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We present gain-assisted focusing of vector beams (VBs) inside an atomic system. The atoms are prepared in a four-
level configuration in an active Raman-gain scheme. The transitions are coupled by a σ polarized control field and 
two orthogonally polarized components of a probe VB. The probe beam can be self-focused inside the medium at 
two-photon resonance by choosing the suitable input beam intensities. We use the probability-amplitude method to 
calculate the linear and third-order nonlinear susceptibilities of both the components of the probe VB. We find the gain 
that is induced by the spatial intensity distribution of the strong control beam is mainly responsible for intending the 
probe beam to self-focus. Additionally, we investigate the polarization state of the VB at the minimum beam radius. 
The observed self-focusing of the VB results in a reduced spot size, which holds potential for applications in resolution 
enhancement. © Anita Publications. All rights reserved. 
doi:10.54955/AJP.33.11.2024.709-719
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1 Introduction

	 In recent years, there has been a growing interest in utilizing atomic coherence to manipulate the 
propagation of light within a medium. The self-focusing of light in a nonlinear medium has become a subject 
of significant interest in the field of nonlinear optics [1]. Self-focusing occurs when a light beam naturally 
concentrates due to the nonlinear refractive index induced by the medium. When a Gaussian beam with a bell-
shaped symmetric transverse profile enters a nonlinear medium with refractive index n = n0 + ∆n and ∆n(r) 
= n2 I(r), the refractive index varies due to the transverse intensity profile of the beam. The central part of the 
beam travels through the medium with a higher refractive index, causing it to move more slowly than the 
edges. Consequently, as the beam propagates into the medium, the wavefront becomes increasingly distorted, 
resulting in self-focusing [2,3]. However, the diffracting action is inversely proportional to the square of the 
beam radius. Therefore, as the beam self-focuses and shrinks, both the self-focusing and diffracting action 
become stronger. If the former action grows faster than the latter, then diffraction eventually overcomes 
self-focusing, causing the beam to diffract. The concept of self-focusing was initially established in 1962 
by Askaryan [4] and later supported by a theoretical model in 1964 [5,6]. Subsequently, Lallemand et al 
conducted experimental observations, while Vlasov et al provided an analytical explanation, introducing the 
method of moments to define the collapse distance [7-9]. The physical phenomenon of wave collapse has 
been observed in various contexts such as plasma waves [10], Bose-Einstein condensates or matter waves 
[11], capillary-gravity waves in deep water [12], and astrophysics [13]. Additionally, self-focusing and 
filamentation of the optical field have been observed in transparent media and in absorptive resonance gases 
[14,15]. Notably, during self-focusing, a high- power laser beam may undergo stimulated Raman scattering 
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(SRS), leading to the majority of its energy being transferred to a Stokes wave [16]. The phenomenon of 
gain-focusing for propagation in water is discussed in [17].
	 The production of Kerr nonlinearity and optical solitons has traditionally been achieved in passive 
optical media, such as glass-based optical fibers [18]. The nonlinear effect in passive optical media is 
considerably weak, necessitating either a long propagation distance or a high light intensity to accumulate 
sufficient nonlinear phase shifts and to form optical solitons. Electromagnetically induced transparency (EIT) 
has garnered attention in highly resonant optical media [19]. Through the quantum interference effect induced 
by a coupling laser field, EIT enables extensive suppression of the absorption of a probe laser field tuned to 
a strong one-photon resonance [20-22]. In contrast to the absorptive nature of the EIT-based scheme, active 
Raman gain (ARG) scheme have also garnered considerable theoretical and experimental interest [23-25]. 
The fundamental principle of the ARG scheme entails the amplification of the probe field through stimulated 
absorption by the control field. This system operates effectively at ambient temperature, minimizing both 
attenuation and distortion. Furthermore, it facilitates a notable enhancement of the Kerr nonlinearity of the 
probe field [26].
	 The effect of beam spreading can be mitigated by utilizing a self-focusing (Kerr) nonlinear 
medium. The disintegration of the orbital angular momentum (OAM) beams [27, 28] can be suppressed by 
employing VBs rather than scalar beams [29-31]. A VB or fully structured light (FSL) beam can be created 
through the vector superposition of two orthogonally polarized, OAM carrying Laguerre- Gaussian (LG) 
modes [32]. Cylindrical and Poincar´e beams represent two categories of VB with net zero and nonzero 
OAM, respectively. The cylindrical VB features polarization profiles that are axially symmetric about the 
beam’s propagation axis, including radial, azimuthal, and spiral polarization distributions [33], whereas the 
Poincaré beam exhibits radial and azimuthal variations of polarization in its lemon, star, and web polarization 
distributions [34,35]. Utilizing vector diffraction theory, the focusing characteristics and pattern alterations of 
axisymmetric Bessel–Gaussian, and Laguerre–Gaussian (LG) beams have been examined [36,37], presenting 
potential applications in the development of optical traps and chains of optical traps.
	 In this study, we have demonstrated the focusing of both cylindrical and Poincaré VB within 
an atomic vapor medium. The medium consists of a four-level ARG system, excited by a strong control 
field and the two orthogonal polarization components of the probe VB. Under two-photon resonance, the 
strong control field induces linear gain in the left-circularly polarized component of the probe VB through 
stimulated absorption, whereas the right-circularly polarized component experiences nonlinear absorption. 
The focusing of the VBs varies due to the medium’s linear gain. Our work offers the advantage of discerning 
the polarization state of the focused beam within the medium, differentiating it from gain-focusing discussed 
in prior research on high-power laser beams propagating in water [17].
	 The paper is organized as follows. Section 1 offers a brief overview of self-focusing, its applications, 
and our research findings. The theoretical framework utilized in this investigation is outlined in Section 2. 
Section 3 details our research findings and provides comprehensive elucidations. Lastly, Section 4 contains 
the paper’s concluding remarks.

2 Theoretical Formulation

2.1 Level System
	 In this paper, we present self-focusing of VBs while propagation through a medium. The system 
under consideration is a four-level ARG system where the probe field attains a linear gain along with 
nonlinear absorption due to the highly detuned control field coupled with the ground and the excited state. 
This configuration can be realized in 87Rb D2(52 S1/2 → 52 P3/2) transition hyperfine structure as : |1〉 = |52 S1/2, 
F = 1, mF = 0〉, |2〉 = |52 S1/2, F = 2, mF = 0〉, |3〉 = |52 P3/2, F = 1, mF = −1〉, |0〉 = |52 P3/2, F = 1, mF = 0〉, and 
|4〉 = |52 P3/2, F = 1, mF = 1〉.
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Fig 1. Schematic diagram of a four-level active-Raman-gain system. The right circularly polarized 
component, ER, and the left circularly polarized component, EL, of a weak probe VB drives the 
transitions, |2〉 ↔ |4〉 and |2〉 ↔ |3〉, respectively. The transition |1〉 ↔ |3〉 is coupled by a strong 
control field Ec. The spontaneous emission decay rate from |3〉 and |4〉 states are given by γ3j and γ4j (j 
∈ 1, 2). The probe and control detunings are denoted by ∆p, and ∆c, respectively.

The transitions |1〉 ↔ |3〉 is coupled by a σ-polarized control field 
→
E c, which is defined as,

	
→
E c (r, t) = êσ Ɛc(r) e−i (ωct − kc z) + c.c.,	 (1)

where êσ, Ɛc(r), ωc, kc are the polarization vector, spatial envelop, central frequency and wavevector, 
respectively. A linear polarized vector probe field 

→
E p, can be resolved into two orthogonally polarized basis 

states σ̂i (i ∈ R, L) as,
	

→
E p (r, t) = êx Ɛp (r) e−i(ωpt − kp z) + c.c	 (2a)

	 	 = ∑
i =R, L  σ̂i Ɛi (r) e−i(ωpt − kp z) + c.c	 (2b)

where σ̂R(L) represents the right (left) circular polarization unit vector, and the right (left)circular polarized 
component ƐR(L) couples with the transition |2〉 ↔ |4〉 ( |2〉 ↔ |3〉).
	 The time-dependent Hamiltonian that characterizes the interaction of the model system, can be 
expressed under dipole approximation as,
	 H = H0 + HI,	 (3a)

	 H0 = ℏ(ω21|2〉〈2| + ω31|3〉〈3| + ω41|4〉 〈4|),	 (3b)

	 HI = − d̂ .
→
E

	     = − [
→
d 42.(êR ƐR  e−i ωp t + c.c)|4〉〈2|  + 

→
d 32.(êL ƐL  e−i ωp t + c.c)|3〉〈2|

	           + 
→
d 31.(êσ Ɛc  e−i ωc t + c.c)|3〉〈1|] + H.c.,	 (3c)

where ωj1 ( j = 2, 3, 4) correspond to the frequency separation between the state | j〉 and the ground state |1〉 

1 and 
→
d 3k (k = 1, 2), 

→
d 42 are the matrix elements of the induced dipole moments for the transitions |3〉 ↔ 

| k 〉 , and |4〉 ↔ | 2〉, respectively. To eliminate the explicit time dependence in the Hamiltonian, we use the 
following unitary transformation

	 U = exp[− iωc t (|3〉 〈3| + |4〉 〈4|) − i(ωc − ωp) t |2〉 〈2|].	 (4)



712	 Partha Das and Tarak Nath Dey

	 The effective Hamiltonian in the interaction picture can be expressed as, H = Û†HÛ – iℏÛ†∂tÛ. 
When applying the rotating wave approximation (RWA), this yields

	 H = − ℏ[(∆c − ∆p)|2〉 〈2| + ∆c|3〉 〈3| + (∆c − 2∆p)|4〉 〈4|]

	     – ℏ[Ωc|3〉 〈1| + ΩL|3〉 〈2| + ΩR|4〉 〈2|] + H.c.	 (5)
The single photon detunings of the probe and control field for their respective transitions are denoted as:
	 ∆c = ωc − ω31, ∆p = ωp − ω02,	 (6)
and the Rabi frequencies of probe field components and control field is expressed as:

	 Ωc = 
→
d 31 êσ

ℏ  Ɛc , ΩL = 
→
d 32 êL

ℏ  ƐL, ΩR = 
→
d 42 êR

ℏ  ƐR.	 (7)

	 Using the probability-amplitude method we get the equations of motion for the atomic response 
which are given as:

	 i
·

C1 + Ω*
c
 C3 = 0,	 (8a)

	 i
·

C2 + d2 C2 + Ω*
L

 C3 + Ω*
R

 C4 = 0,	 (8b)

	 i
·

C3 + d3 C3 + Ωc
 C1 + ΩL

 C2 = 0,	 (8c)

	 i
·

C4 + d4 C4 + ΩR
 C2 = 0,	 (8d)

where, ∑ 4
i = 1 |Ci|2 = 1, Ci (i ∈ 1, 2, 3, 4) is the probability amplitude of the bare state. In Eq (8), d2 = (∆c − ∆p 

+ iγ2), d3 = (∆c + iγ3), d4 = (∆c − 2∆p + iγ4) with γj ( j ∈ 2, 3, 4) being the atomic decay rates from the states | j〉.
2.1 Stokes Parameters
	 The description of any light’s polarization state necessitates the use of the four Stokes polarization 
parameters. To comprehend the state of polarization in the transverse plane of the VB, it can be decomposed 
into its two orthogonally polarized LG modes. A circular polarization basis of the VB can be derived in the 
following manner:
	

→
E (r, ϕ, z) = ƐL(r, ϕ, z)êL + ƐR(r, ϕ, z)êR, 	 (9)

where,
	 ƐL(r, ϕ, z) = cos(α) LG0

iL , ƐR(r, ϕ, z) = sin(α)eiθ LG0
iR 	 (10)

ƐL, and ƐR are the two orthogonal polarized component of the VB. The relative amplitude and phase of the 
two modes is defined by α, and θ, respectively. The spatial modes, LG0

li (i = L, R), refer to the Laguerre 
Gaussian polynomial, having radial index zero and is given by

	  LG0
li (r, ϕ, z) = Ɛ0 

2
π|li|!

  
r 2
w(z) 

|li|

e– 
r2

w(z)2 ei li ϕ + i ki ni z exp 
iki nir 2 z

2(z2 + ni
2 zR

2

 

e– (|li|+ 1) η(z) 	 (11)

	 w(z) = w0 1 + z2/n2
i  z2

R defines the beam radius at a propagation length z, where w0 represents the 
beam waist at z = 0, and ni is the refractive index. The parameter zR = kiw2/2 denotes the free space Rayleigh 
length, with ki being the free space wave number. The OAM index is li, and the Gouy phase can be expressed 
as (|li| + 1)η(z), where η(z) = tan−1(z/nizR). The refractive indices, nR = 1 + 2πRe[χ42], and nL = 1 + 2πRe[χ32]. 
The Stokes parameters in the circular basis are expressed as:
	 S0 = |ƐR|2 + |ƐL|2, S1 = 2Re[ƐR

* ƐL], 	 S2 = 2Im[ƐR
*ƐL], S3 = |ƐL|2 − |ƐR|2.	  		  (12)

From Eq (12), we can calculate the ellipticity, ζ and the orientation, ξ of polarization at each point in the 
transverse plane as:
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S1 
S0

 = cos(2ζ  ) cos(2ξ ), 
S2 
S0

 = cos(2ζ  ) sin(2ξ ), 
S3 
S0

 = sin(2ζ  ),	 (13)

which give

	 ζ = 
1
2 sin–1 


S3 
S0 

,	 ξ = 
1
2 tan–1 


S2 
S1 

.
	 (14)

We substitute Eqs (10), (11), and (12) in Eq (14) assuming that the free space wave vector kR = kL = k, gives

	 ξ(z) = – 12 θ + ϕ∆(lL,R) + kz∆(nR, L) + η (z) ∆(|lL, R|) + 
kzr 2

2    
nR

z2 + nR
2zR

2 – 
nL

z2 + nL
2zR

2  
,	 (15)

where ∆(lL,R) = lL − lR, ∆(| lL, R|) = |lL| − |lR|, and ∆(nR, L) = nR − nL. Subsequently,following propagation through 
a distance z within the medium, the polarization of aVB at each point on the transverse plane undergoes a 
rotation determined by the following expression:

	 ∆ ξ(z) = – ∆ |lL,R | η (z)
2

 – 1
2
 

kzr 2

2    
nR

z2 + nR
2zR

2 – 
nL

z2 + nL
2zR

2  + k z ∆(nR, L)
 
,	 (16)

	  According to the Eq (16), it is apparent that the polarization the medium in the case of CV beams 
arises exclusively from the disparity in the refractive index of the two constituents of the probe beam. In 
addition, the change in ellipticity of the VB beam can also be represented as:

	 ∆ ζ(z) = 
1
2
 

 sin–1  
1 − a tan2α
1 + a tan2α   –  sin–1  

1 − b tan2α
1 + b tan2α   

,	 (17)
where,

	 a = exp 
2r 2
w 2

0
 

n2
R z

2
R

z2 + n2
R z 2

R
 – 

n2
L  z

2
R

z2 + n2
L  z 2

R 
r 2

w0 1 + z2/n2
R z 2

R

  
2|lR| 


r 2

w0 1 + z2/n2
L  z 2

R

  
–2|lL|	 (18)

and

	 b = 
r 2
w0  

2(|lR| – |lL|).	 (19)

2.3 Linear and nonlinear (Kerr) susceptibilities
	 In this section, our objective is to compute both linear and third order nonlinear susceptibilities of 
the medium. The nonlinear Kerr susceptibility holds great importance in the field of nonlinear optics, where it 
plays a crucial role in various optical phenomena. It specifically pertains to the third- order nonlinear optical 
susceptibility (χ(3)) that gives rise to the Kerr effect. This effect manifests as an intensity-dependent alteration 
in the refractive index of a material, and is characterized by the real part of third-order optical susceptibilities. 
The probe-field susceptibility is precisely defined as

	 χ32 ≡ χL = N |d23|2

ℏ
 

C3C *

2
 ΩL 

 ~

¯

 χ (1)
L  + χ (3)

L L  |ΩL|2 + χ (3)
L R  |ΩR|2,		 (20a) 

	 χ42 ≡ χR = N |d24|2

ℏ
 

C4C *

2
 ΩR 

 ~

¯

 χ (1)
R  + χ (3)

RR  |ΩR|2 + χ (3)
R L  |ΩL|2,		 (20b)

where, N is the atomic density of the medium. The linear probe susceptibility is denoted as χ (1)
L R , while the 

third order self and cross Kerr susceptibilities are represented as χ (3)
L L,RR and χ (3)

L R,RL , respectively. We solve Eq 
(8) under steady-state conditions. The probability amplitudes are obtained by satisfying the condition ∑ 4

i = 1 
|Ci|2 = 1. Hence
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	 C1 = 1 + | Ωc | 2 
|Ds|2 + |ΩL|2 (|ΩR|2 + |d4|2)

|D|2
  

1/2
	 (21)

where, Ds = |ΩR|2 − d2 d4, and D = d4|ΩL|2 + d3|ΩR|2 − d2 d3 d4. The other probability amplitudes can be written 
in terms of C1 as:

	 C2 = – d4 Ω*
L Ωc

D
 C1,	 (22a)

	 C3 = – Ds Ωc

D
 C1,	 (22b)

	 C4 = 
Ω*

L Ωc ΩR

D
 C1.	 (22c)

	 In order to derive the linear and nonlinear susceptibilities as defined in Eq (20), a Taylor expansion 
is performed around |ΩL|2 = |ΩR|2 = 0, resulting in the following expressions:

	 χ (1)
L   = – N |d23|2

ℏ
 

|Ωc|2

d *
2(|d3|2 + |Ωc|2))

 ,	 (23a)

	 χ (3)
LL  = – N |d23|2

ℏ
 
|Ωc|2 d *

2 d *
3 + d2 d3 – |Ωc|2 

d *
2 |d2|2 (|d3|2 + |Ωc|2 )2  ,	 (23b)

	 χ (3)
LR  = – N |d23|2

ℏ
 

|Ωc|2 d2 d4

d *
2 |d2|2 (|d3|2 + |Ωc|2 )

 ,	 (23c)

	 χ (1)
R  = χ (3)

RR  = 0,	 (23d)

	 χ (3)
RL  = – N |d24|2

ℏ
 

|Ωc|2

|d2|2 d4 (|d3|2 + |Ωc|2 )
 .	 (23e)

	 In the preceding equations, it can be observed that the right component of the probe VB, connected 
to the transition |2〉 ↔ |4〉, exhibits only cross Kerr susceptibility.
2.4 Propagation equation
	 The investigation of beam propagation equations plays a pivotal role in examining the influence 
of absorption, diffraction, dispersion, and anisotropy on VB propagation. By employing the slowly varying 
envelope and paraxial wave approximations, the propagation equations governing the right and left circularly 
polarized components of the probe VB can be written as:

	 ∂ΩR        
  ∂z

 = i 
2kR

 ∇⊥
2 ΩR

 + 2πikR χR ΩR 	 (24a)

	  ∂ΩL        
  ∂z

 = 
i 

2kL
 ∇⊥

2 ΩL
 + 2πikL χL ΩR 	 (24b)

	 The right-hand side of the equation consists of two terms: the first term accounts for diffraction, 
while the second term denotes the dispersion and absorption of the probe VB. It is important to note that the 
propagation equations are interconnected through the susceptibilities χR and χL. The dynamics of the strong 
control field Ec is disregarded due to the specific geometrical structure and polarization characteristics. To 
numerically analyze Eqs (24a) and (24b), the split-step Fourier method (SSFM) has been selected for the 
study.
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3 Results and discussion

3.1 Linear and nonlinear (Kerr) susceptibilities of probe VB
	 In this section, we present the response of linear and nonlinear susceptibilities for the two components 
of the probe VB. In Figs 2 (a)-(b), the response corresponds to the left circularly polarized component, while 
Figs 2 (c)-(d) denote the right circularly polarized component of the probe beam. In Fig 2(a), it is observed 
that Re[χ(1)] and Re[χ(3) ] are zero at the two-photon resonance, while Re[χ(3) ] is nonzero. Additionally, Fig 
2(b) indicates that linear gain is accompanied by nonlinear absorption. Interestingly, Figs 2 (c)-(d) reveal that 
the right circularly polarized component exclusively exhibits cross-Kerr susceptibilities, as expected by the 
model system, where the coherence C4C2

* is nonzero in the presence of the left circular component. Notably, 
our work is conducted in the paraxial regime throughout the paper, which is valid as our beam waist is much 
larger than the wavelength.
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Fig 2. Real and imaginary parts of both linear and third-order nonlinear χL and χR are plotted against the 
corresponding transition detunings. (a), (b) correspond to real, and imaginary part of χL plotted against ∆p/γ, 
respectively. Similarly (c), (d) correspond to real, and imaginary part of χR plotted against ∆p/γ, respectively. 
Parameters used: ΩR,L = 0.001γ, Ωc = 0.7γ. γ2 = 3 × 10−4γ, γ3 = 5 × 102γ, γ4 = 0.5γ. ∆c = 10γ. The density of 
atoms, N = 5 × 1011cm−3.

3.2. Focusing of lemon and radial VB
	 In order to achieve self-focusing of the probe VB, the transverse spatial profile of the control beam 
must be selected so that its central intensity exceeds that of the tail. To accomplish this, we have opted 
for a Gaussian beam and a super-Gaussian control beam for the propagation of the lemon and radial VB, 
respectively. The control field is defined as,
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	 Ωc(r, ϕ, 0) = Ωc0 exp 

– 

 
r2

w 2
0
 

lc


 .							        (25)

Fig 3. Longitudinal intensity profile of (a) lemon (lL = 0, lR = 1, α = π/4, θ = 0), (b) radial (lL =−1, lR = 1, 
α = π/8, θ = 0) VB propagating in free space, and inside the gain medium (c), and (d), respectively. The 
value of lc for the propagation of lemon and radial VB is taken as 1, and 4, respectively. The probe and the 
control beam have a waist, w0 = 50µm and is maintained consistently. White dashed vertical line denotes 
the minimum spot size achieved due to self-focusing. Other parameters are same as Fig 2. 

Fig 4. Transverse intensity and polarization distribution at the z = 0 for (a) lemon, (b) radial and at minimum 
beam radius z = 0.25zR for (c) lemon, (d) radial VB, respectively. The intensity is normalized by its maximum 
intensity for each VB. The colors white, red, and blue correspond to left circular, linear, and right circular 
polarizations, respectively. Parameters remain same as Fig 2. 

	 The input amplitude of the control beam is denoted by Ωc0. In the figures labeled as 3 (a)-(d), we 
illustrate the propagation of VBs in both free space and within the Raman gain medium. During the initial 
self-focusing phase, the control beam facilitates energy transfer to the probe beam. The energy transfer is 
more pronounced in regions with higher control beam intensity, resulting in a gain-narrowed probe profile 
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that achieves a minimum spot radius. In the illustrations labeled Fig 3 (a) and Fig 3 (c), the longitudinal profile 
of lemon and radial VB propagation in free space is depicted. Conversely, Fig 3(b) and Fig 3(d) characterize 
the propagation of lemon and radial VB inside the medium. The left circularly polarized component of the 
probe VB experiences linear gain, thereby facilitating beam self-focusing. As self-focusing reduces the beam 
diameter, diffraction increases, and beyond a certain distance, the beam undergoes diffraction, a phenomenon 
known as gain-focusing. Refractive focusing is attributed to the real part, while gain focusing is linked to the 
imaginary part of the susceptibility of the probe beam. The discussed gain-focusing phenomenon is expected 
to be a pervasive occurrence, applicable to any medium supporting nonlinear focusing and stimulated Raman 
scattering.
	 Further, we examine the state of polarization (SOP) of the probe VBs both at the input and after 
focusing to the minimum beam radius. As depicted in Fig 4(a) and Fig 4(b), we display the SOP at input z = 0 
for the lemon and radial VBs, respectively. Subsequently, after the beam focuses, the SOP of the lemon and 
radial VBs at z = 0.25zR is illustrated by Fig 4(c) and Fig 4(d) correspondingly. Our findings indicate that the 
SOP of the lemon VB at z = 0.25zR has undergone a clockwise rotation by an angle of π/4 with a variation 
in ellipticity. Conversely, in the case of the radial VB, the SOP remains relatively unchanged, attributable 
to the insubstantial difference between Re[χ32] and Re[χ42]. Moreover, we observe that the full width at half 
maximum (FWHM) of the lemon VB at the input is 1.84w0, which subsequently becomes 0.84w0 upon fo- 
cusing at z = 0.25zR. Likewise, at the input, the FWHM of the central dark region of the radial VB is 0.68w0, 
reduced to 0.44w0 upon focusing. Hence, it is imperative to carefully consider the intensity of the probe and 
control beam to achieve moderate gain, leading to the focusing of the VBs.

4 Conclusion

	 To summarize, we have utilized a theoretical model to control the susceptibility of the medium in 
order to achieve beam focusing of lemon and radial VBs within atomic vapor. Furthermore, we have examined 
the state of polarization of the VBs at both the initial and the minimum beam radius. The system under 
consideration consists of a control field with a Gaussian or super-Gaussian transverse intensity profile and 
two perpendicular components of probe VBs. At two-photon resonance, the combination of linear gain and 
nonlinear absorption leads to beam focusing. The transverse variation of the control beam profile is replicated 
in the linear gain profile. This phenomenon, known as gain focusing, occurs as the imaginary part of the 
susceptibility, which provides linear gain, is primarily responsible for beam focusing. The implementation 
of self-focusing has led to a reduction in the spot size of the beam, potentially offering benefits in improving 
resolution.
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