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This article surveys the connections between Hodge structures and vertex algebras in conformal field theory and is
expository text. These structures appear in various contexts of theoretical and mathematical physics. Hodge structure
is a generalized complex structure which appears on solution space of integrable systems. Vertex algebras, as highest
weight representations of infinite-dimensional Lie algebras, provide a frame work that intersects with both mathematical
and physical theories. We explain the connection between Hodge structures and theory of highest weight modules over
affine algebras by a generalization of the Beilinson-Bernstein correspondence. The Beilinson-Bernstein localization
draws parallels between the variation of Hodge structures and highest weight modules over flag manifolds of semisimple
Lie groups. This framework has profound implications for quantum field theory, where the structure of vertex algebras
influences the understanding of symmetries and interactions in conformal field theories. We also consider a broader
version of the Bernstein correspondence within the context of the geometric Langlands correspondence over local
manifolds. Vertex algebras and representations of a fine algebras provide a powerful frame work for describing symmetry
and state evolution in physics, optics, and information technology. They under-pin conformal field theories in quantum
physics, model photon correlations, entanglement in quantum optics, and enhance quantum information processing.
These structures offer a unified approach to analyzing complex systems across these fields. © Anita Publications. All
rights reserved. doi.10.54955.AJP.33.12.2024.843-864
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1 Introduction

We study the relationship between Hodge theory as a structure for integrable systems over complex
numbers and some aspects of theoretical quantum sciences. Hodge structure is a generalized complex
structure on the solution space of integrable systems over complex numbers. In this way, it appears as an
additional structure in solving different differential systems. We also study vertex algebras, which are realized
as highest weight representations of infinite-dimensional Lie algebras. These algebras play a crucial role
in understanding the symmetries and interactions governing multicomponent particle systems. We discuss
several correspondences connecting classical Hodge theory to the theory of representations of affine algebras.
The correspondences relates the two theories and their symmetries.

Our analysis goes through the Beilinson-Bernstein localization, that links the variation of Hodge
structures with highest weight modules over flag manifolds of semi simple Lie groups. This connection
has implications with the underlying symmetries in quantum theories, where group theoretical methods
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are describing the behavior of multi-component systems. We also introduce the geometric Langlands
correspondence, which provides a more generalized framework for understanding this connection. Our
analysis enables a deeper understanding of quantum systems in theoretical physics.

Vertex algebras provide a powerful tool to describe integrable systems in physics, including optics,
or any theory with a quantum description for a many particle system. This method is universal, and applies
to theories like particle physics, optics, and computer sciences. Hodge structure is a generalized complex
structure which can appear on the solution space of an integrable system over complex numbers. We deal
with correspondences that connect the classical Hodge theory with the theory of representations of infinite
dimensional Lie algebras. Vertex algebras and vertex operators provide a powerful tool in describing these
theories on the representation side.

Vertex algebras have significant applications in quantum physics and optical sciences, for instance
in the description of photon correlations. The mathematical structure can be instrumental in describing
optical processes, such as wave propagation in structured media. The conformal symmetry inherent in vertex
algebras can model wave propagation in photonic crystals or metamaterials with periodic or quasi-periodic
structures. In this context vertex algebras are fundamental to describe certain quantum states in interacting
many particle systems.

We briefly introduce the context below. Later in the text we make it more specific.

1 Vertex Operator Algebras

Vertex algebras naturally emerge from the highest weight representations of affine or Virasoro
algebras. To establish a basic frame work, let us consider
d
D=t=—

dt

as a differential operator acting on the ring R = C[t, £ ']. The Lie algebra g of derivations of R is generated
by "D, m € Z. This algebra is graded, where "D is assigned weight m. We are particularly interested in
central extensions

0->Cc>»V->9-0,
which define the Virasoro algebra. This is also a graded Lie algebra. Specific highest weight representations
of Vplay a role in conformal field theory. These representations are such that, for an appropriate choice of D
extending D within the central extension, the character

Trace (qD )
is well-defined and corresponds to the g-expansion of a modular form, [1]. The concept of the Virasoro
algebra can be generalized to that of a vertex algebra. We can view the Virasoro algebra V as a vector space
acted upon by commuting operators v,, where V is generated by 1 € IV and the action of these operators.
Consequently, V' becomes a commutative ring where 1 serves as the identity, and the actions of all operators
correspond to multiplication within V. We define an operator

¢(t):p— 2 Dv-t"il, V—End(V)[t, ]
i
called the vertex operator. The maps

Trace (4(x) ¢(»)...)
are referred to as correlation functions, drawing their name from their analogs in quantum field theory. The
structure of a vertex operator algebra is intended to explain a conformal infinitesimal deformation of V.
A vertex operator algebra is defined by a 4-tuple (V, Y, 1, w), where V' is a Z-graded vector space
equipped with a linear map
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Y(,2): V—End(V)[[z z 1], Y(n,2)= 2 p,z"",
ne 7z
where 1 € V is the vacuum vector satisfying Y (1, z) = idyand v_;1 = . The vector w € V, is known as the
conformal or Virasoro element, such that
Y(w,z)=2 Ln)z""!
n

provides a collection of Virasoro generators L(n) where L(0)|,, = n - idy,. The operator L(—1) satisfies

d

[L(fl )’Y(Ds Z) = E Y(D, Z),
and the Jacobi identity for the vertex operator Y is assumed, cf. [2]. We focus on vertex algebras of CFT-type,
meaning V,=0 for n < 0 and Vy= C.1. If VV'is generated by a subset S — V', then

V = span { D,}l ka.1|}17,— e S}.

A unitary vertex operator algebra is one equipped with a positive definite Hermitian form. This
concept extends to modules over these algebras via an anti-involution. An anti-linear automorphism is a map
defined as

V= ¢(1) =1, p(®) = @, $(u,V) = ¢(u), $(v) Vu,pe V.

Unlike Lie algebras, defining an invariant bilinear form on a vertex algebra is notably more complex.
For instance, the contragredient (7', Y') of a vertex algebra module (7, Y) is defined using the form

(Y'(, x) w'w)y=w"Y (@tD=x>) L0 p x 1) w), vwelV,wel

The form must also account for the invariant bilinear form on the vertex algebra. A unitary vertex
algebra includes a positive definite Hermitian form. For such an algebra, the positive definite Hermitian form

(> unitary : VXV —C, Ik e C; (u,v) =M1, 1)
is uniquely specified by its value at (1,1), a fact easily shown using the axioms of a vertex algebra and the
invariance property.

Vertex algebras and their homomorphisms form a tensor category. This means we can tensor finitely
many vertex algebras

p
QVpYylyw)o=001@-@1+.t101Q 0,
i=1
The structure of a vertex algebra must adhere to a locality axiom. Although, its detailed description
is outside the scope of this note, we refer readers to [3] for a complete discussion.. Briefly, this means that
for any 4,B € V, the two formal power series in two variables obtained by composing Y (4, z) and Y (B, w) in
both possible orders are equal, possibly after multiplying by a sufficiently large power of (z — w). Formally,

z-wN[Y (A, 2),Y (Bw)] =0, for some N € Z..
In this context, we define a normally ordered product as :

A(z) B(w):= -2 { ZOAmB,,z"” 14 ZO A, B,z ™! }w -1
m \m< m>!

for vertex operators. This product can be inductively extended to more than two factors.

Remark 1.1 [4]. In the case of holomorphic vertex algebras, where the operators V (a,x) are holomorphic,
they correspond to commutative rings with derivations. The notation V (u, z) v can be interpreted as a
deformation of u’. v. If we begin with a commutative algebra equipped with a derivation D, we can define the
vertex operator as:

Via,x)b=y L0bx 1)

iz
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Conversely, if V is a vertex algebra, we can recover the algebra and derivation structure via the definitions:
ab="V(a,0)b,

and
Da = coefficient of x" in V (a, x) b.

In this framework, we can introduce a new notation:

ini
x'D'a
a*= E

il

i>0
Using this, the vertex operation becomes:
X3 x'D'(ab)
atp - Y ) @)
i>0

Here, x is treated as an element of the formal group /G\a. The formal group /G\a has a formal group ring H =
CI[D], and its coordinate ring is the ring of formal power series C[[x]]. The tensor category of modules with
derivations corresponds to the category of modules over the formal group ring H. Thus, holomorphic vertex
algebras can be viewed as commutative ring objects in this category.

In the non-holomorphic case, however, the expressions a*b” (for a, b € V) are no longer holomorphic
and may exhibit singularities. Nevertheless, the identities of vertex algebra theory become easier to interpret
using the new notation. For example:

V(a,x)b=e""(V (b~ x)a) = a*b=(b""ay. 3)
An intertwining operator between three modules (W, Y7),(W,, Y5), and (W3, Y3) is a linear map:
1(.2): W— Hom(Ws, Wiz}, u—Iu,z)= 2 tnZ " (4)
ne Q

which satisfies certain compatibility conditions. The vertex operator Y;,(.,z) can be viewed as a special case
of an intertwining operator, where W3 = W; = M. One definition of these operators is:

I(w, 2)p = VY, (0, —2)w. 5)

Intertwining operators play a crucial role in defining a product structure in the category of vertex
algebras. The standard tensor product of two Lie algebra modules is generally not a module, complicating the
construction of an associative product structure in the tensor category of vertex operator algebras (VOAsS).
Intertwining operators also provide the foundation for the theory of conformal blocks. Using the L(—1)-
property and intertwining operators, one can derive a system of differential equations whose solutions
correspond to these modules. These are D-modules, acted upon by certain differential operators [5].

2 Variation of Hodge structure:

A polarized Hodge structure on a QQ-vector space V is defined by a representation
a —b
b a
The group Gy = Aut(Vy,Q) is a real simple Lie group. The period domain D associated with the

Hodge structure ¢ is the moduli space of polarized Hodge structures on the vector space V" with fixed Hodge
numbers. The group Gy acts transitively on D by conjugation:

D=1{$:5'— Galdp=g g}

The isotropy group H of a reference polarized Hodge structure (V,0,¢) is a compact subgroup of G
and contains a compact maximal torus 7. The Lie algebra g of the complexified simple Lie group Ggisa Q
-linear subspace of End (7). The bilinear form Q induces a non-degenerate symmetric bilinear form B : g * ¢

¢:UR) — Aut (Vg, Q), UR)= , A+ =1.
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— C, which, up to scale, is the Cartan-Killing form tr(ad(x) ad(y)). For every point ¢ € D, the representation
Ad($) : U(R) — Aut(gz, B)
defines a Hodge structure of weight 0 on @, polarized by B.

For each nilpotent transformation N € 9, one can define a limit mixed Hodge structure. The local

system § — A’ is equipped with monodromy 7 = ¢*™ and a Hodge filtration defined with respect to a
multivalued basis of g by

N
log(t)y —— 17 o
€ mi B

where F* is the natural Hodge filtration on . This yields a limit mixed Hodge structure (8, F*, W(N).). The
polarizing form B defines perfect pairings:

By: Gri™a < Gr"M g — Q, By (u, v) = B(u, N*v),

via the hard Lefschetz isomorphism N*: Gr"™ g = Grf™ g.
Now consider a family of projective manifolds defined by a proper smooth map:

fiX—5, X,=f"(s),
where S is a quasi-projective variety. This induces a polarized variation of Hodge structures (VHS):

(V=R*f.C, F").

If dim S = 1, this variation corresponds to a topological deformation of the Hodge structure V' =
H*X,, C) over a punctured disc. Understanding the asymptotic behavior of VHS is central in Hodge theory.
Assume that V' is equipped with a limit Hodge filtration. By the Riemann-Hilbert correspondence, a local
system of Hodge structures defines a D-module with a flat connection on S. This leads to a decreasing
filtration /"= (F'") on the vector bundle V ®g Ogby holomorphic sub-bundles, along with a flat connection:

V:V®,05—VE®,Q
satisfying Griffiths transversality:

V(FIV)c FI' r @ Q.

Additionally, the data include a flat bilinear pairing:

P:VxV—-Q.

In the context of conformal field theory, vertex algebras emerge as highest weight representations of
infinite-dimensional Lie algebras. The correspondence between Higgs bundles and opers, known as the non-
abelian Hodge theorem (C Simpson), highlights parallels with Hodge structures. The Beilinson-Bernstein
localization similarly relates variation of Hodge structures to highest weight modules over flag manifolds
of semisimple Lie groups. A broader analogue of the Bernstein correspondence can also be formulated
within the geometric Langlands correspondence. This framework incorporates generalized Harish-Chandra

modules, known as Wakimoto modules, along with a generalized Harish-Chandra homomorphism. Finally,
we conclude with an exploration of the geometric Langlands correspondence.

Explanation on the text: Section | is the introduction and we introduce the concept from the
literature. In Section 2, we present main examples of vertex algebras we are dealing with, as affine Kac-
Moody algebras and Virasoro algebras and Fock modules. We present Fock representations of Heisenberg
algebra and Harish-Chandra pairs in this section. In Section 3, we give basic concepts related to variation
of (mixed) Hodge structure. We explain the context of mixed Hodge modules and the non-abelian Hodge
theorem of C. Simpson as equivalent notions. Section 4 contains the BeilinsonBernstein localization functor
which we successively develop over the g-opers in order to explain the geometric Langlands correspondence.
We give a brief explanation of KZ-equations and the conformal blocks at the end.
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2 Vertex algebras

In this section main examples of vertex algebras and their representations are presented along what
we explained in the introduction [3,4, 6-10].

Definition 2.1. A vertex algebra consists of the following data,

. (space of states) A Z-graded vector space
r-®v, (©)
. (vacuum vector) a vector |0)eV,
. (translation operator) a linear operator T : V — V of degree one.
. (vertex operators) a linear operation
Y (.2): V— End(V)[[z]] (7)
taking A € V,, to
Y(A,z)=§A(n) z"! (8)
of conformal dimension m, i.e deg A(n) =—n+m=1.
. (vacuum axiom) Y (|0)) = Id, . Furthermore
Y(4,2)|0) e V[[z]], VAe V )
. (translation axiom) For any A € V,
[T Y4 2)]=06.Y(4,z) (10)
and T|0) =0.
. (locality axiom) All fields are local with respect to each others.

Vertex algebra structure naturally appears in many known geometric structures. Let us begin with
Lie algebra H defined as central extension

0-Cl—->H-—->C{()—0 (11

It may also be regarded as the completion of the one dimensional central extension of the commutative

Lie algebra of Laurent polynomials C[z, ¢ '] having basis b, = ¢, n € Z and the central element 1. Let us

call the latter Lie algebra by H '. The universal enveloping algebra U (H') is an associative algebra with
generators b, and relations

b,b,—b,b,=no,_,1, b, 1-1b,=0 (12)

The left ideals ¥ C[7] build up a system of open neighborhoods of 0, and one can consider the
completion of U(H") with respect to this topology, denoted U(H'). The quotient

H=UH(1-1) (13)
is the well known Weyl algebra. Here the first 1 is the central element and the second is the unit of Ui (H".
Let H, be the subalgebra of H generated by b,, n > 0 and define

V=Indj; C=H_=C[b_;, by, ..] (14)
The module Vis called the Fock representation of H. Now lets look at to the fields
bE) =2 b,z " (15)

where b, is considered as an endomorphism of V. Since deg(b,) = — n, b(z) is a field of conformal dimension
one. Let us consider

b(z)Z:Z( 2 )(bkb,)z’”’z (16)

n \k+tl=n
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The relations (37) imply that the coefficient operators can be rearranged so that the annihilation
operators (b,, n < 0) be in the right side of creation operators (b,, n > 0) and for any x € V there are only
a finite number of b, b, whose action on x is non zero. This makes the expression (16) well defined. There
are standard ways in conformal field theory to remove infinite sums arising from repeatedly creating and
annihilating the same state. In our case we define the normally ordered product of b(z) with itself as

bb, I=-k k>0

1 b(2) b(z) = ; hpbpiz " bibr:=) b, b,  otherwise 17
With the normally ordered product we can proceed to define for instance
Y (b, z) = b(z)*: (18)

etc .... The pattern explained above appears in many Lie algebra representations in finite or infinite dimensions.
We will encounter several examples of this in the following.

(i) Affine Kac-Moody algebras

The first class of vertex operator algebras corresponds to affine Lie algebras. Let g be a simple finite
dimensional Lie algebra over C. The associated loop algebra Lg is defined as g((f)). An affine Lie algebra g
can be expressed as the direct sum of vector spaces g := Lg ® CK, with the commutation relations given by
[K+] =0 and

[ADf().BOg()]=1[4, B]Of (1) gt) + (Res,—fdg) (4, B)K,
where (-,-) is an invariant bilinear form on g, normalized such that (6, ) = 2, with 6 denoting the highest root
of 9.

A related structure is the vacuum representation of the affine algebra . For k € C, let C denote the
1-dimensional representation of g[[t]] @ CK, where K acts as multiplication by k. The vacuum representation
of g at level ks defined as

_ b
V(@) = Ind g9 i O

If {J “} is a basis for g, then the elements J;, = J, @ ¢" and K form a basis of g. The vacuum

a”l

representation V(9) is spanned by monomials of the form J:,l «. Jn, 1; . This structure defines a vertex
algebra (or module) V(9) with the vertex operator

Y(Je - 1;..) = J%2) = ;JZ sl
The module ¥ (8) contains a unique maximal proper g-submodule, denoted by J(k). The quotient
Ly(k,0) = Vi(8)/J (k)

defines a simple vertex algebra. For a highest weight A € 4" of 9, the corresponding highest weight module
for g is denoted by Lgy(k, 2) (see [6,7]).

(i) Virasoro algebras:
The second class of vertex algebras we examine are the Virasoro algebras, denoted Vir. These
d
algebras are a central extension of the Lie algebra Der C((¢)), generated by the operators L, = — """ i for n

€ Z, along with the 1-dimensional vector space C - C, subject to the relations [C,-] = 0 and
3

n —n
[Lns Lm] = (}’l - m)Ln+m + 12 5n, —m C

Let ¢,h € C, and define the 1-dimensional representation C, of Vir by the following actions:
L, 1=0 forn>1,

Ly 1=h-1,
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C-1=c-1.
Next, we define the module V (¢, 4) as

V(C,h) = Ind;:;.c[[t]]@c (CC’ C e (C

The module V (c,h) is generated by the monomials L;; =**L;, 1. with j; < j, < --» <=2, and it forms a
vertex algebra module with the vertex operator given by

YL y1,2)=TE)=2L,z"?

n

Modules over the Virasoro algebra are classified based on the action of the operator L(0), where L(0)
-1 =nh - 1. Such modules are highest weight modules of the Virasoro algebra, denoted V' (c, /). The unique
irreducible quotient of V' (c, /) is denoted by L(c, h), as described in [6,10].
(iii) (Bosonic) Fock representations:
Fock modules are defined using the Heisenberg Lie algebra of rank 1, given by

H= @ Ca, ®CK, [K,/|=0, [am, an]=mpninoK.

Let C, be the 1-dimensional H == (H O@® H™)-representation with the following actions:
a, 1,=nd,ol, K-1,=1,

This representation has a Z-gradation, where

C, for n=0,

0 for nkO0

The corresponding (bosonic) Fock module is defined by

F"=Inds C,.

Cyp=

The highest weight vector in this module is denoted by |7). We define a Z-graded vertex algebra
structure on  ° with vacuum vector |0) and translation operator

n0y=0,[T, a,] == na, .
The vertex operator is given by

Y(a |0, z) = ; a,z"\,

Fock representations can be understood as the smallest representations of the Weyl algebra, as
discussed in [7,10].
(iv) Harish-Chandra modules:

A pair (g, K), where g is a Lie algebra and K is a Lie group such that £ = Lie(K), together with an
action

Ad K — g,

is called a Harish-Chandra pair if it is compatible with the adjoint action of K on €. A (g, K)-action on a
scheme X consists of a homomorphism

p:g— 0y

where Oy is the tangent sheaf of X, along with an action of K on X; such that the following conditions hold:
(1) The differential of the K-action is the restriction of the action of g on £.
(2) p(Ad(k)(a)) = kp(a)k ™", forallk € Kand a € g.

A Harish-Chandra (g, K)-module is a vector space V equipped with the aforementioned compatible
actions. One can also consider the vector bundle
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V= X X K V
on the scheme X, which provides a flat connection on the trivial vector bundle X x V over X.

Harish-Chandra modules can be generalized to Virasoro algebras. In this context, the Lie algebra 9
admits a generalized triangular decomposition

9= P9,

aeh”

where b is a Cartan subalgebra. In this case, the 9-module M is assumed to be h-diagonalizable, i.e.,

M= @M,  dimM,<ox,
reh”
where each weight space M, is finite-dimensional. The module M can then be written as a direct sum of
highest weight modules, lowest weight modules (Verma modules), or an intermediate series defined by V, ;,
where a,b € C. The intermediate series is defined by

Va,b:@(Cvn, Lg-v, = (as+b—n)vpys, C-v, =0,

where L, are the generators of the Virasoro algebra. For further details, see [7] and [10].
Jantzen filtration and Shapovalov form: Let (g, h) be a Lie algebra pair, where h is a Cartan subalgebra,
and 6 : g — g is an anti-involution. The framework discussed here is applicable to any Q-graded Lie algebra:
9= D9,  dimf<o,
pe0
where Q is an abelian group, and in our case, Q is the root lattice. This definition is relevant for both finite-
dimensional Lie algebras and their infinite-dimensional extensions, such as affine or Virasoro algebras.

We can decompose 9 as:
=8 ®dHhDY,.

The universal enveloping algebra of g is defined as the quotient of the tensor algebra 7(g) = &,
g®"by the ideal generated by x ® y —y ® x — [x, y]. According to the Poincaré-Birkhoff-Witt theorem, the
universal enveloping algebra has the decomposition:

U(g) = U(h) ® {g- U(g) + U() 8-}
Consider the projection:
n: U(8) — U(h) = S(h),
where S(h) is the symmetric algebra of ). The bilinear form
F-U@) > U@ — S(h),  Flx, y)=r(ox) y),
is referred to as the Shapovalov form of g. It is a symmetric, contravariant form, meaning:

Fzx, y) = F(x, a(y)),
for all x, y € U (g). The decomposition of U(g) implies a corresponding decomposition of the algebra:

u(g) = %—) U(9), UB)p= {x € U@)|[h, x] = p(h)x, Vh € b}.

For distinct B, # f, € Q, it follows that:
F(x, y)=0, x € U@, y € U@y,

For each ff € Q, a basis {X;},.;0f U(g)-4can be chosen. The determinant
Dy=det(F(X; X)), jer < S(H),

is called the Shapovalov determinant of 9.
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The concept of a contravariant bilinear form can be extended to any g-module M. A key property in
this context is that any highest weight module M has a unique contravariant bilinear form (-,-) : M ® M — C,
up to a constant, satisfying the condition

@-xy)=&a@- y), &cU®.

This fact can be verified for Verma modules M(A), which are the unique irreducible quotients of
these modules. For a Verma module A, the radical of the form is the maximal proper submodule J(A) c
M).

The Jantzen filtration of a g-module is defined using the Shapovalov form on U(8). Let R = C[/] and
¢ : R — C be the canonical map.

Let M be a free R-module of rank  with a non-degenerate symmetric bilinear form
() MxM—R.

Define M = ¢ M= M ® R/tR, and the symmetric bilinear form on M is given by:
(@ V1. $V2) = 4((Vi.V2))-

Form € 7Z -, define:
M(m)={VeM|©V, M)Mc "R},
and embed M (m) — M . Set M(m) = Im(¢ o i,,), and we obtain a filtration:
M=MO0)>M(1)> -,
which is the Jantzen filtration of M, a filtration of C-vector spaces. This filtration has the following properties:
- Ny M(m) =0,
- M(1) =rad (-,"),
- There exists a symmetric bilinear form (.,.),, on M(m) such that rad((.,.),,) = M(m + 1).

The concept of the Jantzen filtration appears both in the context of vertex algebras and in variations
of Hodge structures, where it corresponds to the weight filtration in local systems of mixed Hodge structures.

(v) Conformal vertex algebras:

A vertex algebra V' = @, V, with central charge c is called conformal if it contains a vector w € V,
(known as the conformal vector) such that the corresponding vertex operator ¥ (w,z) = > 2Lz 2 satisfies
the following conditions:

L =T, Lo|V,=n"1d, Lyw=1/2 c|0).
This implies that there is a homomorphism

Vir,—V, Lyl —w.

In the case of a Kac-Moody algebra, the conformal vector (called the Sugawara conformal vector)
is given by

1

2 2 (9 1

where J “is an orthonormal basis of g. A Kac-Moody algebra is conformal if and only if k # —A". In this case,

g is a module over the Virasoro algebra [7,11].
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Unitary Vertex Algebras:
Let (V,Y,1,w) be a vertex algebra, and let ¢ - V' — ¥V be an antilinear involution. The pair (7, ¢) is
called unitary if there exists a positive definite Hermitian form
():VxV—>C
such that for a, u,0 € V,
(Y V(=22 Y uv)=UY (4(a), 2) V),
where
Y(w,z)= ; L(n)z "2
In a unitary vertex operator algebra, the positive definite Hermitian form is uniquely determined by

(1,1) via the properties of the vertex algebra. For the Virasoro case V' (c, &), there exists a unique Hermitian
form such that

(lc,h» lc,h) = 1’ (Ln u,V) = (u) L*n V)
It is known that ¥ (¢, /) is unitary if and only if ¢ > 1, 2> 0, or ¢ = ¢,,, h = h}",

where 5
+ _ _
6 =1- 6 ’ B = [r(m+ 1) —sm]” -1
m(m + 1) 4m(m + 1)
In the affine case V,(k, A), there exists a unique positive definite Hermitian form such that

(L, D) =1, (xu, v)=— (U, & (x)V), x € §, u, v € Ly (k, 1),

where ®y: g — g
is the Cartan involution. Then, V;(k, A) is a unitary vertex algebra if and only if k # —h", k € Z',and A is a
dominant integral weight satisfying (4, 8) < k.

In the Fock module case, we reduce to M(1, 1) = U(G)/J;L. It is known that this is unitary if and only
if (a, 1) > 0, i.e., A is a dominant weight [6].

3 Variation of Hodge structure

A variation of Hodge structure [ 12-17] over a complex manifold S gives rise to a period map

D : S — I 7 / D
where S is a smooth base manifold and I' is a discrete group. D is the period domain and it is known that
it is a hermitian symmetric complex manifold. There are naturally defined Hodge bundles F? of the Hodge
structure on V', and also the endomorphism bundle associated to g = End(V") on D. The corresponding local
systems are

V:=r\(D*xV), G:=I'\(D xg) (19)
respectively. One way to explain the complex structure on D is to embed it in its compact dual b, which is the
set of all Hodge filtrations on V with the same Hodge numbers satisfying the first Riemann-Hodge bilinear
relation. Dis a homogeneous complex manifold. There are G--homogeneous vector bundles

o (20)
called Hodge bundles whose fiber at a given point F *is F¥. Over D D we have V7?9 = FF/FP*! which
are homogeneous vector bundles for the action of G. They are Hemitian vector bundles with Gp-invariant

Hermitian metric given in each fiber by the polarization form. The space of functions on D can be identified
with the I'z-automorphic functions on D.
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(i) Variation of mixed Hodge structure:

A polarized variation of mixed Hodge structure over the punctured disc A* consists of a 5-tuple
(V, F',W.,V,P), where:

- V is a local system of Q-vector spaces on A",

- W.is an increasing filtration on V by sub-local systems of Q-vector spaces.

- F = (F")is a decreasing filtration on the vector bundle ¥ ®g Oa+ by holomorphic sub-bundles.

- V 1V ®q Oar = V ® Qs a flat connection satisfying Griffiths transversality:
V(FY) Cc F' @ QL.
- P:V xV — Qis aflat pairing inducing a set of rational, nondegenerate bilinear forms

Py: Gry, V® Gr);, V— Q, such that the triple ( Gr);, V, F* Gr},,, Py)
defines a pure polarized variation of Hodge structure on A*. We denote this structure as .

Next, let V' be a Hodge structure with an exhaustive decreasing Hodge filtration F”. Consider a
locally free sheaf &(V,F) over C, defined as the submodule of ¥ ® C[t, 1 '] generated by ¢ PF”. Given a real
structure, &(V, F) and &(V,F) can be glued using the involution  — (7 )}, yielding a locally free sheaf &(V,F,
F) on P! with an action of C" and an antilinear involution. This procedure can be described as follows. A
variation of polarized Hodge structure of weight k provides a 4-tuple (H, F, V, P), where:

V:H— H® z'Q,x (log0)
is a flat connection, and a (—1)*-symmetric, non-degenerate, flat pairing

P:Hxj "H— Oy, jiz——z
is induced. The bilinear form P induces a non-degenerate symmetric pairing

z*P: H/zH x H/zH — C.

The Hodge filtration can be described as follows. Let V" be the Kashiwara Malgrange filtration on
the mixed Hodge module associated with H, and assume (H,V) is regular singular. Then H ,— V' > —oo. For
o € [0,1], define (see [12]):

FPHy =8 tsaGr H.

We will identify the variation of polarized Hodge structures with their associated polarizable Hodge
module via the Riemann-Hilbert correspondence. This correspondence has been studied more systematically
by Saito in [16].

(if) Polarizable Mixed Hodge modules:

Let X be a complex algebraic variety, and let MHM(X) denote the abelian category of Mixed Hodge
Modules on X. MHM(X) comes equipped with a forgetful functor

rat : MHM(X) — Perv(QX),
which assigns to each mixed Hodge module its underlying perverse sheaf over Q. Sometimes, these objects
are considered as elements in D’MHM(X) and D¢ (QX), respectively, and similarly for the functor rat. When
X is smooth, a mixed Hodge module on X is characterized by a 4-tuple (M, F,K, W), where M is a holonomic
D-module with a good filtration F, and it has a rational structure such that,

DR(M) =C ® K € Perv(Cy),
for a perverse sheaf K and ¥ denote the pair of weight filtrations on M and K that are compatible with the
rat functor. Here, DR refers to the de Rham functor, shifted by dim (X). The de Rham functor is dual to the
solution functor. When X = pt, MHM(pt) precisely corresponds to all the polarizable mixed Hodge structures.
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A mixed Hodge module always has a weight filtration /¥, and it is called pure of weight n if Gr ;‘/ =
0 for k # n. Typically, the weight filtration  involves a nilpotent operator on M or the underlying variation
of mixed Hodge structure. A mixed Hodge module is constructed by successive extensions of pure ones.
If the support of a pure Hodge module, considered as a sheaf, is irreducible and no submodule or quotient
module has a smaller support, we say the module has strict support. Any pure Hodge module decomposes
uniquely into pure modules with different strict supports, as guaranteed by the Decomposition Theorem. A
pure Hodge module is also referred to as a polarizable HM. We denote by MH, (X,n)? the category of pure
Hodge modules with strict support Z.

An element M € HM,(X,n) determines a polarizable variation of Hodge structure. The converse is
also true: variations of Hodge structures determine mixed Hodge modules. Therefore,

MHy(X;n)? = V HS,,,(Zn — dim Z)”, where the right-hand side refers to polarizable variations of
Hodge structure of weight » — dim Z defined on a non-empty smooth subvariety of Z. This equation reflects
a profound and non-trivial result about regular holonomic D-modules, their underlying perverse sheaves, and
their polarizations. It may also be interpreted as an analogue of the Riemann-Hilbert correspondence between
mixed Hodge modules and their underlying perverse sheaves, as discussed in [ 14].

(iii) Higgs Bundles and the Non-Abelian Hodge Theorem:

Let X be a smooth and projective variety over C. A harmonic bundle on X is a C*-vector bundle E
with differential operators d and 0, and algebraic operators @ and @ satisfying the following conditions: There
exists a metric 4 such that & + 0 is a unitary connection, and @ + 0 is self-adjoint. Furthermore, if

V=0+0+0+0, V'=0+0,
then we have V2= V2= 0. Under these conditions, (E,D) is a vector bundle with a flat connection, and (E,,6)
is a Higgs bundle, i.e., a holomorphic vector bundle with a holomorphic section

0 e HEnd(E)® Q'y), 0A0=0.

A Higgs bundle is called stable (resp. semistable) if for any coherent subsheaf F' — F preserved by
6, the inequality

deg(F) deg(E

g(F) _ deg(E) (resp. <)
rank(F) rank(E)

holds.

There is a natural equivalence between the categories of harmonic bundles on X and semisimple flat
bundles (or representations of 7;(X)). There is also a natural equivalence between the categories of harmonic
bundles and direct sums of stable Higgs bundles with vanishing Chern class. This correspondence between
representations and Higgs bundles extends to an equivalence between the category of all representations of
71(X) and all semistable Higgs bundles with vanishing Chern classes, referred to as the non-abelian Hodge
theorem.

A natural C-action exists on the category of semistable Higgs bundles with vanishing Chern classes,
denoted by

t:(E0)— (Et0).

The semistable representations fixed by this action correspond exactly to complex variations of
Hodge structure. A representation @ of 7;(X) is called rigid if any nearby representation is conjugate to it.
The correspondence described above is continuous on the moduli of semisimple representations. It follows
that if a semisimple representation is rigid, it must be fixed by C" and originates from a complex variation of
Hodge structure. In this case, there is a Q-variation of Hodge structure Vg such that g is a direct factor of the
monodromy representation of Vg ® Q (where the monodromy is the sum of conjugates of @) [15].
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Let Mp,/(G), Mpr(G),M3(G) denote the moduli spaces of Higgs bundles of degree zero, local
systems, and representations of m;(X), respectively. We will denote the smooth loci of these varieties by
the superscript reg, i.e., M [,5,..., and typically omit the “reg” notation in the future. The non-abelian Hodge
theorem provides a diffeomorphism

T MpoG) = Mpr(G).

The Riemann-Hilbert correspondence between bundles with integrable connections and
representations yields isomorphisms

Mpr(G) = My(G),
as discussed in [15,18]. A systematic study of the interrelation between the Higgs fields of Higgs bundles
and the system of Hodge bundles in variations of Hodge structures can be found in [13]. A corollary of this
is that a unipotent variation of mixed Hodge structure defines a Higgs field 6 which is flat with respect to V

and @ + 0. In this case, the invariance under the C*-action described above explains the complex variation of
the Hodge filtration.

4 Connection between Hodge structure and Vertex algebras

Let gc = gr ® C = Lie(Gr ® C) be a complex semi-simple Lie algebra, h = t ® C a Cartan
subalgebra, ¢t = Lie(T'), and K- a complex Lie group corresponding to the unique maximal compact subgroup
K < Gr. We denote U(8c) to be the universal enveloping algebra of c. We assume the action of K will be
locally finite, and its differential agrees with the corresponding subspace of U(8¢). One may match these data

with the case D = Gp/H is a general period domain sitting in the diagram
GIR/ T —> G(C /B

L

D=Gg/H —> Gg¢/P=D

with with 7 a maximal torus, B a Borel subgroup, and horizontal arrows to be inclusions. Let U(bc) be the
universal enveloping algebra of h. The Weyl group W of (9&-Dc) acts on U(hc) and gives an isomorphism

HC: Z(9c) = U (he)” (22)
where the upper-index means the elements fixed by /. Using the isomorphism (22) one can assign to each
positive root p € b the homomorphism

Yu:Z(8c) > C, z— HC (2)(u) (23)
is called the infinitesimal character associated to u. A result of Harish-Chandra says that any character of
Z(9c) is an infinitesimal character, and

X=X = u=wp'), weWw (24)
We will use the above set up in our construction of correspondence between Hodge bundles and

vertex algebras. In fact our correspondence uses a generalization of Eq (22). We will do this step by step as
follows.

(i) Beilinson-Bernstein correspondence:

Let G be a connected complex reductive algebraic group defined over R, andletb=06 @ nc g=
Lie(G) be the Borel subalgebra, where the unipotent radical is given by

Here, b is the Cartan subalgebra. Any element X in the weight lattice A < by, lifts to an algebraic
character ¢ of the Borel subgroup B — G, corresponding to b. To this character, there exists a unique
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G-equivariant line bundle £ — X = G/B, with the group B acting as ¢" on the fibers. Thus, A can be interpreted
as the set of G-equivariant line bundles via A — £;.

Letp = % Za€®+ o€ %A. Then,
n

Lo,,=\TX
If G is simply connected, then p € A, and £,, has a well-defined square root. Now, define the sheaf

l))~ = O(El—p) ® DX® O(Lp*i)'

The Lie algebra g acts by infinitesimal translations on sections of £, ,, so 8 ,— I'D;, which induces
amap
The center Z(9) of U(9) acts via the infinitesimal character ;. This gives a homomorphism

U,(8) = U(9)/ker(;) — I'D;.

This map is compatible with the degree filtration. The Beilinson-Bernstein theorem asserts that the
map above is an isomorphism. Let Mod(U,(9))¢, denote the category of finitely generated U,(8)-modules,

or equivalently, the category of finitely generated U,(9)-modules on which Z(9) acts via y;. Similarly, let
Mod(D;).q refer to the category of coherent D;-modules. Define the functors:

A Mod (Uy(9))g, — Mod (D))con, AM) =M ® y, ) D;,
' : Mod (D;))¢on — Mod (Up(8))ge, T'(M) = HX, M) (25)
The Beilinson-Bernstein theorem asserts that when 4 is a regular and integrally dominant weight,
these functors define an equivalence of categories:
Mod(Uy(9))ge = Mod(D))con-
Similarly, for 4, a corresponding isomorphism holds between the category of Harish-Chandra modules:
HC(8, K),= HC(D;, K),
where the right-hand side denotes the category of D;-modules with a compatible K-action.
If we consider the polarization of D-modules as a Hermitian duality, we have the pairing
P:MxM — C*(Xg), bilinear over D, x D _;.
In our context, the map M — M defines a bijection
Mod(Dy; ;) th = Mod(Dy - )
We sometimes omit the subscripts X or X and simply write D, and D_,. The pairing P should be interpreted as

(o,7)= f {0, 1), where (-, ) is the flat Hermitian pairing on the underlying vector bundles, which is invariant

under ug, the compact form of g defined by a Cartan involution. In the correspondence, the flat bilinear form
P corresponds to the Shapovalov form, and the weight filtration corresponds to the Jantzen filtration [17].

(it) Localization Functor:
We generalize the Beilinson-Bernstein correspondence. Let G be a connected simple Lie group over

C. Assume LG = G((?)) is the Lie group of Lg = g((¢)). Let X be a smooth projective algebraic curve over C,
and p € X be a point. Let P be a principal G-bundle over X. Define the associated vector bundle

gP:P ><Gg.

Let 8 6u be the Lie algebra of sections of gparound p € X, and G, be the Lie group of g,,.. There is
a natural embedding

P
Jout — Lg.
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This embedding can be lifted to G — 9. Let O be the category of §-modules where the Lie
subalgebra g;, = g[[¢]] acts locally finitely. The modular functor assigns to a module

M— M85 M.

The dual space of M /85w M is called the space of conformal blocks. The localization functor of
Beilinson and Bernstein assigns to M a D-module on the homogeneous space

M =LG/Gyy.

For any integer , define a line bundle £¥on M, together with a homomorphism from § to the Lie
algebra of infinitesimal symmetries of £¥. This gives a homomorphism from Uk(lﬁ) to the algebra D, of global
differential operators on £*. Thus, for any g-module M of level k, we can define a left D;-module

A(M) = Dk ® U(@) M.

The fiber of A(M) at P is M/Sbw M [11]. The map A here is an analogue of the map in (22),
generalizing it over affine algebras. The adjoint functor is the global section functor. As in the previous
section, the Shapovalov form of M corresponds to the flat Hermitian pairing on the right-hand side. The map

A : §-Mod — D ,4-Mod
is a generalization of the map (25).

(iii) g-opers on the punctured disc:

We begin by defining GL(n)-opers, which are pairs (F. c E,D), where E is a rank n vector bundle

equipped with:

- A complete flag (0) ¢ F; < - < F,,= E such that rank(F}) = i,

- A holomorphic connection D : E — E ® K that is necessarily flat, satisfying:
- Griffiths transversality: D : F; — Fi.1 ® K|

- Non-degeneracy (strictness): Gr; D : GrI'E = G?“fjrlE ® K.

An SL(n)-oper is a GL(n)-oper where det(£) = O and D induces the trivial connection on det(E).

Now, let G be a simple complex group with B < G as a fixed Borel subgroup, N = [B,B] its unipotent
radical, H = B/N the Cartan subgroup, and Z = Z; the center. The corresponding Lie algebras are n < b <
g, t = b/n. If Pyis a holomorphic principal B-bundle, P the induced G-bundle, and Conn(P) the sheaf of
connections, we define the projection

¢: Conn(Pg) — 9/bp® K,
with the conditions ¢ '(0) = Conn(Pg) and ¢(D + V) = ¢(D) + [V], where v is a section of g, ® K and [V] is its
image in 8/bp ® K. We consider the class

c(D) € Hg/bp® K),
obtained by taking locally any flat B-connection Dy, and then gluing the local sections [D — Dg]. A G-oper
on X is a pair (Pg,D), where D € H(Conn(Pg)) such that
- e(D) € H(g_))p ®K) = H%(8/b,® K), - For every simple negative root «, the component c(D), €
H °9/b,® K) is nowhere vanishing.

These conditions ensure that the connection D preserves the flag corresponding to the Borel subgroup
B via Griffiths transversality. By definition, a g-oper is a G-oper where G is the group of inner automorphisms
of 9.

For GL(n), the oper condition implies that if E;= O" is a trivialization compatible with the flag on
an open chart U, then the flat connection can be written as
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d+] 0 x e gy
L 0O 0 - x *
Thus, a B-gauge equivalence class of a GL,-oper has a unique representative of the form

al az ------ an

1 0 0 0

d+] 0 1 = 0 0 |dt
RS

L0 0 -1 0
When we discuss g-opers, we are automatically considering their Bgauge equivalence classes, [18].

Let’s restrict to opers on the punctured disc. By definition, the space of 8-opers on the punctured disc D" is

Opy(D") = {£ 4y Xt v | 440 @), v € B(O)] /B

where a; are the set of positive simple roots of g with respect to B. The action of B((¢)) is via the gauge
transformation

gD =Ad@)D - (3,8 & "

An oper on the punctured disc is called nilpotent if its connection has a regular singularity at the

origin with unipotent monodromy. g-opers, as gauge equivalence classes of flat connections, can be compared
with mixed Hodge modules [17,19,20,10,18.21].

(iv) 8-modules associated to opers: Let g be a finite-dimensional semisimple Lie algebra and g its affine Lie
algebra. Define the following:

U@) =m Ug)/u@)e @ :"Cl)

Fromaformulaby Kac-Kazhdan for the determinant of the Shapovalov form, it follows that the module
Vi (@) contains null vectors besides the highest weight vector v, only when k=— A" (the critical level). The space
of null vectors 3 (g) of V:= V_,v is isomorphic to Endy(V'). To each vector v € V', we associate a power series:

v— Y(v,z)=%vmzm

The coefficients of these power series are elements of {7_,v(§) = U(g)/(K+ h"). These coefficients
span a Lie subalgebra (},hv(ﬁ)loc. For instance, if 4 € g, we have:

A=Y (AR )12 =A@ =2 (A® ")z "
This shows that § ﬁ_hv(ﬁ)loc. Let Z(g) denote the center of _,(§)oc.
We can demonstrate that:

x €3(8) = Y (x 2) € Z(9)

Furthermore, every element of Z(g) can be obtained in this form. A prominent example of this is the
Casimir element:

s :% L, ® Y € 5(8)

where J, (a = 1,...,dim @) is an orthonormal basis of § with respect to the invariant bilinear form. The
coefficients S, of the power series:
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(S =28,2" 2= 2, 0
n 2a .

are called the Sugawara operators and lie in Z(g). Now, let:

M, ;= U(@) ®unCr b= (0.® 1)@ (g ® ¢ C[[1]])
be a Verma module over g, with y € h*and the highest weight vector v, Let g" denote the Langlands dual
of g, obtained by exchanging the roles of roots and co-roots. According to classical results, the center Z(g)
is isomorphic to W(g"), the space of local functionals on Op(g"). Let p € Op(g) represent a g--oper on the
punctured disc. Then, as noted earlier, p defines a central character ¥ Z(ﬁ) — C. We associate the g-module
M= M, _,v/ker p with the gl-oper p, [11]. Therefore, we obtain a map:

Op(gh) — Mod(§), — M, = M, _v/ker p (26)

This map is part of the correspondence between the connections and bg-modules. The interpretation
of gl-opers as characters on the center of the dual affine algebra Z(g) is central to this framework [17,19,20,
10,18,21].
(v) Wakimoto modules:

Our explanation of Wakimoto modules is brief, but it is essential to complete the correspondence.

Suppose we are given a linear function y : h((¢)) — C. We extend it trivially to n((¢)) and obtain a linear

a((1)
db*((t))

infinite induction [9,20]. The resulting module is a module over the central extension of g((7)), i.e., over §
at critical level, where the vacuum is annihilated by ¢,[¢] ® n_. The parameters of the module behave not as

function on b_((#)), which we also denote by y. Instead of considering /n Cy, we focus on the semi-

functionals on h((¢)), but as connections on the F/*-bundle Q' (sheaf of i-forms). These are precisely elements
of the space Conng L(D ™) (D™ is the punctured disc). We obtain a family of smooth representations of U kc(ﬁ)
parametrized by ConngL(D™). For y € ConngL(D"), denote the corresponding Wakimoto module by #7,. The
center ch(ﬁ) acts on W, via a character. The corresponding point in Spec (chﬁ) = Op(gh) (A") is denoted by
1(x). Thus, we obtain a map:

p : Conny(D*) — Op(gh) (DY) 27

called the Miura transformation. In the context of opers from Section (3), the Miura transformation can be
understood as:

0 qi( - g, xn@ 0 0
1 0 - 0 1 () 0
o,—| 0 1 0 dt—o,-| 0 1 0 |dt
: : 0 : : : 0
0 0 1 0 0 1

This corresponds to the following factorization of the differential operator:

0y =i 8] = =gy (=B, x1 (1) (B~ s (1))

The fiber of the Miura transformation over a nilpotent oper is the variety of all Borel subalgebras of
g” containing that oper, known as the Springer fiber over the nilpotent oper. For example, the Springer fiber
over 0 is the flag variety of g, [8]. The composition of maps in Eqs (26) and (27) gives a map:

ConnyL(D*) — Op(g") — Mod(g)

This provides the correspondence between D-modules of flat connections and §-modules or vertex
algebras. The map in the above composition is analogous to the Harish-Chandra homomorphism:
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HC: Z(g) — C[p"1"
A variation of MHS on the punctured disc can be interpreted as a flat connection, regarded as an
element of ConngL(D") via the action of g” arising from the internal symmetries of the Hodge structure. In

many cases, the Lie algebra action is paired with a compatible action of the Lie group K to form a Harish-
Chandra pair (g, K).

(vi) Geometric Langlands correspondence:

A more robust way to reformulate Beilinson-Bernstein’s localization theorem is through the
Geometric Langlands correspondence, which we outline briefly to convey the central idea. For details, refer
to[11].

Let X be a smooth projective curve defined over a finite field F,, and let G be a split connected
simple algebraic group also defined over IF,. For a closed point x € X, let O, denote the completion of the
local ring at x, i.e., O, = F, (x)[[7]], and let K be its field of fractions, where ¢, = giee”,

There exists a correspondence between the conjugacy classes in G*(Q)) and G-modules, known as the local
Langlands correspondence.

The global Langlands correspondence asserts that an irreducible unramified representation Q.
is automorphic if and only if there exists a continuous homomorphism

o m(X) — GHQ)

such that each w, corresponds to the conjugacy class o(Fr,) in the local Langlands correspondence.

Now, let X be an algebraic curve defined over C. Let G;, = GJ[[f]], and let Ot be the category of

unramified g-modules of critical level. These are modules on which the action of g;,= g[[]] is locally finite
and contains g;-invariant vectors. On such modules, the action of g;, can be integrated to an action of the Lie

group G;,. The analogue of a conjugacy class in G is a regular gZ-oper on the formal disc. The analogue of
the local Langlands correspondence is:

Each regular g=-oper p, on the formal disc defines an irreducible § module of critical level.

Suppose we are given a g-oper p, for each point x € X. Let V' “xbe the corresponding §-module
of critical level defined in Section (4). Let g(A) = H;C g((2,)), and let g(A) be its one-dimensional central
extension. The product ®;€ V’xis naturally a §(A)-module. One can assign a twisted D-module to the g(A)-
module ®, M, via the localization functor defined earlier:

loc: @' V7 — A® M,)

The action of g, oanx can be integrated to an action of Gj,. Therefore, the associated D-module is

K-equivariant and descends to a Dmodule on M, denoted by A( ®, M,). Specializing to k = —h", the g(A)-
module ®, V' *xis called weakly automorphic if A(®, ¥ ’x) # 0. The weak version of the global Langlands
correspondence over C is as follows:

The §(A)-module @, V'~ is weakly automorphic if and only if there exists a globally defined regular
gh-oper p on X such that for each x, the p, is the restriction of p to a small disc around x.

(vit) Knizhnik-Zamolodchikov (KZ) Equations:

We present this section as a well-known example in conformal /fleld theory. Let 9 be a finite-
dimensional semisimple Lie algebra with an invariant bili/Iiear form x. Let gx be the affine Lie algebra with
level k£ and dual Coxeter number 4. The null vector of a g;-module defines the differential equations

(k+2)a%\yzz iy (28)

i£j ZiTE
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called KZ-equations, where ;= > qJ%J, are matrices. J “ and J, form a dual basis with respect to the invari
ant bilinear form x on . If g is semisimple, its local system corresponds to representations of the braid group
0:B,—»1V®---®V,

as the holonomy of the Hamiltonian system (28) (via the RiemannHilbert correspondence or the non-abelian
Hodge theorem). A more explicit form of this equation is:

dw= % 9 g (29)
Isi<jsn zi=% dz; — dz;
which can be written as the equation of a flat connection VA4 =d — T, where T = 2 Zl_ — Z_j Aj. In the
i
simplest case of 3-correlations over P'\{0, 1,00}, Eq (28) can be reduced to a single-variable equation:
d$ (A B )
P -1=)8.4 € Wix} llog (30)

after an appropriate change of variables, where 4,8 € End(W) for a g-module W, are diagonal matrices. The
solution system for Eq (29) can be described in two ways, as follows:

- Suppose {A} is the set of eigenvalues of 4, where all eigenvalues of 4 lie in U; 4+ N. For each 4, there
exists a set {\ + N Jf\ }jio such that 0 = N (;)” < <N j}. Let 7, denote the projection onto the A-eigenspace.
A basic but not trivial calculation shows that for any w € W, there is a unique solution to (29) of the form

¢VA; x)= % Jz iszz“vgwéﬁ) At t(]og x)j

) _

A A
where w('y = 7 4(w), and for each j > 0, we have me 0 (wg : (w).
2

N.*,u) = ﬂ—/\N;‘,O
- With a similar setup but focusing on the B-eigenvalues, it can be shown that for any w € W, there
is a unique solution of
do (B A )
ot A 1
5 To% 4 < D logy)
of the form

o)1= 2 2wl yriog )t
=k
In the first case, the map

941 ¢»AL @
defines a g-isomorphism between /7 and the solution system of the KZ-equation. In the second case, the map
52w — g (1-2)
defines a g-automorphism @y, = ¢ 5'¢, of W, known as the Drinfield associator of ¥, which can be interpreted
by the intertwining operators describing the tensor structure of the solutions to the KZ-equation [2].
(viii) Conformal blocks:
We conclude briefly summarizing the concept of conformal blocks, [3]. As mentioned earlier, a

vertex algebra is called conformal if it contains the generating function of the basis elements of the Virasoro
algebra among its vertex operators. Such algebras or their modules can then be viewed as modules over the

Virasoro algebra. For a conformal vertex algebra V, one can associate a vector bundle Vv over an algebraic
curve, taken as the base manifold X. In this setup, a vertex operator can be interpreted as a section of the dual

bundle V" on the punctured disc D, with values in End (V,), which can be written as
A®z"dz— Res,_oY (4, z) z"'dz.

In the affine Kac-Moody case, given a g-module M,, we define its space of co-invariants as the
quotient M, /g,,,(x)-M,. The space of conformal blocks is then the dual space:
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(Mx/gout(x) ’ Mx)v = Homgout(x) (an(c)
The basis elements of g are given by J%(z), and J“(z) dz naturally forms a one-form. A functional ¢
€ M is a conformal block if and only if {¢, J%(z) - A) has a regular singularity at x.

If we are given a vertex algebra V and a Harish-Chandra pair (B,G.), representing the internal
symmetries (for instance, in the case of a Hodge structure derived from the Mumford-Tate group), one can
associate a twisted space of co-invariants H(X) to this data. Here, the Lie algebra action of 3 is induced by
the Fourier coefficients of the vertex operators in V', while G, represents certain symmetries of a geometric
data H (in our case, the local system of Hodge structure) on the punctured disc D*. As 7 varies, the spaces
H(X) combine into a twisted D-module A(¥') on the moduli space Mg,, which parametrizes the data ® on X.

5 Conclusion

This article aimed to recollect some facts about Hodge structures and theory of vertex algebras
as highest weight modules over affine algebras. We explained several correspondences concerning these
structures such as Beilinson-Bernstein correspondence and its generalizations.The idea of inter-relations
between these theories already appeared in various areas of mathematics research and in mathematical
physics. We studied non-abelian Hodge correspondence, Harish-Chandra correspondence, Beilinson-Bernstein
correspondence and geometric Langlands correspondence, as a bridge between integrable systems and
representation theory of Lie algebras. These concepts have deep connections to various research areas in
physical sciences such as string theory, particle physics, optics and information technology.

Vertex algebras provide a powerful frame work for studying the interplay between representation
theory, and theoretical physics. They also provide a robust language for describing conformal field theories,
integrable systems, and string theory. This framework also opens doors to exploring dualities and symmetries
in quantum field theories and string theory, offering a rigorous mathematical foundation for concepts such
as conformal blocks and twisted D-modules.

Representations of affine algebras play a pivotal role in physics, optics, and information technology
by providing a robust mathematical framework for describing symmetry, quantization, and state evolution
in complex systems. In physics, they are foundational in Conformal Field Theory (CFT), influencing string
theory, quantum field theory. In optics, vertex algebras provide tools for photon correlations and entanglement
in quantum optics, enabling precise modeling of light propagation in structured media, meta-materials, and
topological photonic systems. In information technology, especially in quantum computing and cryptography,
vertex and affine algebras contribute to the design of topological quantum codes and robust error-correcting
schemes, enhancing quantum information processing.
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