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A multi-aperture imaging camera is a computational imaging camera that uses a micro-lens array to achieve a smaller 
system volume as compared to a conventional camera without compromising the resolution and field of view. A 
micro-lens array with each micro-lens shifted from a regular grid form multiple, low-resolution images. A robust signal 
processing algorithm to generate a high-resolution image from the multiple low-resolution images generated by the 
micro-lens array forms an essential component of such a computational camera. In this paper, a robust image super-
resolution algorithm for a multi-aperture imaging system using ℓ1 regularization is developed. The image formation in 
multiple imaging channels is modelled mathematically by taking into account the various degradations in the image 
formation process. The proposed super-resolution algorithm has two steps. In the first step the degradations in each 
imaging channel is corrected by solving the inverse problem of reconstructing the high-resolution image from a set of 
low-resolution images which is an ill-posed problem. The inverse problem is formulated as an optimization problem 
with a ℓ1 regularization term which is solved as an unconstrained problem with FISTA algorithm and as a constrained 
optimization problem with SALSA algorithm. In the second step, the images from the multiple channels are combined 
to generate a high-resolution image after correcting for sub-pixel shifts between the images thereby effectively achieving 
a sampling on a high-resolution grid. After applying the proposed algorithm on USAF resolution chart, perceivable 
improvement in the contrast of resolution line pattern as compared to low resolution image is observed. © Anita 
Publications. All rights reserved.
Keywords: Multi frame super-resolution, Multi-aperture camera, ℓ1 regularization, Super-resolution.
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1 Introduction

	 A multi-aperture imaging system like TOMBO [1-10] uses an array of micro-lenses to generate 
multiple images of a scene. These images share the space-bandwidth product offered by the imaging sensor. 
If we consider the multi-aperture system to have been derived from a single aperture system by replacing the 
single lens with an array of micro-lenses (with the same F#), there is a reduction in the system volume due 
to smaller focal-length of the micro-lenses leading to a more compact system. Since the multiple imaging 
channels share the space-bandwidth product of the sensor, the digital images generated by each channel has 
a lower resolution as compared to that generated by an equivalent single aperture imaging channel. This 
necessitates the scaling up of the image with a view to restoring the original resolution.
	 Scaling up an image using conventional interpolation techniques does not help in improving 
resolution as the information content in the image remains the same. One of the approaches to scale up an 
image with enhanced resolution is to use multiple images shifted relative to each other by a fraction of the 
detector pixel pitch. The generic class of algorithms that are capable of reconstructing a scaled-up image with 
a higher resolution from multiple sub-pixel shifted images are referred to as ‘Multiframe Super-resolution’ 
(MFSR) techniques [11-29]. An alternate approach to Super-resolution is to generate a high-resolution image 
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from a single low-resolution image using a dictionary referred to as Single Image Super-resolution technique. 
Neural Network techniques have been used to learn the dictionary [30-34].
	 Super-resolution image reconstruction [35] is an inverse problem [36-38], the solution of which 
requires the understanding of the forward imaging model that accurately describes the physical formation 
of Low Resolution (LR) images from the hypothetical High Resolution (HR) image. Figure 1(a) considers a 
simplistic imaging model where the HR image is assumed to undergo a shift and down-sampling operation to 
form the LR images. Under the assumption that image formation process is free of blur and noise degradations 
and the shifts are accurate and known a priori, an error free HR image reconstruction is possible with an up-
sampling operation, and a shift-add operation applied to each LR image as shown in Fig 1(b). However, in a 
real-world situation, the image undergoes degradations mainly due to limited aperture size of the optics and 
noise present in the imaging system resulting in a loss of information. The shifts that the HR image undergoes 
are random in nature and seldom known. In a real-world situation, one is required to estimate these shifts 
from noisy and blurred LR images. All the above reasons make the ill-posed problem of Super-resolution 
image reconstruction an extremely challenging one.
	 The success of MFSR techniques depends to a large extent on (i) the presence of subpixel shift in 
the LR images, the accurate determination of these shifts and the use of these shifts to interpolate to a higher 
resolution grid to obtain a scaled-up HR image (ii) the mathematical model that represents the forward image 
formation process incorporating the various degradations in the imaging channel. Though it is generally 
accepted that accurate modeling of the imaging channel degradations has a direct bearing on the quality of 
image reconstruction, the computing requirements and the complexity of the mathematical models are also 
important considerations. Depending on the a priori information available, the degradation function may be 
assumed to be known or unknown. For the latter cases, blind deconvolution techniques may be used.
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Fig 1. (a) Forward model of image formation that forms basis for proposed multiframe super resolution 
image reconstruction algorithm (b) Inverse model for HR image reconstruction.

	 Our approach to the scaling up images involves the following steps as shown in Fig 1(b) - (i) 
deblurring the noisy LR images, (ii) estimating the subpixel shifts, (iii) up-sampling the images, (iv) Shift and 
Add. This would correspond to the mathematical model shown in Fig 1(a) where blurring and noise addition 
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happens after the decimation operation on the LR images. This is different from the earlier approaches where 
the deblurring is done on the estimated HR image. The advantages of our approach are the following: (1) 
the shift estimation is done on the deblurred image which is more accurate. (2) The deblurring operation is 
done separately for each channel giving more flexibility for addressing the degradations of each channel 
separately. We use two well-known algorithms for deblurring – FISTA [39] and SALSA-based [40-41] on ℓ1 
regularization.
	 Let the N outputs of an N-channel imaging system be denoted as Z1,....,ZN each with M1 × M2 pixels. 
It is required to reconstruct an HR image scaled up by a factor r with rM1 × rM2 pixels, where r ≤ N. The 
scaled-up image will have an equivalent resolution obtained from a single aperture imaging system having 
optics of same F# and a detector with rM1 × rM2pixels and pixel pitch px /r × py /r, respectively.
Deblur using FISTA
	 Let blur PSF of the kth channel be represented as blurring matrix Ak.The formation of blurred image 
from exact image is given by
	 zk = Ak xk + nk , k = 1…N	 (1)
where Ak is the matrix representation of blurring function, zk is vector representation of blurred image Zk and 
xk is vector representation of the two-dimensional image Xk expressed in the matrix form. nk is the additive 
noise in the kth channel. In the absence of noise, the estimate of xk based on Least Square (LS) approach gives
	 x̂k = arg minxk ||zk – Ak xk ||2	 (2)
	 The ill-posed nature of inverse problem requires choosing solution that is close to the accurate estimate 
xk given the infinite possible solutions possible from noisy ill-conditioned observations. Regularization term 
helps converting inverse problem from ill-posed to a well posed one. Adding a regularization term to the 
above solution in Eq (2) gives
	 x̂k = arg minxk ||zk – Ak xk||2 + λΘ(xk)	 (3)
Θ(..) denotes a convex regularizer and λ > 0 is a regularization parameter that providesa trade-off between 
fidelity to measurements and noise sensitivity. A natural image is sparse in orthogonal basis such as Wavelet 
basis. This knowledge can be used to incorporate the ℓ1 norm of Wavelet coefficients in the regularization 
term to give Θ(xk) = ||Wαk||1, where W denotes inverse Wavelet transform, αk is a sparse vector containing 
Wavelet coefficients corresponding to xk. The Eq (3) can be rewritten as 	
	 α̂k = arg minαk ||zk – Ak αk||2 + λ||αk||1		 (4)
	 The presence of the ℓ1 term is used to induce sparsity in the optimal solution α̂k. For deblurring 
applications, A is chosen as A = RW, where R is blurring matrix and W contains Wavelet basis (multiplying 
by W corresponds to inverse Wavelet Transform). Since most applications like image deblurring involves 
dense matrix data which precludes use of methods which requires matrix explicitly stored. The search for 
cheap matrix vector multiplication such as FFT, DCT ends on simple gradient based methods where dominant 
computational effort is on cheap matrix vector multiplication involving A and AT.
	 One of the most popular methods for solving problem given by Eq (4) is in the class of iterative 
shrinkage thresholding algorithms (ISTA), where each iteration involves matrix-vector multiplication with 
A and AT followed by shrinkage/soft threshold step. ISTA solves a class of optimization problem that can be 
formulated as
	 Minx { f (x) + g(x)}	 (5)
where f, g:Rn → R. g is a continuous convex function which can be non-smooth and f is a smooth convex 
function that is continuously differentiable with a Lipschitz continuous gradient L(f). ISTA solves the 
minimization problem as

	 xm = arg minx  g(x) + L2 || x – xm–1 – 1L ∇ f (xm–1) 
||2	 (6)

where L= L( f ) is a Lipschitz constant of ∇f plays the role of step size. xm is the estimate of x in the mth step.
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	 FISTA is an improvement of ISTA. FISTA not only preserves efficiency of the original ISTA but 
also promotes effectiveness of ISTA so that FISTA can obtain global convergence. In FISTA algorithm, the 
estimate in the mth step is xm is

	 xm = arg minx g(x) + L2 || x – (1 + ξ ) xm–1 – 1L ∇ f (xm–1) 
– ξ  xm–2 – 1L ∇ f (xm–2) 

||2	 (7)

where ξ = 2 


tm–1 – 1

1 + 1+ 4 t 2
m–1

, tm-1 being the step size in the (m-1)th step.

For f (x) = ||Ax– b||2 and g(x) = ||x||1, xm in Eq 6 is estimated using a shrinkage/soft threshold step given by

	 xm = (1+ ξ) ℘λ/L (xm–1) – 2
L

 AT (Axm–1 – b) + ξ℘λ/L (xm–2 – 2
L

 AT (Axm–2 – b))	 (8)

where the soft threshold operator ℘τ (.) is defined as

	 ℘τ(x) = 
x	 if x > τ or x < –τ
0          if –τ ≤ x ≤ τ

The soft threshold operator ℘τ (.) acts on each element of the vector x.
When x = αk, A = Ak and b = zk, the above equation can be written as

	 αk
m = (1+ξ) ℘λ/L (αk

m–1) – 2
L

 AT
k  (Aαk

m–1 – b)) + ξ℘λ/L (αk
m–2 – 2

L
 AT

k  (Aαk
m–2 – b))	 (9)

	 In image deblurring problem PSF is having double symmetry (reflexive boundary conditions) and 
therefore blurring matrix A is symmetric implies that AT= A and this simplifies calculations.
Deblur using SALSA
	 An alternate approach to solve the inverse problem in Eq (1) is to solve the constrained optimization 
problem of the form,
	 min Θ(x) subject to || zk – Ak xk ||2 ≤ ε	 (10)
where Θ(x) is the regularizer and ε < 0 is a parameter which depends upon the noise variance. For Θ(x) = 
||x||1, this problem is known as Basis Pursuit denoising (BPD) [40] and is solved using C-SALSA algorithm 
[40,41]. The constrained problem is transformed into an unconstrained one by adding the indicator function 
of the feasible set, the ellipsoid:
	 E(ε, Ak, zk) ={xk∈ Rn: ||zk – Ak xk ||2 ≤ ε}	 (11)
Therefore, constrained problem Eq (10) can be written as an unconstrained problem:	
	 minu∈Rd (g1(H1u) + g2 (H2u)) = min Θ (xk)u∈Rd + IE (ε,I,zk) (Ak xk)	 (12)
ε > 0 is a parameter which depends on noise variance. By application of variable splitting above unconstrained 
problem is converted to different constrained problem and finally is dealt with using the ADMM technique. 
Moreau proximal mapping required in ADMM technique for g1= Θ = ||x||1 is soft threshold operator

	 proxλτ (xk) = max 0,1 – 
τ

|xk| x
k	 (13)

τ is threshold for soft threshold operator.

2 Result and Discussion
Simulation Results
	 The algorithm was tested on four sub-pixel shifted blurred and noisy low resolution images. These 
images were generated from a 256 × 256 pixel by giving shifts in three directions- one pixel shift to the right, 
one pixel shift in the upward direction, one pixel shift to right and upward direction- and thereby creating 
four shifted images with shifts (0,0), (0,1), (1,0), (1,1). Then each image was down-sampled by factor 2 and 
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a Gaussian blur of size 3×3 and standard deviation 4 was applied using the MATLAB functions imfilter and 
f special followed by an additive zero mean white Gaussian noise with standard deviation 0.01. The original 
and one of the four LR image is shown in Fig 2(a) and (b), respectively.

a b

c d

e f

g h

Fig 2. (a) Original Cameraman image (b) Blurred and noisy LR image (c) HR image reconstructed with 
FISTA for deblurring (d) HR image reconstructed with SALSA for deblurring (e) HR reconstructed image 
with three subpixel shifted LR images (one subpixel shifted LR image is missing) using FISTA for deblurring 
(mean square error = 0.2625) (f) HR reconstruction after applying filter to image in (e) (mean square error 
= 0.1365) (g) HR reconstructed image with two subpixel shifted LR images (two subpixel shifted LR image 
are missing) using FISTA for deblurring (mean square error = 0.3706) (h) HR reconstruction with after 
applying filter to image in (g) (mean square error = 0.264).
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	 HR image in Fig 2(c) and (d) are reconstructed by applying the proposed algorithm. Figure 2(c) 
was reconstructed with deblur as intermediate step by assuming reflexive boundary conditions and applying 
FISTA algorithm for deblurring by solving lasso problem, where zk is vector representation of observed 
image Zk and A = RW, where R is blurring matrix representing the blur operator and W is inverse of a eight 
level Haar Wavelet Transform. The regularization parameter was tuned to be λ = 0.097 which corresponds 
to least MSE over range of values and the initial image was the blurred image. The Lipschitz constant was 
computable since the eigen values of the matrix ATA can be calculated using 2D-cosine transform. The 
number of iterations were 113.
	 Figure 2(d) was reconstructed by proposed algorithm with deblur as intermediate step by assuming 
periodic boundary conditions and applying SALSA algorithm for deblurring by solving constrained 
minimization problem in Eq (12), where b is vector representation of observed image and R is blurring matrix 
[42]. The ϵ parameter that depends on noise variance was chosen to be 4.6. The parameter τ is the threshold 
for soft threshold operator which was chosen to be 2×10–4. These parameters were tuned so that least MSE 
between original image and estimated image was obtained. The number of iterations were 113.
	 Mean-square-error between original image and estimated image is less for HR image with SALSA 
for deblurring than HR image with FISTA for deblurring, also computational time is less for former case with 
same number of iterations. The same experiment was performed for five other blur and noisy LR images. 
As blur increased, MSE also increased in both cases, while HR reconstruction with FISTA for deblurring 
performs better than other method as noise deviation is increased. Furthermore, as blur and noise in the image 
increases computational time required for HR reconstruction is also more. 

Table 1. Comparison of HR reconstruction methods with SALSA and FISTA algorithms used for deblurring

Blur PSF Noise 
Deviation

Optimum Parameter
Value

Mean Square 
Error

No of 
Iterations

Computational 
Time (seconds)

SALSA

3×3

0.01
τ = 0.0069

0.0181 113 3.2834
ϵ = 0.0046

0.1
τ = 0.0099

0.0192 113 3.3044
ϵ = 5-5.2

1
τ = 0.93

0.0481 113 3.2438
ϵ = 16

5×5

0.01
τ = 0.00037

0.0304 113 3.2789
ϵ = 6.1

0.1
ϵ = 0.00037

0.0319 113 3.2785
ϵ = 6

1
τ = 0.5

0.0686 113 3.5757
ϵ =19

FISTA

3×3
0.01 λ = 0.097 0.0189 113 6.2353
0.1 λ = 0.043 0.0190 113 6.2541
1 λ = 0.99 0.0457 113 6.3118

5×5
0.01 λ = 0.0033 0.0343 113 6.1624
0.1 λ = 0.095 0.0349 113 6.3220
1 λ = 3 0.0493 113 6.2159

	 In practice, not all the four sub-pixel shifted images are available for reconstruction. When one 
of the four sub-pixels shifted image is missing artifacts are observed as shown in Fig 2(e), as on a higher 
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sampling grid corresponding samples are missing. To remove these artifacts low pass filter with 50 pixels 
mask in Fourier domain was applied which resulted in HR image as shown in Fig 2(f). When two sub-pixel 
shifted images are missing artifacts are observed as shown in Fig 2(g) which were then removed by applying 
low pass filter with 50 pixels mask in Fourier domain shown in Fig 2(h). However, MSE between original 
image and reconstructed image is now increased to a higher value.

Experimental Results
A.	 System Configuration
	 The algorithm was tested on a multi-aperture camera with the following configuration. The optics 
comprised of a 5×5 array of micro-lenses. Each lens has diameter of 0.8 mm and focal length of 4 mm. The 
distance between lens array and CMOS sensor was 4 mm. CMOS sensor had 1024 × 1280 pixels and pixel 
pitch equal to 5.2 µm × 5.2 µm.

Fig 3. System configuration

B.	 Image Preprocessing
	 The raw image was segmented into 25 images each with size of 100×100 pixels. Any shift between 
these 25 segmented images that corresponds to an integer multiple of one pixel is estimated by a correlation 
operation [43] between one of the images (the first image of the array) taken as the reference and the other 
images. The images are corrected for these shifts so that what remains is sub-pixel shift which we use in the 
MFSR algorithm.
C.	 Experimental Results
	 The results obtained for a USAF resolution chart that was placed at distance of 6 cm from the 
camera are shown in Fig 4. Figure 4(a) shows the frame captured by multi-aperture camera. There are 25 
LR images each with size 100×100. Figure 4(b) shows LR image corresponding to first lens interpolated by 
factor of 2 using bicubic interpolation (thus size 200×200). Figure 4(c) shows HR image scaled up by factor 
2 that is estimated by algorithm proposed in this paper. We started with deblurring each image by assuming 
blur PSF to be Gaussian of size 3×3 and standard deviation 0.45. We perform deconvolution using FISTA 
algorithm with W chosen as inverse of 8 level Haar Wavelet transform. Regularization parameter was chosen 
to be λ =3.1×10–7. As blur PSF is symmetric, we have reflexive boundary conditions on blurring matrix R. 
Thus, Eigen values of A can easily be computed using 2-dimensional discrete cosine transform [42] and 
therefore Lipschitz constant was computed as Eigen values of matrix ATA. Iterations are chosen to be 200. 
Then to find shift between images with respect to reference image (first image of the array) each deblurred 
image was interpolated and shift was found by correlation method. It was found that only three sub-pixel 
shifted images were available for reconstruction with (1,0) shifted image missing. After recording the shifts 
as third step, each deblurred image was up-sampled on higher sampling grid and then shifted back and added 
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to get HR image. As one subpixel shifted image is missing corresponding samples on higher sampling grid 
are missing, thus HR with artifacts is observed as shown in Fig 4(c). By applying low pass filter of 50×50 
pixels mask in Fourier domain HR image as shown in Fig 4(d) is obtained.

Fig 4. Clockwise from top right (a) A frame grabbed with multi-aperture camera of size 1024×1280 pixels 
(b) Interpolated LR image corresponds to first lens in array (c) HR image reconstructed with three subpixel 
shifted LR images (0,0),(0,1),(1,0) (one subpixel shifted LR image is missing) (d) HR image reconstructed 
with three subpixel shifted images and applying filter.

	 The modulation transfer function [44] for each horizontal and vertical line pattern which corresponds 
to resolution in lines per mm is shown in Fig 5(a) and (b), respectively. There is perceivable improvement in 
the contrast of resolution of horizontal line pattern as compared to low resolution image. 

Fig 5. (a) Modulation transfer function v/s resolution in cycles per mm for horizontal line pattern on resolution chart 
(b) Modulation transfer function v/s resolution in cycles per mm for vertical line pattern on resolution chart.

	 A ‘No reference Image quality metric’ defined in the frequency domain [45] was used to compare 
the HR image with LR image. The metric was calculated as follows: The 2-D Fourier Transform of the 
image is performed. The Image quality metric in the Fourier domain is determined by finding the number 
of pixels that has the absolute value of the Fourier Transform greater than a threshold value normalized 
by the total number of pixels. The threshold is chosen as the 1/1000 of the maximum value of the absolute 
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value of Fourier transform. The Frequency domain Image quality metric effectively determines the spread 
of the Fourier spectrum. The Fourier spectrum spread will be more if the image has higher spatial frequency 
content. The thresholding operation makes the metric less sensitive to noise as compared to other spatial 
domain image quality metric like Variance. The values of the Fourier domain Image quality metric of the LR 
image and the HR image were estimated to be 0.0242 and 0.0256, respectively.

3 Conclusion

	 We apply robust reconstruction techniques based on FISTA and C-SALSA algorithms to reconstruct 
the HR image from multiple LR images in a multi-aperture camera. Images obtained from a multi-aperture 
camera have low SNR associated with it due to its small aperture optics. Also, multiple channels have 
different point spread functions. We first deblur the LR image using the ℓ1 regularization methods based on 
FISTA and C-SALSA. In next step, the shifts between deblurred images is estimated. Deblurred LR images 
are then scaled up on HR image grid. For HR image reconstruction shift and add operation is performed 
on LR images. We present simulation and experimental results that show perceptible improvement in the 
resolution of high-resolution image as compared to the low resolution image. It is hoped that many of the 
recent advances in signal processing will lead to considerable performance enhancement of computational 
imaging systems like TOMBO camera.
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