, probably because 
of the relatively narrow half-angles of the beams. The errors are up to 0.015% for the partially coherent 
sources with a 11º half-angle, and 0.08% for the laser source with a 9º half-angle. These errors are below 
the level of error introduced by the numerical approximations coming from the sampling and interpolation, 
as well as from the experimental limitations mentioned earlier. It would be interesting to compare the two 
approaches for a more strongly focused partially coherent field.
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 The advantages of the phase space tomography technique are that no interferometric setup is required; 
it suffices to measure the irradiance at different propagation distances, and the results are valid for measuring 
both paraxial and nonparaxial fields of any level of spatial coherence. The drawback is that the approach is 
limited to fields with cylindrical symmetry, that is, which are (at least approximately) independent of y.
 The experiment results demonstrate the spherical aberration of the optical path in both the field 
distribution plots and the reconstructed Wigner functions. The irradiance distributions show that the spherical 
aberration causes the optical beams at the edge of the field to converge faster than those near the center. This 
aberration is easily visualized in the plots of the Wigner functions, which present an s-shaped distribution.
 The differences in coherence level of the four types of light sources are clearly demonstrated by 
the plots of ambiguity functions. In particular, the plots for the laser source demonstrate strong oscillations 
in phase space, while these oscillations are washed out for partially coherent light sources. The results of 
ambiguity and Wigner functions are consistent with the theoretical prediction [22].
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