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This article surveys the connections between Hodge structures and vertex algebras in conformal field theory and is 
expository text. These structures appear in various contexts of theoretical and mathematical physics. Hodge structure 
is a generalized complex structure which appears on solution space of integrable systems. Vertex algebras, as highest 
weight representations of infinite-dimensional Lie algebras, provide a frame work that intersects with both mathematical 
and physical theories. We explain the connection between Hodge structures and theory of highest weight modules over 
affine algebras by a generalization of the Beilinson-Bernstein correspondence. The Beilinson-Bernstein localization 
draws parallels between the variation of Hodge structures and highest weight modules over flag manifolds of semisimple 
Lie groups. This framework has profound implications for quantum field theory, where the structure of vertex algebras 
influences the understanding of symmetries and interactions in conformal field theories. We also consider a broader 
version of the Bernstein correspondence within the context of the geometric Langlands correspondence over local 
manifolds. Vertex algebras and representations of a fine algebras provide a powerful frame work for describing symmetry 
and state evolution in physics, optics, and information technology. They under-pin conformal field theories in quantum 
physics, model photon correlations, entanglement in quantum optics, and enhance quantum information processing. 
These structures offer a unified approach to analyzing complex systems across these fields. © Anita Publications. All 
rights reserved. doi.10.54955.AJP.33.12.2024.843-864
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1 Introduction

	 We study the relationship between Hodge theory as a structure for integrable systems over complex 
numbers and some aspects of theoretical quantum sciences. Hodge structure is a generalized complex 
structure on the solution space of integrable systems over complex numbers. In this way, it appears as an 
additional structure in solving different differential systems. We also study vertex algebras, which are realized 
as highest weight representations of infinite-dimensional Lie algebras. These algebras play a crucial role 
in understanding the symmetries and interactions governing multicomponent particle systems. We discuss 
several correspondences connecting classical Hodge theory to the theory of representations of affine algebras.
The correspondences relates the two theories and their symmetries.
	 Our analysis goes through the Beilinson-Bernstein localization, that links the variation of Hodge 
structures with highest weight modules over flag manifolds of semi simple Lie groups. This connection 
has implications with the underlying symmetries in quantum theories, where group theoretical methods 
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are describing the behavior of multi-component systems. We also introduce the geometric Langlands 
correspondence, which provides a more generalized framework for understanding this connection. Our 
analysis enables a deeper understanding of quantum systems in theoretical physics.
	 Vertex algebras provide a powerful tool to describe integrable systems in physics, including optics, 
or any theory with a quantum description for a many particle system. This method is universal, and applies 
to theories like particle physics, optics, and computer sciences. Hodge structure is a generalized complex 
structure which can appear on the solution space of an integrable system over complex numbers. We deal 
with correspondences that connect the classical Hodge theory with the theory of representations of infinite 
dimensional Lie algebras. Vertex algebras and vertex operators provide a powerful tool in describing these 
theories on the representation side.
	 Vertex algebras have significant applications in quantum physics and optical sciences, for instance 
in the description of photon correlations. The mathematical structure can be instrumental in describing 
optical processes, such as wave propagation in structured media. The conformal symmetry inherent in vertex 
algebras can model wave propagation in photonic crystals or metamaterials with periodic or quasi-periodic 
structures. In this context vertex algebras are fundamental to describe certain quantum states in interacting 
many particle systems. 
We briefly introduce the context below. Later in the text we make it more specific.

1 Vertex Operator Algebras 

	 Vertex algebras naturally emerge from the highest weight representations of affine or Virasoro 
algebras. To establish a basic frame work, let us consider

	 D = t d 
dt

as a differential operator acting on the ring R = [t, t−1]. The Lie algebra g of derivations of R is generated 
by t mD, m ∈ Z. This algebra is graded, where t mD is assigned weight m. We are particularly interested in 
central extensions
	 0 → .c → V → g → 0, 
which define the Virasoro algebra. This is also a graded Lie algebra. Specific highest weight representations 
of V play a role in conformal field theory. These representations are such that, for an appropriate choice of D

〉

 
extending D within the central extension, the character

	 Trace (q D

〉

 )
is well-defined and corresponds to the q-expansion of a modular form, [1]. The concept of the Virasoro 
algebra can be generalized to that of a vertex algebra. We can view the Virasoro algebra V as a vector space 
acted upon by commuting operators vn, where V is generated by 1 ∈ V and the action of these operators. 
Consequently, V becomes a commutative ring where 1 serves as the identity, and the actions of all operators 
correspond to multiplication within V . We define an operator

	 ϕ(t) : ɒ → ∑
i

 D iɒ · t i/ i!,	 V → End(V ) [t, t−1] 

called the vertex operator. The maps
	 Trace (ϕ(x) ϕ(y)...) 
are referred to as correlation functions, drawing their name from their analogs in quantum field theory. The 
structure of a vertex operator algebra is intended to explain a conformal infinitesimal deformation of V.	
	 A vertex operator algebra is defined by a 4-tuple (V, Y, 1, ω), where V is a Z-graded vector space 
equipped with a linear map
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	 Y (.,z) : V → End(V )[[z, z−1]],	 Y (ɒ, z) = ∑
n∈ Z

 ɒn z−n−1,

where 1 ∈ V0 is the vacuum vector satisfying Y (1, z) = idV and ɒ−11 = ɒ. The vector ω ∈ V2 is known as the 
conformal or Virasoro element, such that
	 Y ( ω, z) = ∑

n  L(n) z−n −1

provides a collection of Virasoro generators L(n) where L(0)|Vn = n · idVn. The operator L(−1) satisfies

	 [L(–1 ),Y (ɒ, z) = 
d 
dz Y (ɒ, z),

and the Jacobi identity for the vertex operator Y is assumed, cf. [2]. We focus on vertex algebras of CFT-type, 
meaning Vn = 0 for n < 0 and V0 = C.1. If V is generated by a subset S ⊂ V , then
	 V = span 	 { ɒ1

n1
 ... ɒk

nk       
.1|}ɒi ∈ S}. 

	 A unitary vertex operator algebra is one equipped with a positive definite Hermitian form. This 
concept extends to modules over these algebras via an anti-involution. An anti-linear automorphism is a map 
defined as
	 ϕ : V → V,	 ϕ(1) = 1, ϕ(ω) = ω, ϕ(un v) = ϕ(u)n ϕ(ɒ)	 ∀u, ɒ∈ V.

	 Unlike Lie algebras, defining an invariant bilinear form on a vertex algebra is notably more complex. 
For instance, the contragredient (V ′, Y ′ ) of a vertex algebra module (V, Y ) is defined using the form
	 ⟨Y ′(ɒ, x) w ′,w⟩ = ⟨w ′,Y (exL(1)(− x2) L(0) ɒ, x−1) w⟩,	 v,w ∈ V, w ′ ∈ V ′.
	 The form must also account for the invariant bilinear form on the vertex algebra. A unitary vertex 
algebra includes a positive definite Hermitian form. For such an algebra, the positive definite Hermitian form
	 (.,.)unitary : V × V → C, ∃ λ ∈ C; (u, ɒ) = λ(1,1)
is uniquely specified by its value at (1,1), a fact easily shown using the axioms of a vertex algebra and the 
invariance property.
	 Vertex algebras and their homomorphisms form a tensor category. This means we can tensor finitely 
many vertex algebras

	
p
⊗

i = 1
(Vi, YV, Ii, ωi), ω = ω1 ⊗ 1 ⊗... ⊗ 1+... + 1 ⊗ 1 ⊗ ωp 

	 The structure of a vertex algebra must adhere to a locality axiom. Although, its detailed description 
is outside the scope of this note, we refer readers to [3] for a complete discussion.. Briefly, this means that 
for any A,B ∈ V, the two formal power series in two variables obtained by composing Y (A, z) and Y (B, w) in 
both possible orders are equal, possibly after multiplying by a sufficiently large power of (z − w). Formally,
	 (z − w) N [Y (A, z),Y (B,w)] = 0,	 for some N ∈ Z+. 
In this context, we define a normally ordered product as :							     

	 A(z) B(ω):= –∑
m 

  
∑
m<0 

 Am Bn z– m –1 + ∑
m≥0 

 Am Bn z– m –1

 
ω–n – 1

for vertex operators. This product can be inductively extended to more than two factors.
Remark 1.1 [4]. In the case of holomorphic vertex algebras, where the operators V (a,x) are holomorphic, 
they correspond to commutative rings with derivations. The notation V (u, z) ɒ can be interpreted as a 
deformation of uz. ɒ. If we begin with a commutative algebra equipped with a derivation D, we can define the 
vertex operator as:

	 V (a, x) b = ∑
 i ≥0

(Dia) bxi

i! 
. 	 (1)
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Conversely, if V is a vertex algebra, we can recover the algebra and derivation structure via the definitions:
	 ab = V (a, 0) b, 
and
	 Da = coefficient of x1 in V (a, x) b. 
In this framework, we can introduce a new notation:

	 a x = ∑
i ≥ 0

xi Dia
i! 

 

Using this, the vertex operation becomes:

	 axb = ∑
i ≥ 0

xiD i(ab)
i! 

 	 (2)

Here, x is treated as an element of the formal group G

〉

a. The formal group G

〉

a has a formal group ring H = 
C[D], and its coordinate ring is the ring of formal power series C[[x]]. The tensor category of modules with 
derivations corresponds to the category of modules over the formal group ring H. Thus, holomorphic vertex 
algebras can be viewed as commutative ring objects in this category.
	 In the non-holomorphic case, however, the expressions a xb y (for a, b ∈ V ) are no longer holomorphic 
and may exhibit singularities. Nevertheless, the identities of vertex algebra theory become easier to interpret 
using the new notation. For example:
	 V (a, x) b = e x L−1(V (b,− x) a)	 ⇔	 a xb = (b x−1a)x. 	 (3)
An intertwining operator between three modules (W1, Y1),(W2, Y2), and (W3, Y3) is a linear map:

	 I(.,z) : W2 → Hom(W3, W1){z},	 u → I(u, z) = ∑
n∈ Q

un z−n −1, 	 (4)

which satisfies certain compatibility conditions. The vertex operator YM (.,z) can be viewed as a special case 
of an intertwining operator, where W3 = W1 = M. One definition of these operators is:
	 I(w, z)ɒ = ezL(−1)YM (ɒ, −z)w. 	 (5)
	 Intertwining operators play a crucial role in defining a product structure in the category of vertex 
algebras. The standard tensor product of two Lie algebra modules is generally not a module, complicating the 
construction of an associative product structure in the tensor category of vertex operator algebras (VOAs). 
Intertwining operators also provide the foundation for the theory of conformal blocks. Using the L(−1)-
property and intertwining operators, one can derive a system of differential equations whose solutions 
correspond to these modules. These are D-modules, acted upon by certain differential operators [5].

2 Variation of Hodge structure: 

A polarized Hodge structure on a Q-vector space V is defined by a representation

	 ϕ : U(R) → Aut (VR, Q),	   U(R) = 
a
b    

– b
a ,	 a2 + b2 = 1.

	 The group GR = Aut(VR,Q) is a real simple Lie group. The period domain D associated with the 
Hodge structure ϕ is the moduli space of polarized Hodge structures on the vector space V with fixed Hodge 
numbers. The group GR acts transitively on D by conjugation:
	 D = {ϕ : S1 → GR | ϕ = g−1 ϕ0 g}. 
	 The isotropy group H of a reference polarized Hodge structure (V,Q,ϕ) is a compact subgroup of GR 
and contains a compact maximal torus T. The Lie algebra g of the complexified simple Lie group GC is a Q 
-linear subspace of End (V ). The bilinear form Q induces a non-degenerate symmetric bilinear form B : g × g 



Vertex algebras and Hodge structures, (Beilinson-Bernstein correspondence)	 847

 

→ C, which, up to scale, is the Cartan-Killing form tr(ad(x) ad(y)). For every point ϕ ∈ D, the representation
	 Ad(ϕ) : U(R) → Aut(gR,B)
defines a Hodge structure of weight 0 on g, polarized by B.
	 For each nilpotent transformation N ∈ g, one can define a limit mixed Hodge structure. The local 
system g → ∆* is equipped with monodromy T = ead(N) and a Hodge filtration defined with respect to a 
multivalued basis of g by

	 elog(t) N
2πi

 F • 

where F• is the natural Hodge filtration on g. This yields a limit mixed Hodge structure (g, F•, W(N)•). The 
polarizing form B defines perfect pairings:

	 Bk : GrW(N)
k  g × GrW(N)

– k  g → Q, Bk (u, v) = B (u, N k v),

via the hard Lefschetz isomorphism N k : GrW(N)
– k  g ≅ GrW(N)

k  g.
Now consider a family of projective manifolds defined by a proper smooth map:
	 f : X → S,		  Xs = f −1(s),
where S is a quasi-projective variety. This induces a polarized variation of Hodge structures (VHS):
	 (V = R k f * C, F • ).
	 If dim S = 1, this variation corresponds to a topological deformation of the Hodge structure V = 
H k(Xs, C) over a punctured disc. Understanding the asymptotic behavior of VHS is central in Hodge theory. 
Assume that V is equipped with a limit Hodge filtration. By the Riemann-Hilbert correspondence, a local 
system of Hodge structures defines a D-module with a flat connection on S. This leads to a decreasing 
filtration F • = (F i ) on the vector bundle V ⊗Q OS by holomorphic sub-bundles, along with a flat connection:
	 ∇ : V ⊗Q OS → V ⊗Q Ω1

S, 
satisfying Griffiths transversality:

	 ∇(F i V) ⊂ F i −1 V ⊗ Ω1
S .

Additionally, the data include a flat bilinear pairing:
	 P : V × V → Q.
	 In the context of conformal field theory, vertex algebras emerge as highest weight representations of 
infinite-dimensional Lie algebras. The correspondence between Higgs bundles and opers, known as the non-
abelian Hodge theorem (C Simpson), highlights parallels with Hodge structures. The Beilinson-Bernstein 
localization similarly relates variation of Hodge structures to highest weight modules over flag manifolds 
of semisimple Lie groups. A broader analogue of the Bernstein correspondence can also be formulated 
within the geometric Langlands correspondence. This framework incorporates generalized Harish-Chandra 
modules, known as Wakimoto modules, along with a generalized Harish-Chandra homomorphism. Finally, 
we conclude with an exploration of the geometric Langlands correspondence.
	 Explanation on the text: Section 1 is the introduction and we introduce the concept from the 
literature. In Section 2, we present main examples of vertex algebras we are dealing with, as affine Kac-
Moody algebras and Virasoro algebras and Fock modules. We present Fock representations of Heisenberg 
algebra and Harish-Chandra pairs in this section. In Section 3, we give basic concepts related to variation 
of (mixed) Hodge structure. We explain the context of mixed Hodge modules and the non-abelian Hodge 
theorem of C. Simpson as equivalent notions. Section 4 contains the BeilinsonBernstein localization functor 
which we successively develop over the g-opers in order to explain the geometric Langlands correspondence. 
We give a brief explanation of KZ-equations and the conformal blocks at the end. 
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2 Vertex algebras

	 In this section main examples of vertex algebras and their representations are presented along what 
we explained in the introduction [3,4, 6-10].
Definition 2.1. A vertex algebra consists of the following data;
•	 (space of states) A Z-graded vector space
	 V = ⊕

n
Vn	 (6)

•	 (vacuum vector) a vector |0〉∈V0

•	 (translation operator) a linear operator T : V → V of degree one.
•	 (vertex operators) a linear operation
	 Y (.,z) : V → End(V )[[z±1]]	 (7)
	 taking A ∈ Vm to

	 Y (A, z) = ∑
n

 A(n) z –n – 1 	 (8)
	 of conformal dimension m, i.e deg A(n) = − n + m = 1.
•	 (vacuum axiom) Y (|0〉) = IdV . Furthermore
	 Y (A, z) |0〉 ∈ V [[z]], ∀A ∈ V	 (9)
•	 (translation axiom) For any A ∈ V ,
	 [T, Y (A, z)] = ∂z Y (A, z)		  (10)
	 and T |0〉 = 0.
•	 (locality axiom) All fields are local with respect to each others.
	 Vertex algebra structure naturally appears in many known geometric structures. Let us begin with 
Lie algebra H defined as central extension
	 0 → .1 → H → ((t)) → 0 	 (11)
	 It may also be regarded as the completion of the one dimensional central extension of the commutative 
Lie algebra of Laurent polynomials [t, t −1] having basis bn = t n, n ∈ Z and the central element 1. Let us 
call the latter Lie algebra by H ′. The universal enveloping algebra U (H′) is an associative algebra with 
generators bn and relations
	 bn bm − bm bn = n.δn,−m1,	 bn.1 − 1.bn = 0	 (12)

	 The left ideals t N [t] build up a system of open neighborhoods of 0, and one can consider the 
completion of U(H ′) with respect to this topology, denoted ~U(H ′). The quotient
	 ~H = ~U(H ′)/(1 − 1)	 (13)
is the well known Weyl algebra. Here the first 1 is the central element and the second is the unit of ~U(H ′). 
Let ~H+ be the subalgebra of ~H generated by bn, n ≥ 0 and define
	 V = Ind

~H
~H+

  = ~H− = [b−1, b−2 , ...]	 (14)

The module V is called the Fock representation of ~H. Now lets look at to the fields

	 b(z) = ∑
n

 bn z – n – 1	 (15)
where bn is considered as an endomorphism of V . Since deg(bn) = − n, b(z) is a field of conformal dimension 
one. Let us consider

	 b(z)2 = ∑ 
n

 
∑

k + l = n (bk bl) z− n −2	 (16)
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	 The relations (37) imply that the coefficient operators can be rearranged so that the annihilation 
operators (bn, n < 0) be in the right side of creation operators (bn, n ≥ 0) and for any x ∈ V there are only 
a finite number of bk bl whose action on x is non zero. This makes the expression (16) well defined. There 
are standard ways in conformal field theory to remove infinite sums arising from repeatedly creating and 
annihilating the same state. In our case we define the normally ordered product of b(z) with itself as

	 : b(z) b(z) = ∑ 
n

 : bk bl : z – n –2, 	 bk bl :=  
bl bk	 l = – k, k ≥ 0
bk bl	 otherwise 	 (17)

With the normally ordered product we can proceed to define for instance
	 Y (b2

–1, z) =: b(z)2 :	 (18)
etc .... The pattern explained above appears in many Lie algebra representations in finite or infinite dimensions. 
We will encounter several examples of this in the following.
(i) Affine Kac-Moody algebras 
	 The first class of vertex operator algebras corresponds to affine Lie algebras. Let g be a simple finite 
dimensional Lie algebra over . The associated loop algebra Lg is defined as g((t)). An affine Lie algebra ĝ
can be expressed as the direct sum of vector spaces ĝ  := Lg ⊕ K, with the commutation relations given by 
[K,·] = 0 and
	 [A ⊕ f (t),B ⊕ g(t)] = [A, B] ⊕ f (t) g(t ) + (Rest = 0 f dg) (A, B)K, 
where (·,·) is an invariant bilinear form on g, normalized such that (θ, θ) = 2, with θ denoting the highest root 
of g. 
	 A related structure is the vacuum representation of the affine algebra ĝ . For k ∈ , let k denote the 
1-dimensional representation of g[[t]] ⊕ K, where K acts as multiplication by k. The vacuum representation 
of ĝ  at level k is defined as
	 Vk (g) = Ind ĝ

g[[t]]⊕ K K .

	 If { J a} is a basis for g, then the elements J a
n  = Ja ⊕ t n and K form a basis of ĝ . The vacuum 

representation Vk(g) is spanned by monomials of the form J
  a1
n1  ... J

  am
nm  1k . This structure defines a vertex 

algebra (or module) Vk(g) with the vertex operator

	 Y (J a
–1 · 1k, z) = J a(z) := ∑ 

n
 J a

n  z –n –1. 
The module Vk (g) contains a unique maximal proper ĝ-submodule, denoted by J(k). The quotient
	 Lg(k,0) = Vk (g)/J (k) 

defines a simple vertex algebra. For a highest weight λ ∈ h* of g, the corresponding highest weight module 
for ĝ  is denoted by Lg (k, λ) (see [6,7]).
(ii) Virasoro algebras: 
	 The second class of vertex algebras we examine are the Virasoro algebras, denoted Vir. These 

algebras are a central extension of the Lie algebra Der C((t)), generated by the operators Ln = – t n+1 
d
dt for n 

∈ Z, along with the 1-dimensional vector space C · C, subject to the relations [C,·] = 0 and

	 [Ln, Lm] = (n – m)Ln + m + 
n3 – n

12  δn, –m C.

Let c,h ∈ C, and define the 1-dimensional representation Cc of Vir by the following actions:
	 Ln · 1 = 0	 for n ≥ 1,
	 L0 · 1 = h · 1,
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	 C · 1 = c · 1.
Next, we define the module V (c,h) as

	 V (c,h) := Ind Vir
Der C[[t]]⊕C  Cc, c ∈ C.

	 The module V (c,h) is generated by the monomials Lj1 ···Ljm1c with j1 ≤ j2 ≤ ··· ≤ −2, and it forms a 
vertex algebra module with the vertex operator given by

	 Y (L–2 1c, z) = T(z) = ∑ 
n

 Ln z–n –2 

	 Modules over the Virasoro algebra are classified based on the action of the operator L(0), where L(0) 
· 1 = h · 1. Such modules are highest weight modules of the Virasoro algebra, denoted V (c, h). The unique 
irreducible quotient of V (c, h) is denoted by L(c, h), as described in [6,10].

(iii) (Bosonic) Fock representations:
Fock modules are defined using the Heisenberg Lie algebra of rank 1, given by

	

Let Cη be the 1-dimensional H ≥ = (H 0 ⊕ H +) - representation with the following actions:
	 an · 1η = η δn,0 1η,	K · 1η = 1η.
This representation has a Z-gradation, where

	 Cn
η =  

Cn 	 for	 n = 0,
0 	 for	 n ̸= 0

 

The corresponding (bosonic) Fock module is defined by

	 F η = Ind H
H ≥ Cη.

	 The highest weight vector in this module is denoted by |η〉. We define a Z-graded vertex algebra 
structure on F  0 with vacuum vector |0〉 and translation operator
	 T|0〉 = 0,	[T, an] = − na−n − 1.
The vertex operator is given by

	 Y (a–1 |0〉, z) = ∑ 
n

 an z–n –1.

	 Fock representations can be understood as the smallest representations of the Weyl algebra, as 
discussed in [7,10].
(iv) Harish-Chandra modules: 
	 A pair (g, K), where g is a Lie algebra and K is a Lie group such that k = Lie(K), together with an 
action
	 Ad : K → g,
is called a Harish-Chandra pair if it is compatible with the adjoint action of K on k. A (g, K)-action on a 
scheme X consists of a homomorphism
	 ρ : g → ΘX,
where ΘX is the tangent sheaf of X, along with an action of K on X, such that the following conditions hold:
	 (1) The differential of the K-action is the restriction of the action of g on k.
	 (2) ρ(Ad(k)(a)) = kρ(a)k−1, for all k ∈ K and a ∈ g. 
	 A Harish-Chandra (g, K)-module is a vector space V equipped with the aforementioned compatible 
actions. One can also consider the vector bundle
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	 v = X ×K V
on the scheme X, which provides a flat connection on the trivial vector bundle X × V over X.
	 Harish-Chandra modules can be generalized to Virasoro algebras. In this context, the Lie algebra g 
admits a generalized triangular decomposition
	 g = ⊕

α∈h∗
gα ,

where h is a Cartan subalgebra. In this case, the g-module M is assumed to be h-diagonalizable, i.e.,
	 M = ⊕

λ∈h∗
Mλ ,	 dim Mλ < ∞,

where each weight space Mλ is finite-dimensional. The module M can then be written as a direct sum of 
highest weight modules, lowest weight modules (Verma modules), or an intermediate series defined by Va,b, 
where a,b ∈ . The intermediate series is defined by

	 ,

where Ls are the generators of the Virasoro algebra. For further details, see [7] and [10].
Jantzen filtration and Shapovalov form: Let (g, h) be a Lie algebra pair, where h is a Cartan subalgebra, 
and σ : g → g is an anti-involution. The framework discussed here is applicable to any Q-graded Lie algebra:

	 g = ⊕
β∈Q

gβ ,	 dim gβ < ∞,

where Q is an abelian group, and in our case, Q is the root lattice. This definition is relevant for both finite-
dimensional Lie algebras and their infinite-dimensional extensions, such as affine or Virasoro algebras. 
We can decompose g as:
	 g = g− ⊕ h ⊕ g+ .
	 The universal enveloping algebra of g is defined as the quotient of the tensor algebra T(g) = ⊕n 
g⊗ n by the ideal generated by x ⊗ y − y ⊗ x − [x, y]. According to the Poincaré-Birkhoff-Witt theorem, the 
universal enveloping algebra has the decomposition:
	 U(g) = U(h) ⊕ {g− U(g) + U(g) g+}.
Consider the projection:
	 π : U(g) → U(h) ≅ S(h),
where S(h) is the symmetric algebra of h. The bilinear form
	 F : U(g) × U(g) → S(h),	 F(x, y) = π(σ(x) y),
is referred to as the Shapovalov form of g. It is a symmetric, contravariant form, meaning:
	 F(z x, y) = F(x, σ(y)),
for all x, y ∈ U (g). The decomposition of U(g) implies a corresponding decomposition of the algebra:

	 U(g) = ⊕
β

 U(g)β ,	U(g)β = {x ∈ U(g)|[h, x] = β(h)x, ∀h ∈ h}.

For distinct β1 ≠ β2 ∈ Q, it follows that:
	 F(x, y) = 0,	 x ∈ U(g)β1

,	 y ∈ U(g)β 2
.

For each β ∈ Q, a basis {Xj}j∈I of U(g)−β can be chosen. The determinant

	 Dβ = det(F(Xi, Xj))i, j∈I ∈ S(h),
is called the Shapovalov determinant of g.
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	 The concept of a contravariant bilinear form can be extended to any g-module M. A key property in 
this context is that any highest weight module M has a unique contravariant bilinear form 〈·,·〉 : M ⊗ M → , 
up to a constant, satisfying the condition
	 〈g · x, y〉 = 〈x, σ (g) · y〉,	 g ∈ U(g).
	 This fact can be verified for Verma modules M(λ), which are the unique irreducible quotients of 
these modules. For a Verma module Mλ, the radical of the form is the maximal proper submodule J(λ) ⊂ 
M(λ).
	 The Jantzen filtration of a g-module is defined using the Shapovalov form on U(g). Let R = [t] and 
ϕ : R →  be the canonical map.
Let ~M be a free R-module of rank r with a non-degenerate symmetric bilinear form
	 (.,.) ~M

 : ~M × ~M → R.

Define M = ϕ ~M = ~M ⊗R R/tR, and the symmetric bilinear form on M is given by:

	 (ϕ v1, ϕv2) = ϕ((v1,v2) ~M
 ) .

For m ∈ Z ≥ 0, define:

	 ~M (m) = {v ∈ ~M | (v, ~M ) ~M
 ⊂ t mR},

and embed ~M (m) → ~M . Set M(m) = Im(ϕ o im), and we obtain a filtration:

	 M = M(0) ⊃ M(1) ⊃ ··· ,
which is the Jantzen filtration of M, a filtration of C-vector spaces. This filtration has the following properties:
–	 ∩m M(m) = 0,

–	 M(1) = rad (·,·),

–	 There exists a symmetric bilinear form (.,.)m on M(m) such that rad((.,.)m) = M(m + 1).
	 The concept of the Jantzen filtration appears both in the context of vertex algebras and in variations 
of Hodge structures, where it corresponds to the weight filtration in local systems of mixed Hodge structures.
(v) Conformal vertex algebras: 
	 A vertex algebra V = ⊕n Vn with central charge c is called conformal if it contains a vector w ∈ V2 
(known as the conformal vector) such that the corresponding vertex operator Y (w,z) = ∑n Ln z−n −2 satisfies 
the following conditions:

	 L–1 = T, 	L0|Vn = n · Id, L2 w = 1/2 c|0〉.
This implies that there is a homomorphism
	 V irc → V,	 L−2 1c → w.
	 In the case of a Kac-Moody algebra, the conformal vector (called the Sugawara conformal vector) 
is given by

	
1

2(k × hv )
 ∑

a  (J a
–1)2 1k , 

where J a is an orthonormal basis of g. A Kac-Moody algebra is conformal if and only if k ≠ −h∨. In this case, 
ĝ is a module over the Virasoro algebra [7,11].
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Unitary Vertex Algebras: 

	 Let (V,Y,1,w) be a vertex algebra, and let ϕ : V → V be an antilinear involution. The pair (V, ϕ) is 
called unitary if there exists a positive definite Hermitian form
	 (.,.) : V × V → 
such that for a, u,υ ∈ V,

	 (Y (e zL(1) (− z−2) L(0)a, z−1) u,v) = (u,Y (ϕ (a), z) v), 
where
	 Y(w, z) = ∑ 

n
 L(n) z– n – 2

	 In a unitary vertex operator algebra, the positive definite Hermitian form is uniquely determined by 
(1,1) via the properties of the vertex algebra. For the Virasoro case V (c, h), there exists a unique Hermitian 
form such that
	 (1c,h,1c,h) = 1,	 (Ln u,v) = (u, L−n v).

It is known that V (c,h) is unitary if and only if c ≥ 1, h ≥ 0, or c = cm, h = h m
r, s, 

where
	 cm = 1 – 6

m(m + 1)
,	 h m

r, s = 
[r (m + 1) – sm]2 – 1

4m (m + 1) .

In the affine case Vg (k, λ), there exists a unique positive definite Hermitian form such that
	 (1, 1) = 1, (xu, v) = – (u, ω̂0 (x)v), x ∈ ĝ , u, v ∈ Lg (k, λ),
where ω̂0 : ĝ  → ĝ
is the Cartan involution. Then, Vg (k, λ) is a unitary vertex algebra if and only if k ≠ −h∨, k ∈ Z+, and λ is a 
dominant integral weight satisfying (λ, θ) ≤ k.
	 In the Fock module case, we reduce to M(1, λ) = U(ĥ)/Jλ. It is known that this is unitary if and only 
if (α, λ) ≥ 0, i.e., λ is a dominant weight [6].

3 Variation of Hodge structure

A variation of Hodge structure [12-17] over a complex manifold S gives rise to a period map
	 Φ : S → ΓZ / D
where S is a smooth base manifold and Γ is a discrete group. D is the period domain and it is known that 
it is a hermitian symmetric complex manifold. There are naturally defined Hodge bundles F p of the Hodge 
structure on V , and also the endomorphism bundle associated to g = End(V ) on D. The corresponding local 
systems are
	 V := Γ \(D × v),	 G := Γ  \(D × g)	 (19)
respectively. One way to explain the complex structure on D is to embed it in its compact dual Ď, which is the 
set of all Hodge filtrations on V with the same Hodge numbers satisfying the first Riemann-Hodge bilinear 
relation. Ď is a homogeneous complex manifold. There are G -homogeneous vector bundles
	 F p → Ď	 	 (20)
called Hodge bundles whose fiber at a given point F • is F p. Over D ⊂ Ď we have V p,q = F p/F p +1, which 
are homogeneous vector bundles for the action of GR. They are Hemitian vector bundles with GR-invariant 
Hermitian metric given in each fiber by the polarization form. The space of functions on D can be identified 
with the ΓZ-automorphic functions on D.
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(i) Variation of mixed Hodge structure: 
A polarized variation of mixed Hodge structure over the punctured disc ∆∗ consists of a 5-tuple
	 (ν, F •,W• ,∇,P), where:
-	 ν is a local system of Q-vector spaces on ∆*.
-	 W• is an increasing filtration on V by sub-local systems of Q-vector spaces.
-	 F • = (F i ) is a decreasing filtration on the vector bundle V ⊗Q ∆* by holomorphic sub-bundles.

-	  is a flat connection satisfying Griffiths transversality:

	 .
-	 P : ν × ν → Q is a flat pairing inducing a set of rational, nondegenerate bilinear forms 

	 Pk :  Gr k
W ν ⊗  Gr k

W ν → Q, such that the triple ( Gr k
W ν, F• Gr k

W , Pk) 
defines a pure polarized variation of Hodge structure on ∆*. We denote this structure as H.
	 Next, let V be a Hodge structure with an exhaustive decreasing Hodge filtration F p. Consider a 
locally free sheaf ξ(V,F) over C, defined as the submodule of V ⊗ C[t, t −1] generated by t −pF p. Given a real 
structure, ξ (V, F) and ξ (V,F ) can be glued using the involution t → (–t  )−1, yielding a locally free sheaf ξ(V,F,
–F ) on P1 with an action of C* and an antilinear involution. This procedure can be described as follows. A 
variation of polarized Hodge structure of weight k provides a 4-tuple (H, F, ∇, P), where:
	 ∇ : H → H ⊗ z –1Ω∆* (log0)
is a flat connection, and a (−1)k-symmetric, non-degenerate, flat pairing
	 P : H × j * H → ∆*,	 j : z → −z
is induced. The bilinear form P induces a non-degenerate symmetric pairing
	 z−k P : H/zH × H/zH → .
	 The Hodge filtration can be described as follows. Let V be the Kashiwara Malgrange filtration on 
the mixed Hodge module associated with H, and assume (H,∇) is regular singular. Then H ,→ V > −∞. For 
α ∈ [0,1], define (see [12]):

	
	 We will identify the variation of polarized Hodge structures with their associated polarizable Hodge 
module via the Riemann-Hilbert correspondence. This correspondence has been studied more systematically 
by Saito in [16].
(ii) Polarizable Mixed Hodge modules: 
	 Let X be a complex algebraic variety, and let MHM(X) denote the abelian category of Mixed Hodge 
Modules on X. MHM(X) comes equipped with a forgetful functor 
	 rat : MHM(X) → Perv(Q X ),
which assigns to each mixed Hodge module its underlying perverse sheaf over Q. Sometimes, these objects 
are considered as elements in DbMHM(X) and Db

c  (Q X ), respectively, and similarly for the functor rat. When 
X is smooth, a mixed Hodge module on X is characterized by a 4-tuple (M,F,K,W), where M is a holonomic 
D-module with a good filtration F, and it has a rational structure such that,
	 DR(M) ≅ C ⊗ K ∈ Perv(CX),
for a perverse sheaf K and W denote the pair of weight filtrations on M and K that are compatible with the 
rat functor. Here, DR refers to the de Rham functor, shifted by dim (X). The de Rham functor is dual to the 
solution functor. When X = pt, MHM(pt) precisely corresponds to all the polarizable mixed Hodge structures.
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	 A mixed Hodge module always has a weight filtration W, and it is called pure of weight n if Gr k
W

= 
0 for k ≠ n. Typically, the weight filtration W involves a nilpotent operator on M or the underlying variation 
of mixed Hodge structure. A mixed Hodge module is constructed by successive extensions of pure ones. 
If the support of a pure Hodge module, considered as a sheaf, is irreducible and no submodule or quotient 
module has a smaller support, we say the module has strict support. Any pure Hodge module decomposes 
uniquely into pure modules with different strict supports, as guaranteed by the Decomposition Theorem. A 
pure Hodge module is also referred to as a polarizable HM. We denote by MHZ (X,n) p the category of pure 
Hodge modules with strict support Z. 
	 An element M ∈ HMZ (X,n) determines a polarizable variation of Hodge structure. The converse is 
also true: variations of Hodge structures determine mixed Hodge modules. Therefore,
	 MHZ (X,n) p ~

¯

 V HSgen(Z,n − dim Z ) p, where the right-hand side refers to polarizable variations of 
Hodge structure of weight n − dim Z defined on a non-empty smooth subvariety of Z. This equation reflects 
a profound and non-trivial result about regular holonomic D-modules, their underlying perverse sheaves, and 
their polarizations. It may also be interpreted as an analogue of the Riemann-Hilbert correspondence between 
mixed Hodge modules and their underlying perverse sheaves, as discussed in [14].
(iii) Higgs Bundles and the Non-Abelian Hodge Theorem: 
	 Let X be a smooth and projective variety over C. A harmonic bundle on X is a C ∞-vector bundle E 
with differential operators ∂ and –∂ , and algebraic operators θ and –θ  satisfying the following conditions: There 
exists a metric h such that ∂ + –∂  is a unitary connection, and θ + –θ  is self-adjoint. Furthermore, if
	 ∇ = ∂ + 

–
∂  + θ + –θ ,	 ∇′′ = 

–
∂  + θ,

then we have ∇2 = ∇′′2 = 0. Under these conditions, (E,D) is a vector bundle with a flat connection, and (E,∂,θ) 
is a Higgs bundle, i.e., a holomorphic vector bundle with a holomorphic section
	 θ ∈ H 0(End (E) ⊗ Ω1

X),	 θ ∧ θ = 0.
	 A Higgs bundle is called stable (resp. semistable) if for any coherent subsheaf F ⊂ E preserved by 
θ, the inequality

	
deg(F )
rank(F) < 

deg(E )
rank(E ) (resp. ≤)

holds.
	 There is a natural equivalence between the categories of harmonic bundles on X and semisimple flat 
bundles (or representations of π1(X)). There is also a natural equivalence between the categories of harmonic 
bundles and direct sums of stable Higgs bundles with vanishing Chern class. This correspondence between 
representations and Higgs bundles extends to an equivalence between the category of all representations of 
π1(X) and all semistable Higgs bundles with vanishing Chern classes, referred to as the non-abelian Hodge 
theorem.
	 A natural *-action exists on the category of semistable Higgs bundles with vanishing Chern classes, 
denoted by
	 t : (E,θ ) → (E,tθ ).
	 The semistable representations fixed by this action correspond exactly to complex variations of 
Hodge structure. A representation ϱ of π1(X ) is called rigid if any nearby representation is conjugate to it. 
The correspondence described above is continuous on the moduli of semisimple representations. It follows 
that if a semisimple representation is rigid, it must be fixed by * and originates from a complex variation of 
Hodge structure. In this case, there is a Q-variation of Hodge structure VQ such that ϱ is a direct factor of the 
monodromy representation of VQ ⊗ 

–
Q (where the monodromy is the sum of conjugates of ϱ) [15].
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	 Let MDol (G), MDR (G),MB (G) denote the moduli spaces of Higgs bundles of degree zero, local 
systems, and representations of π1(X ), respectively. We will denote the smooth loci of these varieties by 
the superscript reg, i.e., M reg

Dol ,..., and typically omit the “reg” notation in the future. The non-abelian Hodge 
theorem provides a diffeomorphism
	 τ : MDol(G) ≅ MDR (G ).
	 The Riemann-Hilbert correspondence between bundles with integrable connections and 
representations yields isomorphisms
	 MDR(G) ≅ MB(G),
as discussed in [15,18]. A systematic study of the interrelation between the Higgs fields of Higgs bundles 
and the system of Hodge bundles in variations of Hodge structures can be found in [13]. A corollary of this 
is that a unipotent variation of mixed Hodge structure defines a Higgs field θ which is flat with respect to ∇ 
and ∂ + –∂ . In this case, the invariance under the C∗-action described above explains the complex variation of 
the Hodge filtration.

4 Connection between Hodge structure and Vertex algebras

	 Let g = gR ⊗ C = Lie(GR ⊗ C) be a complex semi-simple Lie algebra, h = t ⊗ C a Cartan 
subalgebra, t = Lie(T ), and KC a complex Lie group corresponding to the unique maximal compact subgroup 
K ⊂ GR. We denote U(g) to be the universal enveloping algebra of g. We assume the action of KC will be 
locally finite, and its differential agrees with the corresponding subspace of U(g). One may match these data 
with the case D = GR/H is a general period domain sitting in the diagram

	

  GR/T    →    G /B

D = GR/H  →  G/P = Ď

↓ ↓ 	
(21) 

with with T a maximal torus, B a Borel subgroup, and horizontal arrows to be inclusions. Let U(h) be the 
universal enveloping algebra of h. The Weyl group W of (gR,h) acts on U(h) and gives an isomorphism

	 HC : Z(g) 
≅ → U (h)w	 (22)

where the upper-index means the elements fixed by W. Using the isomorphism (22) one can assign to each 
positive root μ ∈ h*

 the homomorphism
	 χµ : Z(g) → ,	 z → HC (z)(µ)	 (23)
is called the infinitesimal character associated to µ. A result of Harish-Chandra says that any character of 
Z(g) is an infinitesimal character, and
	 χµ = χµ′	 ⇔	 µ = w(µ′ ), w ∈ W	 (24)
	 We will use the above set up in our construction of correspondence between Hodge bundles and 
vertex algebras. In fact our correspondence uses a generalization of Eq (22). We will do this step by step as 
follows.
(i) Beilinson-Bernstein correspondence: 
	 Let G be a connected complex reductive algebraic group defined over R, and let b = b ⊕ n ⊂ g = 
Lie(G) be the Borel subalgebra, where the unipotent radical is given by

	 n = ⊕
α∈Ф+

 g–α.

	 Here, h is the Cartan subalgebra. Any element λ in the weight lattice Λ ⊂  lifts to an algebraic 
character eλ of the Borel subgroup B ⊂ G, corresponding to b. To this character, there exists a unique 
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G-equivariant line bundle L → X = G/B, with the group B acting as eλ on the fibers. Thus, Λ can be interpreted 
as the set of G-equivariant line bundles via λ → Lλ.

	 Let . Then,

	 L−2ρ ≅  
n

  T *X.

If G is simply connected, then ρ ∈ Λ, and L−2ρ has a well-defined square root. Now, define the sheaf
	 Dλ = (Lλ − ρ) ⊗ DX ⊗  (Lρ − λ).
	 The Lie algebra g acts by infinitesimal translations on sections of Lλ − ρ, so g ,→ ΓDλ, which induces 
a map
	 U(g) → ΓDλ .
The center Z(g) of U(g) acts via the infinitesimal character χ λ. This gives a homomorphism
	 Uλ(g) = U(g)/ker(χλ) → ΓDλ.
	 This map is compatible with the degree filtration. The Beilinson-Bernstein theorem asserts that the 
map above is an isomorphism. Let Mod(Uλ(g))fg denote the category of finitely generated Uλ(g)-modules, 
or equivalently, the category of finitely generated Uλ(g)-modules on which Z(g) acts via χλ. Similarly, let 
Mod(Dλ)coh refer to the category of coherent Dλ-modules. Define the functors:
	 ∆ : Mod (Uλ(g))fg → Mod (Dλ)coh,	 ∆(M ) = M ⊗ Uλ (g) Dλ,
	 Γ : Mod (Dλ)coh → Mod (Uλ(g))fg,	 Γ(M ) = H 0(X, M )	 (25)
	 The Beilinson-Bernstein theorem asserts that when λ is a regular and integrally dominant weight, 
these functors define an equivalence of categories:
	 Mod(Uλ(g))fg ≅ Mod(Dλ)coh.
Similarly, for λ, a corresponding isomorphism holds between the category of Harish-Chandra modules:
	 HC(g, K )λ ≅ HC(Dλ, K ),
where the right-hand side denotes the category of Dλ-modules with a compatible K-action.
If we consider the polarization of D-modules as a Hermitian duality, we have the pairing
	 P : M × —M  → C ∞(XR),	 bilinear over Dλ × —D−λ.
In our context, the map M → —M  defines a bijection
	 Mod(DX, λ) rh ≅ Mod(D ‒X ,− λ)rh.
We sometimes omit the subscripts X or —X  and simply write Dλ and D−λ. The pairing P should be interpreted as 
(σ, τ) = ∫X 〈σ, τ〉, where 〈·,·〉 is the flat Hermitian pairing on the underlying vector bundles, which is invariant 
under uR, the compact form of g defined by a Cartan involution. In the correspondence, the flat bilinear form 
P corresponds to the Shapovalov form, and the weight filtration corresponds to the Jantzen filtration [17].
(ii) Localization Functor: 
	 We generalize the Beilinson-Bernstein correspondence. Let G be a connected simple Lie group over 
C. Assume LG = G((t)) is the Lie group of Lg = g((t)). Let X be a smooth projective algebraic curve over C, 
and p ∈ X be a point. Let P be a principal G-bundle over X. Define the associated vector bundle
	 gP = P ×G g.

	 Let gP
out be the Lie algebra of sections of gP around p ∈ X, and Gout be the Lie group of gout. There is 

a natural embedding
	 gP

out → Lg.
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	 This embedding can be lifted to gP
out → ĝ. Let 0 be the category of ĝ-modules where the Lie 

subalgebra gin = g[[t]] acts locally finitely. The modular functor assigns to a module
	 M → M /gP

out M.
	 The dual space of M /gP

out M is called the space of conformal blocks. The localization functor of 
Beilinson and Bernstein assigns to M a D-module on the homogeneous space
	 M = LG/Gout.
	 For any integer k, define a line bundle L k on M, together with a homomorphism from ĝ to the Lie 
algebra of infinitesimal symmetries of Lk. This gives a homomorphism from Uk ( ĝ) to the algebra Dk of global 
differential operators on Lk. Thus, for any ĝ-module M of level k, we can define a left Dk-module
	 ∆(M) = Dk ⊗ U(ĝ ) M.
	 The fiber of ∆(M) at P is M /gP

out M [11]. The map ∆ here is an analogue of the map in (22), 
generalizing it over affine algebras. The adjoint functor is the global section functor. As in the previous 
section, the Shapovalov form of M corresponds to the flat Hermitian pairing on the right-hand side. The map
	 ∆ : ĝ-Mod → DM-Mod
is a generalization of the map (25). 
(iii) g-opers on the punctured disc: 
	 We begin by defining GL(n)-opers, which are pairs (F• ⊂ E,D), where E is a rank n vector bundle 
equipped with:
-	 A complete flag (0) ⊂ F1 ⊂ ··· ⊂ Fn = E such that rank(Fi) = i, 
-	 A holomorphic connection D : E → E ⊗ K that is necessarily flat, satisfying:
-	 Griffiths transversality: D : Fi → Fi+1 ⊗ K,
-	 Non-degeneracy (strictness): .
	 An SL(n)-oper is a GL(n)-oper where det(E ) = O and D induces the trivial connection on det(E).
	 Now, let G be a simple complex group with B ⊂ G as a fixed Borel subgroup, N = [B,B] its unipotent 
radical, H = B/N the Cartan subgroup, and Z = ZG the center. The corresponding Lie algebras are n ⊂ b ⊂ 
g, t = b/n. If PB is a holomorphic principal B-bundle, PG the induced G-bundle, and Conn(PG) the sheaf of 
connections, we define the projection
	 c : Conn(PG) → g/bP ⊗ K,
with the conditions c−1(0) = Conn(PB) and c(D + ν) = c(D) + [ν], where ν is a section of gP ⊗ K and [ν] is its 
image in g/bP ⊗ K. We consider the class
	 c(D) ∈ H 0(g/bP ⊗ K),
obtained by taking locally any flat B-connection DB, and then gluing the local sections [D − DB]. A G-oper 
on X is a pair (PB,D), where D ∈ H0(Conn(PG)) such that
-	 c(D) ∈ H 0((g−1)P ⊗K) ⊂ H 0(g/bP ⊗ K), - For every simple negative root α, the component c(D)α ∈ 
H  0(g/bP ⊗ K) is nowhere vanishing.
	 These conditions ensure that the connection D preserves the flag corresponding to the Borel subgroup 
B via Griffiths transversality. By definition, a g-oper is a G-oper where G is the group of inner automorphisms 
of g.
	 For GL(n), the oper condition implies that if EU ≅ O n is a trivialization compatible with the flag on 
an open chart U, then the flat connection can be written as
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	 d + 

 

*
×
0
⋮
0

*
*
×
⋮
0

⋯
⋯
⋯

⋮
⋯

*
*
*
⋮
×

*
*
*
*
*

 dt

Thus, a B-gauge equivalence class of a GLn-oper has a unique representative of the form

	 d + 

 

a1

1
0
⋮
0

a2

0
1
⋮
0

⋯
⋯
⋯

⋮
⋯

⋯
0
0
⋮
1

an

0
0
0
0

 dt.

	 When we discuss g-opers, we are automatically considering their Bgauge equivalence classes, [18]. 
Let’s restrict to opers on the punctured disc. By definition, the space of g-opers on the punctured disc D× is

	 pg(D×) = 
∑
i

 yi X−αi + v | yi ≠ 0 ∈ ((t)), v ∈ b((t)) B((t)),

where αi are the set of positive simple roots of g with respect to B. The action of B((t)) is via the gauge 
transformation
	 g ·D = Ad(g)D − (∂t g)  g−1. 
	 An oper on the punctured disc is called nilpotent if its connection has a regular singularity at the 
origin with unipotent monodromy. g-opers, as gauge equivalence classes of flat connections, can be compared 
with mixed Hodge modules [17,19,20,10,18,21].
(iv) ĝ-modules associated to opers: Let g be a finite-dimensional semisimple Lie algebra and ĝ its affine Lie 
algebra. Define the following:
	 Ũ(ĝ) := lim←  U(ĝ)/U(ĝ)(g ⊗ t n[t])
	 From a formula by Kac-Kazhdan for the determinant of the Shapovalov form, it follows that the module 
Vk (ĝ) contains null vectors besides the highest weight vector vk only when k = − h∨ (the critical level). The space 
of null vectors ̂z (g) of V := V−h∨ is isomorphic to Endĝ (V ). To each vector v ∈ V , we associate a power series: 

	 v → Y (v, z) = ∑
m

 vm z m

	 The coefficients of these power series are elements of Ũ− h∨(ĝ) = Ũ (ĝ)/(K+ h∨). These coefficients 
span a Lie subalgebra Ũ−h∨(ĝ)loc. For instance, if A ∈ g, we have:
	 A → Y ((A ⊗ t –1) v, z) = A(z) = ∑n  (A ⊗ t n) z – n – 1

This shows that ĝ ⊂ Ũ−h∨(ĝ)loc. Let Z(ĝ) denote the center of Ũ−h∨(ĝ)loc.
We can demonstrate that:
	 x ∈ z(ĝ) ⇔ Y (x, z) ∈ Z(ĝ)
	 Furthermore, every element of Z(ĝ) can be obtained in this form. A prominent example of this is the 
Casimir element:

	 S = 1
2
 ∑

n
 (Ja ⊗ t –1)2 ∈ z(ĝ)

where Ja (a = 1,...,dim g) is an orthonormal basis of g with respect to the invariant bilinear form. The 
coefficients Sn of the power series:
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	 Y (S, z) = ∑
n

 Sn z – n – 2 = 
1
2 ∑

a
 : Ja (z)2 :

are called the Sugawara operators and lie in Z(ĝ). Now, let:
	 Mχ, k = Uk (ĝ) ⊗U(b̃+) χ,	 b̃+ = (b+ ⊗ 1) ⊕ (g ⊗ t [[t]])

be a Verma module over ĝ, with χ ∈ h∗ and the highest weight vector vχ, k. Let gL denote the Langlands dual 
of g, obtained by exchanging the roles of roots and co-roots. According to classical results, the center Z(ĝ) 
is isomorphic to W(gL), the space of local functionals on Op(gL). Let ρ ∈ Op(gL) represent a gL-oper on the 
punctured disc. Then, as noted earlier, ρ defines a central character ρ̃ : Z(ĝ) → . We associate the ĝ-module 
Mχ

ρ = Mχ,−h∨/ker ρ̃ with the gL-oper ρ, [11]. Therefore, we obtain a map:

	 Op(gL) → Mod(ĝ), → Mχ
ρ = Mχ,−h∨/ker ρ̃	 (26)

	 This map is part of the correspondence between the connections and bg-modules. The interpretation 
of gL-opers as characters on the center of the dual affine algebra Z(ĝ) is central to this framework [17,19,20, 
10,18,21].
(v) Wakimoto modules: 
	 Our explanation of Wakimoto modules is brief, but it is essential to complete the correspondence. 
Suppose we are given a linear function χ : h((t)) → . We extend it trivially to n((t)) and obtain a linear 
function on b−((t)), which we also denote by χ. Instead of considering Ind g((t ))

b−((t ))Cχ, we focus on the semi-

infinite induction [9,20]. The resulting module is a module over the central extension of g((t)), i.e., over ĝ 
at critical level, where the vacuum is annihilated by tg[t] ⊕ n−. The parameters of the module behave not as 
functionals on h((t)), but as connections on the H L-bundle Ωi (sheaf of i-forms). These are precisely elements 
of the space Conng L(D ×) (D × is the punctured disc). We obtain a family of smooth representations of Ũ kc(ĝ) 
parametrized by Conng L(D×). For χ ∈ Conng L(D×), denote the corresponding Wakimoto module by Wχ. The 
center Zkc(ĝ) acts on Wχ via a character. The corresponding point in Spec (Zkc ĝ) = Op(gL) (∆*) is denoted by 
µ(χ). Thus, we obtain a map:

	 µ : Conng L (D×) → Op(gL) (D×)	 (27)
called the Miura transformation. In the context of opers from Section (3), the Miura transformation can be 
understood as:

	 ∂t – 

 

0
1
0
⋮
0

q1 (t)
0
1
⋮
0

⋯
⋯
⋯

⋱
⋯

qn–1 (t)
0
0
0
1

 dt → ∂t – 

 

χ1 (t)
1
0
⋮
0

0
χ2 (t)

1
⋮
0

⋯
⋯
⋯

⋱
⋯

0
0
0
0
1

 dt

This corresponds to the following factorization of the differential operator:

	 ∂ n
t  – q1(t) ∂ n – 1

t – ⋯ – qn – 1 (t) = (∂t – χ1 (t)) ⋯ (∂t – χn (t))

	 The fiber of the Miura transformation over a nilpotent oper is the variety of all Borel subalgebras of 
gL containing that oper, known as the Springer fiber over the nilpotent oper. For example, the Springer fiber 
over 0 is the flag variety of gL, [8]. The composition of maps in Eqs (26) and (27) gives a map:
	 Conng L(D×) → Op(gL) → Mod(ĝ)
	 This provides the correspondence between D-modules of flat connections and ĝ-modules or vertex 
algebras. The map in the above composition is analogous to the Harish-Chandra homomorphism:
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	 HC : Z(g) → [p*] W

	 A variation of MHS on the punctured disc can be interpreted as a flat connection, regarded as an 
element of Conng L(D×) via the action of gL arising from the internal symmetries of the Hodge structure. In 
many cases, the Lie algebra action is paired with a compatible action of the Lie group K to form a Harish-
Chandra pair (g, K). 
(vi) Geometric Langlands correspondence: 
	 A more robust way to reformulate Beilinson-Bernstein’s localization theorem is through the 
Geometric Langlands correspondence, which we outline briefly to convey the central idea. For details, refer 
to [11].
	 Let X be a smooth projective curve defined over a finite field Fq, and let G be a split connected 
simple algebraic group also defined over Fq. For a closed point x ∈ X, let Ox denote the completion of the 
local ring at x, i.e., Ox = Fq (x)[[t]], and let Kx be its field of fractions, where qx = qdeg x.
There exists a correspondence between the conjugacy classes in G L(—Ql) and Gx-modules, known as the local 
Langlands correspondence.
	 The global Langlands correspondence asserts that an irreducible unramified representation  
is automorphic if and only if there exists a continuous homomorphism
	 σ : π1(X ) → G L(—Ql)
such that each πx corresponds to the conjugacy class σ(Frx) in the local Langlands correspondence.

	 Now, let X be an algebraic curve defined over C. Let Gin = G[[t]], and let O 0
crit be the category of 

unramified ĝ-modules of critical level. These are modules on which the action of gin = g[[t]] is locally finite 
and contains gin-invariant vectors. On such modules, the action of gin can be integrated to an action of the Lie 
group Gin. The analogue of a conjugacy class in GL is a regular gL-oper on the formal disc. The analogue of 
the local Langlands correspondence is:

Each regular gL-oper ρx on the formal disc defines an irreducible ĝ module of critical level.

	 Suppose we are given a gL-oper ρx for each point x ∈ X. Let V ρx be the corresponding ĝ-module 
of critical level defined in Section (4). Let g (A) = ∏ '

x g ((tx)), and let ĝ(A) be its one-dimensional central 
extension. The product ⊗'

x V ρx is naturally a ĝ(A)-module. One can assign a twisted D-module to the ĝ(A)-
module ⊗x Mx via the localization functor defined earlier:
	 loc : ⊗'

x V ρx → ∆(⊗
x

 Mx) 

	 The action of gin on Mx can be integrated to an action of Gin. Therefore, the associated D-module is 
K-equivariant and descends to a Dmodule on M, denoted by ∆( ⊗x Mx). Specializing to k = −h∨, the ĝ(A)-
module ⊗x V ρx is called weakly automorphic if ∆(⊗x V ρx) ≠ 0. The weak version of the global Langlands 
correspondence over C is as follows:

	 The ĝ(A)-module ⊗x V ρx is weakly automorphic if and only if there exists a globally defined regular 
gL-oper ρ on X such that for each x, the ρx is the restriction of ρ to a small disc around x.
(vii) Knizhnik-Zamolodchikov (KZ) Equations: 
	 We present this section as a well-known example in conformal field theory. Let g be a finite-
dimensional semisimple Lie algebra with an invariant bilinear form κ. Let gk

〉  be the affine Lie algebra with 
level k and dual Coxeter number h∨. The null vector of a gk

〉 -module defines the differential equations

	 (k + 2 ) ∂
∂zi

 Ψ = ∑
 i ≠ j

  Ωij 
  zi – zj

 Ψ	 (28)
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called KZ-equations, where Ωij = ∑a J aJa are matrices. J a and Ja form a dual basis with respect to the invari
ant bilinear form κ on g. If g is semisimple, its local system corresponds to representations of the braid group
	 θ : Bn → V1 ⊗ ··· ⊗ Vn

as the holonomy of the Hamiltonian system (28) (via the RiemannHilbert correspondence or the non-abelian 
Hodge theorem). A more explicit form of this equation is:
	 dw = ∑

1 ≤ i < j ≤ n
 dzi – dzj

zi – zj
 Aij w 	 (29) 

which can be written as the equation of a flat connection ∇KZ = d − Γ, where Γ = ∑ 
dzi – dzj
zi – zj

 Aij. In the 

simplest case of 3-correlations over P1 \{0,1,∞}, Eq (28) can be reduced to a single-variable equation:

	
dϕ
dx = 

A
x  – 

B
1 – x ϕ, ϕ ∈ W {x} [log x]	 	 (30)

after an appropriate change of variables, where A,B ∈ End(W) for a g-module W, are diagonal matrices. The 
solution system for Eq (29) can be described in two ways, as follows:

–	 Suppose {λ} is the set of eigenvalues of A, where all eigenvalues of A lie in ⊂λ λ + N. For each λ, there 
exists a set  such that 0 = N λ

0  < ⋯ < N λ
Jλ

. Let πλ
A denote the projection onto the λ-eigenspace. 

A basic but not trivial calculation shows that for any w ∈ W, there is a unique solution to (29) of the form

	 ϕA
w (x) = ∑

λ
 ∑

j
 ∑
i ≤ N λ

0

w (λ)
i, j  x λ + i(log x)  j

where w (λ)
0, 0 = π A

λ (w), and for each j > 0, we have  .
–	 With a similar setup but focusing on the B-eigenvalues, it can be shown that for any w ∈ W, there 
is a unique solution of

	
dϕ
dy = 

B
y  – 

A
1 – y ϕ, ϕ ∈ W {y} [log y]		

of the form
	 ϕB

w (y) = ∑μ  ∑
k

 ∑
i ≥ M μ

k

w (μ)
i, j  y μ + i(log y) k

In the first case, the map
	 ϕA : → ϕA

w (z)
defines a g-isomorphism between W and the solution system of the KZ-equation. In the second case, the map
	 ϕB : w → ϕB

w (1 – z)
defines a g-automorphism ΦKZ = ϕ−

B
1ϕA of W, known as the Drinfield associator of W, which can be interpreted 

by the intertwining operators describing the tensor structure of the solutions to the KZ-equation [2].
(viii) Conformal blocks: 
	 We conclude briefly summarizing the concept of conformal blocks, [3]. As mentioned earlier, a 
vertex algebra is called conformal if it contains the generating function of the basis elements of the Virasoro 
algebra among its vertex operators. Such algebras or their modules can then be viewed as modules over the 
Virasoro algebra. For a conformal vertex algebra V, one can associate a vector bundle ν over an algebraic 
curve, taken as the base manifold X. In this setup, a vertex operator can be interpreted as a section of the dual 
bundle ν* on the punctured disc D×

x, with values in End (νx), which can be written as
	 A ⊗ z n dz → Res z = 0 Y (A, z) z ndz.

	 In the affine Kac-Moody case, given a ĝ-module Mx, we define its space of co-invariants as the 
quotient Mx /gout (x)·Mx. The space of conformal blocks is then the dual space:
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	 (Mx /gout (x) · Mx)∨ = Homgout(x) (Mx,).

	 The basis elements of ĝ are given by J a(z), and J a(z) dz naturally forms a one-form. A functional ϕ 
∈ M *

x  is a conformal block if and only if 〈ϕ, J a(z) · A〉 has a regular singularity at x.
	 If we are given a vertex algebra V and a Harish-Chandra pair (B,G+), representing the internal 
symmetries (for instance, in the case of a Hodge structure derived from the Mumford-Tate group), one can 
associate a twisted space of co-invariants Hτ(X) to this data. Here, the Lie algebra action of B is induced by 
the Fourier coefficients of the vertex operators in V , while G+ represents certain symmetries of a geometric 
data H (in our case, the local system of Hodge structure) on the punctured disc D×. As τ varies, the spaces 
Hτ(X) combine into a twisted D-module ∆(V ) on the moduli space MΦ, which parametrizes the data Φ on X.

5 Conclusion

	 This article aimed to recollect some facts about Hodge structures and theory of vertex algebras 
as highest weight modules over affine algebras. We explained several correspondences concerning these 
structures such as Beilinson-Bernstein correspondence and its generalizations.The idea of inter-relations 
between these theories already appeared in various areas of mathematics research and in mathematical 
physics. We studied non-abelian Hodge correspondence, Harish-Chandra correspondence, Beilinson-Bernstein 
correspondence and geometric Langlands correspondence, as a bridge between integrable systems and 
representation theory of Lie algebras. These concepts have deep connections to various research areas in 
physical sciences such as string theory, particle physics, optics and information technology.
	 Vertex algebras provide a powerful frame work for studying the interplay between representation 
theory, and theoretical physics. They also provide a robust language for describing conformal field theories, 
integrable systems, and string theory. This framework also opens doors to exploring dualities and symmetries 
in quantum field theories and string theory, offering a rigorous mathematical foundation for concepts such 
as conformal blocks and twisted D-modules. 
	 Representations of affine algebras play a pivotal role in physics, optics, and information technology 
by providing a robust mathematical framework for describing symmetry, quantization, and state evolution 
in complex systems. In physics, they are foundational in Conformal Field Theory (CFT), influencing string 
theory, quantum field theory. In optics, vertex algebras provide tools for photon correlations and entanglement 
in quantum optics, enabling precise modeling of light propagation in structured media, meta-materials, and 
topological photonic systems. In information technology, especially in quantum computing and cryptography, 
vertex and affine algebras contribute to the design of topological quantum codes and robust error-correcting 
schemes, enhancing quantum information processing.

References
	 1.	 Bloch S, Okounkov A, The character of an infinite wedge representation, Adv Math, 149(2000)1–60. 
	 2.	 Mac Rae R, Tensor categories of a flne lie algebra modules at non-negative integral level and their associativity 

isomorphisms, 2015. 
	 3.	 Frenkel E, Ben-Zvi D, Vertex Algebras and Algebraic Curves,volume 88 of Mathematical Surveys and Monographs, 

American Mathematical Society, 2001.
	 4.	 Borcherds R, What is a vertex algebra?, 1997. Preprint.
	 5.	 Yu N , Representations of Vertex Operator Algebras, Ph D Thesis, University of California, Santa Cruz, 2013.
	 6.	 Dong C, Lin X, Unitary vertex operator algebras, J Algebra, 397(2014)252–277.
	 7.	 Frenkel E, Vertex algebras and algebraic curves, in: Séminaire Bour-baki, volume 52 of 1999-2000, no.875, 2000. 
	 8.	 Frenkel E, Affine kac-moody algebras, integrable systems and their deformations, in: Proceedings of the International 

Colloquiumon Group Theoretical Methods in Physics, Paris, 2002.



864	 Mohammad Reza Rahmati and Zacarias Malacara Hernandez

	 9.	 Feigin B, Frenkel E, Affine kac-moody algebras and semi-infinite fag manifolds, Commun Math Phys, 128(1990)161–
189.

	10.	 Iohara K, Koga Y, Representation Theory of Virasoro Algebra, Springer Monographs in Mathematics, Springer, 
2011.

	11.	 Frenkel E, A fine algebras, langlands duality and betheansatz, in: Proceedings of the International Congress of 
Mathematical Physics, 1995.

	12.	 Donagi R, Wendland K, From hodge theory to integrability and tqft tt*-geometry, in: C H C Sabbah, K Saito (Eds), 
Proceedings of Symposia in Pure Mathematics, vol 78, 2007, 40.

	13.	 Pearlstein G, Variation of mixed hodge structure, higgs fields and quantum cohomology, Manuscripta Math, 
102(2000)269–310.

	14. 	Rahmati M R, On the extension of pvmhs and mixed hodge modules, J Prime Res Math, 1(2015)1–41.
	15.	 Simpson C T, Nonabelian hodge theory, in: Proceedings of the International Congress of Mathematics, Kyoto, 

Japan, 1990.
	16.	 Saito M, Mixed hodge modules, Publications of the Research Institute for Mathematical Sciences, Kyoto University, 

26(1990)221–333. 
	17. Schmid W, Vilonen K, Hodge Theory and Unitary Representation of Reductive Lie Groups, AMS/IP Studies in 

Advanced Mathematics, 2012.
	18.	 Dalakov P,Higgsbundlesandopers,Ph.D.thesis,Universityof Pennsylvania, 2008.
	19.	 Kac V G, Infinite Dimensional Lie Algebras: An Introduction, volume 44 of Progress in Mathematics,1984.
	20.	 Frenkel E,Wakimoto modules, opers and the center at the critical level, Adv Math, 195(2005)297–404.
	21.	 Beilinson A, Drinfeld V, Opers, 1995.Arxivpreprint.073012;. 

[Received: 12.12.2024; rev recd: 29.12.2024; accepted: 30.12.2024]


