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1 Introduction 	  

	 The fundamental equation of geometric optics is the eikonal equation. In the geometric optics 
approximation, the propagation of electromagnetic waves (in the optical range) can be represented as the 
transfer of wave energy which are described by geometric relations. The eikonal equation describes the 
constant phase surfaces of a wave and the propagation of light energy along a certain direction and leads 
to the concept of a ray of light (see Ref [1]; appendix A). There is an elegant statement that “classical 
mechanics corresponds to geometric optics limit of wave motion” in which light rays orthogonal to wavefronts 
correspond to particle trajectories orthogonal to surfaces of constant phase [2]. There are various ways to 
derive the eikonal equation (e.g., using Fermat’s principle of least time, or using Euler-Lagrange equations) 
and here we use the techniques of adaptive control theory to obtain the equation.
	  Consider a deterministic sequential physical process, that is if f be an arbitrary quantity having 
an initial value f0 at time t0, f1 at time t1, f2 at time t2,… , fn at time tn with t0 < t1 < t2 … < tn , then it 
constitutes a multi-stage linear sequential process, and we also note that fr is a function of fr–1 only. Then, 
we can reduce the process to one dealing with subprocesses and this functional fr = fr (r − 1) can be used 
to solve complicated physical problems. We need to define the functional fr from which the process (a state 
variable) can be characterized uniquely. Optimizing this functional is equivalent to optimization of the entire 
process. For this optimization, we use the technique of dynamic programming and the principle of optimality 
introduced by Richard Bellman [3]. This principle states that an optimal policy has the property that whatever 
the initial state and initial decision are the remaining decisions must constitute an optimal policy with regard 
to the state resulting from the initial decision. In this definition, the decision is nothing but the selection 
of a single value of all possible values of f0 of the arbitrary function. When applying this, we require that 
the system be closed, that is be in equilibrium. The method is a flexible tool for optimizing the behavior 
of the linear system. Dynamic programming can be applied to any arbitrary time varying system in order 
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to predict the final state of the associated sequential process. The reader is referred to many excellent texts 
on dynamic programming e.g., [3-5]. This technique has been applied over the decades to a wide range of 
problems- from economics, signal and image processing to computational biology and genomics in addition 
to physics. In the field of optical sciences, Robert Kalaba was the first to apply the principle of optimality 
to derive the eikonal equation [Ref 6; see also Ref 7]. This analysis was applied to the case of an optical 
waveguide [8] and further developed to case of arbitrary inhomogeneous periodically pooled waveguides 
[9]. Brandsttter extended this to the case of inhomogenous media [10]. Other applications in optics are 
summarized in the chapter by Calvo, Perez-Rios and Lakshminarayanan [11]. In this paper, we derive the 
eikonal cast in the language of control theory.

2 The eikonal equation by a control theoretical method 

Consider a control system
	 ·X  f (x, u) x ∈  Rn, u ∈ U ⊂ Rk

The task is to minimize a feedback control u(x, t) 0 ≤ t ≤ t1 that minimizes the integral of the form

	 J [u(o)] = ∫
t1
t

r (x (τ), (u)) dτ + g (x(T ))
for each t∈ [0, t] such that
	 X (t(1)) = P
where P is a function in Rn.
Let V(x, t) be a cost function

	 V(x, t) = 
min 

u(τ) < τ ≤ t1 J [u (·)]

	 From the method of dynamic programming,	V(t), solves the so-called Hamilton-Jacobi Bellman 
Equation 

	  
∂J (x, t)

∂t  + min 
v ∈ U 

∂v (x, t)
∂x

 · f (x, v) + γ (x, v) = 0

with boundary condition
	 [X (t1), t1] = g (x (t1))
The minimizing function u(x, t) is an optimal control and given by

	 u(x, t) = Arg  min 
v ∈ U 

∂V (x, t)
∂x

 · f (x, v) + γ (x, v)
	 The corresponding optimal trajectory X(t) can be obtained by integrating the ordinary differential 
equation
	 ·X = f  (x, u (x, t)), x (t1) = P
With this background formulation let us now derive the eikonal equation.
	 Consider the case in R2 and use (x, z) as coordinates. Although the physical phenomena described 
by the eikonal is not a control system, we can change it into a control problem and apply the dynamic 
programming technique given above. Let us change t into s (the arc length) and we can control the direction 
of velocity.	
The control system now is
	 X ' = cos u
	 Z' = sin u
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where u is a control variable and ' represents differentiation with respect to arc length s. With these 
modifications the problem becomes one of minimizing

	 ∫
b

a
n (x (τ), z (τ)) δτ + 0

with c = 1, such that the constant of integration is
	 (X (b), z(b)) = (x0, y0)
where b is a free parameter since total arc length is not prescribed.
	 Let T(x, z, s) be the time to go (i.e., cost) function instead of, V(x, z, s). Since b is free, the 
corresponding transversality condition is T (x, z, s), which is independent of s. The Hamilton-Jacobi-Bellman 
equation now becomes for the time-to-go function T(x, z).

	 0 + 
min 

v ∈ R  
∂T (x, z, s)

∂x
 cosv + ∂T (x, z, s)

∂x
 sinv + n (x, z) = 0

with T (x (b), y(b)) = 0
From the above equation the optimal control should be such that

	 cosu(x, z) = 
–Tx

(Tx
2+Tz

2)  
 + n(x, z) = 0

	 Tx
2+Tz

2 = n2(x, z)
The above equation is recognizable as the fundamental equation of geometric optics, the Eikonal. 
From the solution of the eikonal, we can solve for b and arrive at 
	 T (x(b), z(b)) = n2 (x0, z0)
And the optimal trajectory is 

	 X ' = 
–Tx

(Tx
2+Tz

2)  
 

	 Z' = 
–Tz

(Tx
2+Tz

2)  
 

For 0 ≤ s ≤ b, we arrive at

	 (x(b), z(b)) = (x0, z0)

3 Discussion

	 The derivation of the eikonal equation can be extended. Consider a function R3, in this case the 
functions control system is u1, u2, u3

 ∈ R satisfies
	 u1

2 + u2
2 + u3

2 = 1
and the trajectory can be parametrized by the arc length s.. Alternatively, we can use	

	

 
x1
x2
x3

 

 = 


cos u1 cos u2
sin u1 sin u2

sin u2 
where there is no constraint on the two controls u1 and u2.
	 Another variant is instead of giving a final point P, a final set (x(T ), z(T )) ∈ s, where s is arc length 
in R2 can also be considered. In this case there will be a corresponding transversality condition. Also, the total 
arc length b can be prescribed instead of it being a free variable.	



210	 Vasudevan Lakshminarayanan

References
	 1.	 Lakshminarayanan V, Ghatak A K, Thyagarajan K, Lagrangian Optics, (Kluwer, Boston, MA), 2002. 
	 2.	 Goldstein H, Classical Mechanics, (Addison Wesley, Cambridge, MA), 1956. 
	 3.	 Bertsekas D, Dynamic Programming and Optimal Control, Vol I, 4th Edn, (Athena Scientific, Nashua, NH), 2017. 
	 4.	 Denardo E V, Dynamic programming: models and applications, (Dover, NY), 2012. 
	 5.	 Bellman R, Dynamic Programming, (Princeton University Press, Princeton, NJ), 2010. 
	 6.	 Kalaba R, Dynamic programming, Fermat’s principle and the eikonal equation, J Opt Soc Am, 51(1961)1150–1151. 
	 7.	 Lakshminarayanan V, Varadharajan L S, Dynamic programming, Fermat’s principle and the eikonal equation – 

revisited, J Optim Theory Appl, 95(1997)713–716.
	 8.	 Calvo M L, Lakshminarayanan V, Light propagation in optical waveguides, a dynamic programming approach, J 

Opt Soc Am A, 14(1997)872–880.
	 9.	 Calvo M L, Lakshminarayanan V, Spatial pulse characterization in periodically segmented waveguides using the 

dynamic programming approach, Opt Commun, 169(1999)223–231. 
	10.	 Brandstatter J J, Dynamic programming, Fermat’s principle and the eikonal equation for anisotropic media, J Opt 

Soc Am, 64(1974)317–318.
	11.	 Calvo M L, Perez-Rios J, Lakshminarayanan V, dynamic programming applications in optics, Chapter 3, pp 53–94, 

in Lakshminarayanan V, Calvo M L, Aleiva T, Mathematical Optics, Classical, Quantum and Computational 
Methods, (CRC Press, Boca Raton, FL), 2013. 

[Received: 10.03.2023; accepted: 25.03.2023]


