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This paper presents a review of the null screen test method for measuring the anterior surface of the cornea. The paper is 
focused on the field curvature and the skew ray problem, both present in the specular topographers based on the Placido 
disc targets, and how they can be solved by the null screen method. The main issues related to this technique such as 
null-screen design, setup, quantitative evaluation methods and different target configurations used in experimental and 
commercial devices are reviewed. This review shows that the Null-Screen testing method has become an important tool 
for measuring the anterior surface of human corneas. © Anita Publications. All rights reserved.
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1 Introduction

	 Corneal topography is a very relevant theme for opticians, ophthalmologists, and optometrists. A 
complete knowledge of the shape of the cornea as well as its optical power are essential, because of the 
monitoring and diagnostics of degenerative diseases.
	 There are several kinds of corneal topographers ranging from the classic Placido´s Disk specular 
reflection topographers which are able only to measure the anterior corneal surface to OCT passing through 
the diffuse reflection of a slit lamp beam together with the Scheimpflug camera which are able to measure 
also the posterior corneal surface, the corneal pachymetry and measure some other inner structures of the 
eye as the iris, the crystalline lens, among other. 
	 Historically, the search for a method of measuring the shape of the cornea is an epic story of 
the science, the reader can browse some interesting documental sources that are out of the scope of the 
present paper [1]. Briefly, we start with the Placido´s Disk invented in 1880 by Antonio Placido da Costa, 
a Portuguese ophthalmologist at the end of the XIX century, bring to the ophthalmologists the opportunity 
to visualize the shape or the topography of the anterior surface of the cornea to find some deformations 
[1]. Later, in 1896, Alvar Gullstrand captured the reflected image with a photographic camera and was the 
first who proposed a method to quantify the shape of the cornea [2]; he called the method, Photographic 
Ophthalmometry. This remained with few changes until the appearance of personal computers and the ability 
to digitize images to be analyzed faster and accurate. At the end of eighties decade of the last century first 
commercial devices, called videokeratometers, appeared as new tools to diagnose some refractive diseases; 
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EyeSys [3,4], Atlas from Zeiss [5], and Cornea from Essilor [6], are modern commercial examples of the 
now called specular reflection topographers based on Placido´s concentric rings. Later, during the next decade 
there appeared a new kind of device called ORBSCAN; soon it became the Gold Standard and prevailed for 
many years. Apart from using a target with a set of rings similar to the Placido´s Disk, the Orbscan projects 
a slit lamp beam and scan laterally on the cornea. This device allows to measure not only the topography 
of anterior but also of the posterior surface and the corneal thickness not only at one or few points, but also 
along a wide zone around the corneal vertex [7]. Then, other similar devices were developed; for instance, 
the Pentacam projects two slit beams to scan on the cornea by rotating them around the optical axis; now 
Pentacam has become the gold standard in corneal topography [8]. More recently, the OCT based on a 
low coherence beam to produce an interference pattern only when the test beam is diffusely reflected on 
a point object at practically the same distance of the mirror producing the reference beam, so the mirror 
gives accurately the object distance. The test beam must be scanned along the xyz directions to produce a 
3D map of every point on the object to be measured [9]. The amount of information provided by a OCT is 
huge and its applications in many areas of medicine are growing every day [10]. Every kind of system has 
its own advantages and drawbacks. The powerful OCT is very complex and expensive to be used only as 
a corneal topographer. The scanning slit lamp beam systems use mechanical scanning methods which are 
slow for the eye and need an eye tracking device to compensate for the movements of the eye during the 
scanning; these systems are less expensive than OCT systems, but the simple reflection topographers are 
even the cheaper; they are enough for some clinical applications, as the contact lens fitting or for finding 
some ectasias affecting the anterior corneal surface. 
	 This review describes the main issues related to the specular reflection based topographers and 
emphasize those based on the null screen methodology. In section 2, a paraxial analysis of the specular 
topographers is made. In section 3, the field curvature produced by different targets is described. In section 
4, the well known skew ray problem of the Placido’s Disk based topographers is explained and how it was 
solved. Then, the null screen method is introduced in section 5 and the basic theory used to evaluate the 
corneal topography. In section 6 the way that a null screen is designed is introduced, while in section 7 some 
methods to quantitatively evaluate the corneal topography are reviewed. Then, different variations of corneal 
topographers using the null screen method are described and in section 8 and in section 9 the Dynamic 
Point Shifting method (DyPoS) is explained. In section 10 the conclusions of this paper are enunciated.

2 Specular topographers

	 This kind of topographers make use of the image produced by the tear film covering the 
cornea, of real object called the target. Early topographers used a target like the Placido’s Disk made of

Fig 1. Virtual image of height yc of an object of height y made by a spherical mirror. F is the focal 
point of the mirror and C its center of curvature. The Newtonian distance of the object is –x. The 
distance between the object and the image is d.
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alternating bright and dark rings on a flat surface. For a quantitative evaluation of the cornea, the keratometric 
method was proposed to be applied on analog pictures of the image captured with reflex or even with instant 
Polaroid cameras. To see it, let us consider the Fig 1. A target (ring) of height y at a distance x from the 
focal point F of the spherical mirror of radius of curvature R has a virtual image of height yc, separated from 
the object a distance d. In practice, the distances x and d are close together. The radius can be calculated 
as R = 2dyc /y.
	 Let us consider a Placido’s Disk as in Fig 2(a). The cornea forms a virtual image of the rings near 
its focal point, then the lens L forms a real image of these rings on the image plane (camera sensor), and 
they are seen as shown in Fig 2(b).

Fig 2. Measurement of corneal topography with a Placido’s disc using a plane target. (a) A lens L made a real 
image of the virtual image of the rings. (b) Ring pattern and a meridional plane (yellow line) to measure y1' or 
y2' to calculate the radius of curvature at Q1 or Q2.

	 By measuring the radial distance of the rings on a meridional plane (yellow line in Fig 2(b)) the 
local curvature at any point Q on the cornea is determined. For instance, following the geometry of Fig 
2(a), the radius of curvature at Q1 and Q2. are

	 R1 = 2 d 
m  

y'1 
y1

	 (1a)

and

	 R2 = 2 d 
m

 y'2 
y2

 .	 (1b)

where m is the magnification of the lens L. As the image rings are distorted, y'1/ y1 ≠ y'2/ y2, therefore the 
local radii are different. Then, a map of the corneal power (local radii) for different regions was evaluated. 
However, these measurements are made in the meridional direction.
	 Soon, two main problems were evident. The first one was the field curvature at the image, the 
second was the so called skew ray problem.

3 Field curvature

	 Even though the specular reflection topographers are the simplest, they had to solve some problems 
before they were accurate enough to be useful. May be the less complex is the field curvature that affects 
the virtual image produced by the spherical mirror (cornea) when the object is flat (Placido’s Disk); the 
photographic cameras are designed to capture images of plane objects orthogonal to the optical axis of the 
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objective lens of the camera; for a plane real object as the Placido’s Disk, the image produced by reflection 
on a convex spherical surface, which approximates to the anterior corneal surface, lies on a virtual curved 
surface inside the cornea, which is the first Purkinje image, Fig 3.

(a) (b) (c)
Fig 3. Image of a flat Placido’s Disk observed by reflection on a 1/2 inch diameter steel ball (a) and on a real 
human cornea (b). The field curvature on the image is evident. (c) Image surface (dotted line) produced by a 
7.8 mm radius of curvature sphere (blue line) with a plane object located 100 mm at the right of its vertex as 
calculated from the parabasal approximation.

	 Parabasal calculations show that a good approximation to the shape of image surface produced by 
a flat Pacido’s disk located at a distance xo from the origin at the center of a sphere of radius of curvature 
R, is an ellipsoid of revolution, whose symmetry axis is the normal to the plane object passing through the 
center of the sphere. The ellipsoid satisfies the canonical equation

	
(xi – xc) 2 

a2  + 
y'

i  
b2 = 1 								        (2)

where xi, yi are the cartesian coordinates of the points on the image surface; 2a, and 2b are the corresponding 
major and minor axes of the ellipse along the x and y axes, which can be written as

	 a = 
Rxo

4 x2
o – R2  

 and b = 
2R x2

o

 4 x2
o

 – R2
	 (3)

Finally, the center of the ellipse representing the image surface is displaced from the origin along the x-axis 
a distance xc, which is given by 

 	 xc = 
R2 xo

 4 x2
o

 – R2
	 (4)

 	 By the same argument, and considering that the object and the image are optical conjugates, it can 
be shown that the object surface whose image is a plane, nearly correspond to an ellipsoid of revolution 
[11]. Based on the Coddington Equations Mejía-Barbosa [12] showed that, two image surfaces can be found; 
one for the meridional or tangencial rays, the other for the sagittal rays; strictly none of them are ellipsoids, 
they called ovoid surfaces, but they are close to the ellipsoid described before. Any way, it is also true 
that the real object surface producing a virtual plane image to be captured by a photographic camera is an 
ovoid surface, nearly an ellipse of revolution. As far as we know, Mejía-Barbosa has been the only one to 
construct such an ovoid object surface [12].
	 As was stated above, for a flat object as the Placido’s Disk, the image produced by reflection on a 
convex spherical surface, which approximates to the anterior corneal surface, lies in a virtual curved surface 
inside the cornea, which generates a blurring effect in the image that increases as the point object on the 
target moves away from the optical axis. Moreover, as the luminous sources on the rings are located far 
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from the optical axis, an aberration called astigmatism is observed. The spherical mirror will image a point 
source on a plane as a short segment perpendicular to the tangential plane. By moving away the plane from 
the vertex of the spherical mirror the image changes from the segment to a small circle, called the circle 
of least confusion, and then to another short segment perpendicular to the sagittal plane. Then, if we image 
the whole flat object, we get three surfaces (astigmatic surfaces). The surface where the tangential rays are 
in focus is called the surface T, and the surface where sagittal rays are in focus is called the surface S. In 
the middle of T and S surfaces there is the surface M where we have the circle of least confusion [12].

 
Fig 4. Some targets and their corresponding astigmatic curves.

	 In Fig 4(a), we show the astigmatic curves (in a meridional plane) made by a spherical mirror of 
radius of curvature R = 7.8 mm when the flat object is 180 mm away from the mirror. The dashed line in 
the plot corresponds to the Gaussian image plane, which is at 3.98 mm from the center of curvature of the 
mirror. To get an image of height 4 mm, we need a flat object of height about 340 mm. In other words, to 
test a circular region on the cornea of 4 mm of radius, we need a big Placido´s Disk of about 680 mm of 
diameter. If we reduce the diameter of the disk the interest region on the cornea is also reduced. One way 
to overcome it was done by replacing the disk by a cone, as shown in Fig 4(b). However, the astigmatic 
curves do not change a lot, and the blurring effect is almost the same as the one in the Placido’s Disk. An 
improvement is achieved by using a cylinder target as in Fig 4(c). The astigmatic surface T is flattened, 
and astigmatic surfaces M and S are closer to the gaussian image plane. An additional improvement can be 
achieved by using an ellipsoid target as in Fig 3(d). In this case the astigmatic surface M has been flattened. 
It is an ideal target if we consider that the best image of a point source must be a circular spot, i.e. the circle 
of least confusion. However, the manufacture of this type of screens is not simple. In practice, a cylindrical 
target is an easy solution. In the last three cases, (b), (c), and (d), we have used the same spherical mirror 
and the same location for the aperture stop AS used in (a). In (b) the base of the cone is of 188 mm of 
diameter, in (c) the length of the cylinder is also 180 mm, and in (d), for the ellipse, the major axis is 180 
mm, and the minor axis is 54 mm. The calculations of the astigmatic surfaces in all cases have been done 
using the Coddington equations [12].
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4 Skew ray problem

	 As it was stated before, a first approximation to the evaluation of a corneal surface is given by 
the method of a keratometer Eq (1). This equation, however, is only valid in the paraxial regimen, i.e., for 
small objects located close the optical axis, and rays incident within a small area around the vertex. The 
use of this equation far beyond these limits will give wrong results. In an attempt to fix this problem, non 
paraxial approximations were used but maintaining their calculations in the meridional plane since the works 
of Gullstrand [2], passing through several meridional evaluation schemes [13] until recent years when the 
skew ray problem was identified [14,15]. During many years prevail the false idea that for evaluating the 
corneal topography using the Placido’s Disk or concentric rings target, just locate the center of the rings on 
the image and use it as a starting point for measuring the radial separations of the image rings. For surfaces 
with symmetry of revolution and well aligned systems, this is correct, but for non-symmetric surfaces or 
even for axially symmetric surfaces but misaligned systems, this method is not correct. 

Fig 5. A spherical steel ball is located inside a cylindrical target with straight lines parallel to the z axis; z 
is the cylinder axis of symmetry. The target also has a set of orthogonal rings to z axis; r and q complete 
the cylindrical coordinates. (b) Detail of (a), the rings on the target are defined by (z = zj; j = 1, 2, …), 
but only five are clearly visible on the ball; the straight lines are defined by r = R, and q = qk; k = 1,…, 
12. The sphere is at the center of the cylinder; the image of the rings observed by reflection on the sphere 
are the concentric circles while the radial straight lines on the image are due to the parallel straight lines at 
the target; the image of lines 1, 2,...6 are continued along the image of lines 7, 8,…,12, correspondingly; in 
this case, the image of any straight line on the target belongs to a single meridional plane of the surface. 
(c) The same sphere is displaced from the center. (d) Detail of (c), showing that the image is deformed 
as compared to (b); on the image, some of the radial lines are no longer straight lines and the circles are 
deformed and not concentric. Furthermore, apparently the image of 1 is a continuation of the opposite, but 
line 8 is not the opposite of line 1 in the target; in addition, some radial images have no continuation as in 
(b); lines 2 and 7 are examples of this. (e) Image of a cylindrical target as in previous images, except that 
the continuous lines are substituted by radial arrays of dots; in this case the test surface is a real human 
cornea. (f) Detail of image in (e), with straight red lines to show the Skew Ray Error on the real cornea. 
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In Fig 5, the image of a cylindrical target whose axis of symmetry is the z-axis, with concentric rings and 
straight lines parallel to the z-axis was captured by reflection on a spherical steel ball; the optical axis of the 
camera lens is also along the z-axis. When the sphere is at the center of the cylinder, the image of the target 
obtained by reflection on the sphere, is a collection of concentric circles and radial lines; in this case, the 
chief ray emerging from any point on the target is included in the meridional plane that contains the point 
(Figs 5(a) and (b)). In Fig 5, the image of a cylindrical target produced by reflection on a spherical steel 
ball is shown. The optical axis of the camera is z; this is also the axis of symmetry of the target which is 
composed of a set of concentric rings and straight lines parallel to the z-axis. When the sphere is at the center 
of the cylinder, the image of the target obtained by reflection on the sphere, is a collection of concentric 
circles and radial lines; in this case, for every point on the target, the chief ray is a meridional ray (Figs 
5(a) and (b)). For the same sphere, however, if it is decentered from the z-axis, the image is no longer a 
set of concentric and radial straight lines (Figs 5(c) and (d)), because the system has lost the symmetry of 
revolution; then, a chief ray is not a meridional ray anymore, with exception of those rays originating at 
points of the target located on the symmetry plane containing both the z-axis and the center of the sphere. 
This means that tracing a ray starting on some point of the target, being reflected on the sphere and arriving 
at the image sensor of the camera, cannot be only done along a meridional plane of the surface; it is a skew 
ray, except for those points contained in the meridional plane containing the z-axis. 
	 Several authors have realized that one possible way to overcome the skew ray problem is to 
use a different target; instead of the classical set of rings as the Placido’s disk, a way to identify without 
ambiguity some points on the target and their corresponding image points. A simple way to do that is to 
add a set of radial lines to the set of rings, whose intersecting points offer the desired points which can 
be easily associated with the intersection of the corresponding lines on the image as shown in Fig 5; as 
far as we know there is no commercial or even experimental device using this proposal; a similar idea 
was proposed by Schwiegerling [16], with a target composed of two sets of curved lines like hyperbolas 
producing a squared array of straight lines on the image; the rhomboidal areas between four lines were filled 
with black and white colors. This target called a ‘distorted checkerboard’ allowed to overcome the skew ray 
problem by identifying the corners of the black or white areas on the target and correctly associated with 
their corresponding corner on the image. Mejía-Barbosa [12] produced a set of almost point sources inside 
its ovoidal target by strategically locating the final tip of optical fibers conducting the light from a white 
source to the target surface. Diaz-Uribe [17] used a cylindrical target with a printed target composed of 
black spots on a white paper and Sicam [18,19] used a set of colored leds in a tight packing along a cone 
as a target. Maybe one of the most interesting advances was made by Gómez-Tejada [20], they described 
an iterative method for evaluating a general surface, not necessary with symmetry of revolution, with the 
classical target of concentric rings; their proposal was not limited to a meridional plane overcoming the 
skew ray error without using an additional set of lines or individual points on the target. 

5 Null-screen method

	 Since the initial proposals for evaluating the anterior surface of the cornea using the Placido’s disk, 
many authors realized that a set of equally spaced concentric rings produced a set of variable separated curves 
on the image. In trying to compensate this, for having a more uniform spacing between the sampling points on 
the cornea, non-equally spaced rings on the target were proposed. For targets composed of individual points, 
the work of Schwiegerling and Miller [16] seems to be the first with a null screen proposal. The distorted 
checkerboard target that they proposed was designed to produce a perfect squared checkerboard image on an 
ellipsoidal surface like the corneal surface with a radius of curvature of 7.8 mm and a conic constant of –0.25. 
Any deviation of this perfect image was due to a surface deformations or misalignments; in this sense, this was a 
null screen design. In that work little insight about the design of the distorted checkerboard target was explained.
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	 The first mention as the null-screen method was made by Díaz-Uribe and Campos-García [17], they 
defined it as a set of lines or dots that are printed on a paper or any other surface. This technique emerged 
as a novel method for testing optical surfaces. Now, the testing of the optical surfaces using the null-screen 
method is based on the analysis of the experimental image obtained; this image comes from a set of dots or 
lines, that are drawn on a screen. The screen can take different shapes, for instance: flat screen, cylindrical 
screen, conical screen, or whatever chosen geometry. The observed image is formed by reflection on the 
surface under test, it becomes a perfect pattern (mesh of lines, square or radial arrangement of circles, 
etc.), as long as the test surface is perfect and located in the appropriate position according to the design 
parameters (hence the name null-test, since when there are no deformations on the surface, the deviation 
of the points is zero) [17]. On the contrary, if the position deviations of the points in the resulting pattern 
image are not null, then, these will be due to imperfections or misalignment of the test surface.
	 The advantage of the null-screen method for the testing of optical surfaces is that it does not require 
a purpose-designed optical system for surface evaluation; it only needs a conventional optical system that 
allows to be viewing the virtual image of the points on the null-screen generated by the reflection on the 
surface under test. Another feature is that it allows the entire surface to be tested at once. In addition, the 
lighting used can come from extended light sources, such as fluorescent lamps, or from some other device 
that emits its own light; an example of this is LCD digital frames, in this way, it is not necessary to have 
a source with coherent lighting.

(a) (b) (c)
Fig 6. Schematic Null-screens in different geometries with their correspond experimental image 
obtained after evaluation: (a) Cylindrical null-screen, (b) Conical null-screen, (c) Flat null-screens 
into a quadrangular prism.

	 The traditional system of the null-screens method [17] for testing an optical surface is composed 
of an optical focusing system, a CCD sensor (CMOS or any type of known image detection system), a stop 
diaphragm, and a cylindrical null-screen (or whatever geometry is proposed). In addition, the null display 
design proposed here gives an almost flat image, suitable for common optical systems used as image sensors 
(see section 3. Field curvature). Furthermore, the use of the null-screens method is not restricted only to 
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the testing of fast aspheric convex surfaces but said method has been widely demonstrated for measuring 
deformations of a large number of optical surfaces, which include concave and convex surfaces of different 
sizes [21-25], even surfaces without revolution symmetry, such as off-axis ones [26,27], and in the last 
years it has been a good choice for testing freeform surfaces [28-31]. It is important to note that the optical 
system may introduce a small amount of distortion that will need to be considered to correct the experimental 
results for the (x, y) coordinates of the centroids obtained from the experimental image.
	 Null-screen method has been used to test aspherical fast convex surface by the implementation of 
a target in a cylindrical [17], conical [32], or even flat null-screens in an triangular or square prism array 
parallel to the optical axis, instead of orthogonal to it [33,34] as shown in Fig 6. 

6 Design of null-screens 

	 The targets used for measuring the corneal topography, evolved from the Placido´s disk composed 
of a set of concentric B&W rings on a flat surface orthogonal to the optical axis, which produced a set of 
rings on the image. Gullstrand [2] realized that an adequate definition of the spacing between the rings on 
the target can produce an image with almost equally spaced rings. In the radial direction, this proposal was 
a kind of null screen indeed. Schwiegerling and Miller [16], designed the distorted checkerboard target, 
the first two dimensional null-screen on a plane orthogonal to the optical axis of the camera; Díaz-Uribe 
[17], designed a null screen on a cylindrical surface and Mejía-Barbosa and Malacara-Hernández [12] on 
an ovoidal surface. Díaz-Uribe and Campos-García [35] proposed a more general scheme for designing 
null-screens. For the design, a well known camera is used; the focal length, the principal planes and the 
stop and pupil positions of the lens, as well as the size and resolution of the image sensor, must be known. 
First of all, a set of image points must be defined; usually, a regular array of square or radial distribution 
of points are used, but even a known image can be used as it has been shown by Aguirre-Aguirre et al 
[28]. For the design, an analytical function representing the surface under test must be used, and the shape 
of the surface that will be used as a target must be known. An exact ray tracing in reversed order is done; 
starting on one image point, the straight line passing through the center of the camera lens stop defines 
the reflected ray; the intersection of this ray with the test surface gives the incidence point on this surface. 
Applying the vector form of the Refraction Law each incident ray is found and its intersection with the 
screen surface defines the corresponding object points [Fig 7(a)]. 

(a) (b)

Fig 7. (a) General scheme for designing a null-screen. (b) Example of the three-dimensional ray tracing diagram 
for the design of a planar null-screen parallel to the optical axis.
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	 As an example, in Fig 7(b) the ray tracing for designing the null screen on a plane parallel to the 
optical axis is depicted. The objective is to determine the coordinates (x3, y3, z3) which produce a square 
arrangement of points on the image plane defined by coordinates (xi, yi), for measuring the corneal topography 
with a spherical cornea as a model. A ray starting at the point P1 = (x1, y1, – b – a) is traced towards the 
nodal point P = (0, 0,– b), where a, is the distance from the aperture stop to the CCD, b is the distance 
from the aperture stop to the vertex V of the surface. Subsequently, the ray goes to the optical surface under 
test at the point P2 = (x2, y2, z2); after the reflection, the ray is redirected towards the plane null-screen and 
arrive at point P3 = (x3, y3, d); d is the distance from the plane to the optical axis z. With this procedure, 
an object point is obtained for each image point. Usually, the image is defined as a collection of circular 
spots, instead of single isolated points; the corresponding object spots are similar to ellipses but in some 
cases is evident that they are distorted. A complete description of this task is shown in the works reported 
by Campos-García [23-25] and Rodríguez-Rodríguez [34,37-39].
	 For this calculations, it is assumed that only one ray is passing through the stop; in this sense the 
image of each object point is an image point (Fig 8). In practice, however, optical aberrations of the camera 
lens spread the light at each point, producing a wider light spot. For aberrations depending on the size of 
the aperture stop, for instance spherical aberration, coma and astigmatism, they can be minimized by closing 
the stop as far as possible; even for a small stop such as an F/16 aperture, distortion still remains because it 
depends only on the object's position. Then, it becomes necessary to calibrate the camera lens distortion, to 
compensate its effects during the calculations. Recent work on calibration of distortion and how it evolves 
as the object changes its position can be found in a paper by Mejía and Díaz-Uribe [40].

7 Evaluation methods

	 As it was stated in section 2, the basic principle for a quantitative evaluation of the cornea, is based 
on the queratometric method for measuring the radius of curvature. Two approximations are used for it, the 
paraxial theory which is valid only very near the apex, and the solution to the skew ray problem described in 
section 4. In 1896 Gullstrand [2] developed a non-paraxial theory and was able to get a better approximation 
to the true shape of the cornea. Different authors made improvements to the non-paraxial method, but the 
skew ray problem persisted until the work of Schwiegerling [16] who used Zemax (a commercial optical 
design software), to trace the rays on the system and by optimization found the geometric properties (such 
as radius of curvature, and position), of the surface producing the image captured by the camera. A similar 
method was proposed by Aguirre-Aguirre [41], but they used a null screen with drop shaped spots as a target 
and a randomized algorithm, to find the surface that better reproduces the position of the centroids of the 
spots in the image. They showed through simulations and experiments the feasibility of the method with 
spheres and conic surfaces whose radius of curvature, conic constant and 3D vertex position are randomly 
and strategically varied to find the best surface. In addition, other randomized variables included in the 
algorithm, are the image and vertex to lens distances.
	 Indeed, the quantitative evaluation of the cornea can be described generally as follows. All the 
specular reflection methods use a target with a well-defined geometry and a camera to capture an image 
of the target produced by reflection on the cornea to be measured. So, the position of every point of the 
target and its corresponding image on the camera sensor are well known. The goal of the method is to find 
the exact point on the anterior corneal surface where the chief ray is reflected, for each point of the target. 
The problem seems to be simple, but its solution can only be obtained in an approximated way and after 
some iterative procedure better approximations are obtained successively, thus a good enough approximate 
solution can be obtained. 
	 All the evaluation methods use the pinhole model of the camera; then, the reflected ray can be 
easily obtained as the straight line joining the image point and the pinhole, the center point of the camera 
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lens stop. The corresponding incident ray cannot be obtained a priori because only the point on the target 
is well known, no other point on this ray is known. The exact incidence point on the cornea is unknown, 
so it cannot be used. A first approximation to the incidence point is obtained from an analytical expression 
approximating the corneal surface, which is called the reference surface; the intersection point between 
the reflected ray and the reference surface is used as the incidence point, so the straight line joining this 
point and the corresponding point on the target gives a first approximation to the incident ray. A natural 
proposal to the reference surface is a spherical surface but even a plane surface is a good start. Of course, 
the incident points thus obtained are not the solution to our problem, because they are on the reference 
surface but no on the test surface. The key point is that the true test surface is that one which satisfies the 
law of reflection at every incidence point. The law of reflection involves the incident and reflection angles 
relative to the normal to the surface, and this normal is given by the gradient of the surface function. This 
yields a differential equation for the points on the surface. 
	 Mejía and Galeano [42], recognized that the image spot pattern is similar to the Hartmann Test for 
astronomical telescopes so they used some differential equations similar to the Rayces Equations [43] to 
obtain the shape of the cornea. They applied the Fourier method to integrate the differential equation which 
is a kind of modal method. Snellenburg et al [44], wrote the differential equation in a somewhat different 
way and proposed an iterative method called Forward Ray Tracing to obtain the shape of the surface; they 
showed that after few iterations the method converges to a better solution, than obtained through other 
methods.
	 Díaz-Uribe and Granados-Agustín [45,46] proposed a different kind of an experimental corneal 
topographer. It was based on an unexpanded laser beam scanning the corneal surface, in such a way that the 
beam was always directed to a fixed point coincident with the center of curvature of the apex of the cornea; 
the reflected beam was monitored by a position sensing detector, so that the incident and the reflected beams 
were well known every time. With this information, the normal to the surface at each incidence point can 
be computed by using the vector form of the Reflection Law of the Geometrical Optics,

	
→
N = R̂  – ̂I 	 (5)

	 This proposal was abandoned because of technological limitations meaning that it was too complex 
to scan the cornea in less than 10 ms to freeze the corneal movements. At the time it was also impossible 
to implement some kind of eye tracker to compensate these eye movements during the measurement The 
most important product of the proposal was a general exact equation to obtain the incident points → r  on 
the surface, which gives the shape of the surface, from the normal →N  and the path described by its tangent 
vector →ds , 

	
→
N ( → r ) . 

→
ds ( → r ) = 0 	  (6)

	 This is a differential equation for vector → r  in 3D, which has neither limitation to the paraxial 
zone of the surface, nor to meridional planes. Later, Díaz-Uribe [47], proposed to use it for the Null-Screen 
method applied for the measurement of the segments of the Large Millimetric Telescope and wrote a solution 
in cartesian coordinates which reads as follows 

	 z – z0 = – ∫
(x, y)

(x0, y0)
C


Nx
Nz

 dx + 
Ny
Nz

 dy
 ,	 (7) 

where (Nx, Ny, Nz), are the cartesian coordinates of the normal vector, (x, y, z) and (xo, yo, zo), are the last 
and the initial points of an integration path C (x, y, z); dx and dy are the corresponding components of the 
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differential vector tangent to the path. Essentially, the representative point for each spot at the image is 
associated with the centroid of its intensity distribution. Starting at this point, the reflected ray

→ R  at the 
surface is obtained as the straight line passing through the pupil of the camera lens. The incidence point is 
unknown because it lies on the surface to be evaluated. Assuming that the real surface is not far from some 
theoretical surface, which is called the reference surface, a good guess to the incident point is obtained by 
intersecting the reflected ray with this surface. The incident ray

→
I is then approximated by the straight line 

joining the approximated incidence point and the corresponding point on the spot at the target. Having these 
two rays, the unit incident and reflected vectors are calculated and the corresponding normal is obtained with 
Eq (5). The cartesian components of this vector are substituted in Eq (6) to obtain the shape of the surface. 
Even though Eq (6) have no approximations, the evaluation of the normal vector is only approximated and 
is obtained only in a discrete collection of incident points, so a numeric method must be used to evaluate 
the integral in Eq (7). A way to improve the normal approximation is to use an iterative method where the 
first approximated evaluation of the surface is used as the new reference surface for a second evaluation, the 
second evaluation is used for the third one and so on. Numerical simulations of this procedure have shown 
that a good guess for the first surface can be sufficient in many cases, but when the iterative algorithm is used, 
the result is almost insensitive to the first guess of the surface. For the iterative procedure, it is more important 
to make a good choice for the initial vertex position of the surface along the z axis. Another iterative method 
can be used to find the optimum value for this position, as well as for transversal decentering of the surface.
	 Another important issue of the integration methods is the fact that the integral is a path integral, so 
that different paths can be chosen to find the sagitta z value at some end point. In addition, the integrand in 
Eq (7) is given by the x and y components of the normal divided by the z component. For discrete points, 
however, which are only a finite sample of the points on the image plane, the integral is dependent on the 
path followed during the integration procedure. This is true even for equally spaced points, so, even for the 
Hartmann test, the result of the integral can have clear variations for different integration paths, as noted 
by Ghozeil [48].
	 Maybe it is not a surprise that Eq (7) is very similar to the solution of the Rayces Equations [43], 
for obtaining the wavefront aberrations from the transversal ray aberration. There are, however, significative 
differences between both equations; the first and more evident is that Rayces Equations are useful for 
measuring wavefront aberrations, whereas Eq (7) are used to obtain the shape of the surface; it is true, that 
these two concepts are closely related, but are not the same. When a wavefront is reflected on a surface, 
the properties of the reflected beam are due both, to the kind of incident wavefront and to the shape of 
the surface where the beam is reflected; as far as we know there is not a general equation relating, the 
wavefront and the reflecting surface. For simple cases, as the reflection of a plane wave on a flat surface, 
the wavefront aberration is twice the surface deformations [49]. In practice, integration in Eq (7) is similar 
to integration of the Rayces Equations, so the same methods can be used. Usually these methods are applied 
to the Hartmann Test, some of them are described by Malacara-Doblado [50]. Usually, these methods are 
classified as zonal or modal integration methods; the first class refers to those methods which are applied 
to one or few points at a time, and then are sequentially applied to all the points whereas the second class 
is applied to all the evaluation points at once by fitting a set of functions to the evaluation points.
	 The most simple, but powerful, method is the trapezoidal integration method which belongs to 
the class of zonal methods. This method has been widely used for the Hartmann test. When the Hartmann 
screen is composed of a square array of holes, the integration is carried out along the directions of the 
distribution of holes on the screen, and in this case differentials dx and dy in the integral are substituted by 
a constant value d (the separation of the holes in the x and y directions), and this term can be factorized out 
on the integrals in each direction. When this method is applied to the Null-Screen Method, however, the 
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integration is made along the evaluation points located at the incident points on the surface; these points 
are obtained from the spots of the captured image, so they are not equally spaced, except when the test 
surface for which the null screen was designed is perfect without deformations or misalignments. Then the 
distance between two adjacent points which represent the x and y differentials, cannot be factorized; the 
corresponding equations are a little more complex, but they remain very simple. The sagitta at some final 
point numbered by the subindex i + 1, is computed by using the normals quotients and the x, y coordinates 
at each incident point along some defined path through equations deduced by Campos-García [23] when 
they tested an f/0.23, ellipsoidal surface, 164 mm in diameter, as follows:

	 zi +1 = zo – ∑
i

j = 0
Nxj

Nz  j
 + 

Nx(  j + 1)

Nz(  j + 1) 
(x j + 1 – x j)

2  + 
Nyj

Nz  j
 + 

Ny(  j + 1)

Nz(  j + 1) 
( y j + 1 – y j)

2  	 (8)

	 The sagitta zo of the starting point must be known in advance; starting at the same initial point for 
every path, it has a constant value, which can be defined as zero, without changing the shape of the surface; 
it only adds a piston term. 
	 There are other zonal integration methods, e.g. one of the most well-known is the Southwell 
Algorithm [51], which uses the trapezoidal method when one point is approached from the nearest neighbors 
along each of the four x, y paths and then average the four different values. This procedure smooths the 
different values obtained along each single path, but there is no guarantee that the result is the best. This 
method was proposed [51] for the Hartmann Test with a square array of holes on the Hartmann screen; it 
can be applied to the null screen method for measuring different surfaces including the cornea, provided 
that Eq (8) is used instead of equations deduced for equally spaced points in a squared array too. A similar 
procedure can be devised for other x, y distributions of measured points, such as radial, spiral or triangular 
arrays.
	 The modal integration procedures propose an integrated function z(x, y) as a linear combination of 
n functions G(x, y) as

	 z = f (x, y) = ∑
n

j =  1
 Aj Gj (x, y)	 (9)

where, the coefficients Aj are constants to be determined by the measured normals by using Eq (10).

	
→
N  (x, y) = ∇[  f (x, y) – z] = ∑

n

j =  1
Aj 


∂Gj (x, y)

∂ x
 ̂i  + 

∂Gj (x, y)
∂ y

 ̂j – k̂

	 (10)

or, by components

	 Nx (x, y) = ∑
n

j =  1
 Aj 

∂Gj (x, y)
∂ x

 ,	

	 Ny (x, y) = ∑
n

j =  1
 Aj 

∂Gj (x, y)
∂ y

,	

	 Nz (x, y) = – ∑
n

j =  1
 Aj ,		  (11)

which must be satisfied at every one of the m evaluation points. Then we get a set of 3m linear equations 
with n unknown coefficients A j, which can be solved by a least-squares fit. The key point here is that usually 
m is larger than n, the matrix of the linear system is not square, so a proper numeric method, such as the 
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Singular Valued Decomposition method (SVD) or the Levenberg–Marquardt algorithm, must be used to solve 
it. A detailed explanation of these methods are out of the scope of this paper, but some of these methods are 
described in the well known reference [52] and are implemented in most of the specialized software. The 
result of solving Eq (11), is the set of n Aj values, and by substituting in Eq (9) an analytical representation 
of the surface to be evaluated is obtained. One of the most common choices for the Gj (x, y) functions is the 
Zernike polynomials [53], which are a basis for the functions defined over a unit circle domain. Common 
representations of the the Zernike polynomials as in ref [53], are defined for a continuous domain; for a 
set of discrete points over a domain, however, the Zernike polynomials are no longer orthogonal, but the 
Gram–Schmidt process of linear algebra can be applied to get a specific orthonormal representation of 
Zernike type polynomials over a defined distribution of evaluation points on a domain. Some examples of 
them were deduced by Hernández-Gómez et al [54].

8 Topographers based in null-screens

	 The early literature on the design of null-screens with the intention of implementing keratometry 
was the work carried out by Funes-Maderey and Díaz-Uribe [55] and Colín-Flores and Díaz-Uribe [56]. 
These works emphasize the use of the null-screens to evaluate an aspherical simulator with the dimensions 
close to the human cornea. The work of Funes-Maderey and Díaz-Uribe [55] shows a qualitative analysis 
of the evaluation of a corneal surface using cylindrical null-screens of lines of different thicknesses, which 
generate an image of concentric rings in the cornea, reproducing in this way, an image like the formed by 
the Placido disk system. The work of Colín-Flores and Díaz-Uribe [56] showed quantitative results of the 
evaluation of the corneal surface of an adult using a cylindrical null-screen with drop shaped spots to produce 
circular spots on the image; in addition, they reproduced the Ludlam and Wittenberg [11] calculations and 
demonstrated the feasibility of using cylindrical screens with the idea of having an object surface that can 
generate a flatter image. More recently, Estrada-Molina [57] resumed the design of a cylindrical null-screens 
in order to build a portable topographer for measuring the cornea of children, elders, and every people 
with mobility restrictions; with this prototype he performed some quantitative evaluations of calibration 
spheres, to find, in a first approximation, the surface of the human cornea. Finally, the prototype has been 
implemented and is currently in the validation phase (Fig 8) [58].

Fig 8. (a) Portable topographer TOCO based on a cylindrical null-screen, (b) Testing the human cornea of an 
informed subject. 

	 Other kind of experimental topographers have been the implemented by Campos-García [59-61], 
and Peña-Conzuelo [62,63], these authors have proposed a conical null-screen topographer. They have 
shown its feasiblity for evaluating the human cornea; also, they reported a compact conical topographer 
based in a null-screen method [64-66] and Huerta-Carranza [67]. With this design, they measured the corneal 
topography using a mobile device implemented in a smartphone [64-67] (Fig 9). 
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Fig 9. (a) Experimental Topographer based in conical null-screen. (b) Measurement of the human 
cornea of an informed subject with a cellphone. 

9 Dynamic Point Shifting Method

	 The Point Shifting method (PoS), was proposed for the first time by Moreno-Oliva et al [21] and 
developed further by Moreno-Oliva et al [22]. In these works, the evaluation of a fast concave aspheric 
surface was performed. Then, the same authors [24], proposed applying a dynamic version (DyPoS) of the 
method on fast convex surfaces of greater dimensions (around 60 mm) using four LCD screens as targets. 
The DyPoS method consists of changing the position of the spots on the LCD’s several times and getting 
a new experimental distribution of object spots each time, thus changing the image spots for each position. 
This method increases the density of the evaluation points on the surface under test, increasing accordingly 
the lateral resolution of the measurement and reducing in this way the truncation errors in the numerical 
integration procedure. 
	 The truncation error for the trapezoidal integration method is reduced to ε/η, where ε is the 
truncation error for a single image evaluation, and η is the number of shifts and captured images of the 
spots [21,22,24,33]. A set of three plane LCDs can be used as an approximation to a cylindrical target, 
to reduce the field curvature. To produce a square array of spots on the image, each of the three LCDs 
needs a different null-screen design. They were able to show a reduction in the truncation error during the 
integration by the trapezoidal rule method [33]. This proposal significantly improved the image quality and 
reduced the truncation error further. For the DyPoS a different null screen must be designed for each step, 
which also avoids mechanical movements of some parts of the setup. To implement this idea in a corneal 
topographer, a very different kind of target was proposed by Rodríguez-Rodríguez [37,38,68] with a null-
screen in a triangular prism configuration composed of three flat null-screens. In this case, they used LCD 
photo frames in order to display the null-screens. One of the main advantages of this configuration is that any 
distribution of spots can be designed without moving the experimental configuration. Possible distributions 
include square and radial arrays of black spots on a white background on the image or even with reversed 
contrast. Colored spots were used to simplify the correspondence between the object and image spots, even 
if the spots are close to each other. The number, size and shape of the spots on the image plane can also 
be varied. A somewhat different proposal was an array of four flat-null-screens in a quadrangular prism 
configuration which was patented in 2021 [69]. The first results with this target configuration and applying 
the DyPoS with calibrated spheres were reported by Valderrama-Juárez & Díaz-Uribe [70]. They used four 
flat OLED screens instead of three LCD with the advantages of being able to design and display the same 
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array of spots on the four OLEDs. In addition, the OLEDs overcome the limitations of deep contrast changes 
of LCDs for different viewing angles, resulting in difficulties to process the image to find the centroid of 
different spots. Rodríguez-Rodríguez et al [71], made additional improvements to this configuration by 
adding LEDs of different colors and with variable intensities, as a sentinel to identify each of the screens 
without ambiguity. A second set of LEDs were placed at the edges of the prism formed by the LCD, and a 
third set of LEDs in a square matrix was placed on the base of the quadrangular prism in the direct field of 
view of the camera. These two sets of LEDs eliminate the blind areas where there are no evaluation spots 
because of the frames of the OLED screens and the hollow prism end causing missing spots at the center 
of the pattern. With these modifications the number of evaluation points is increased and the blind zones 
are reduced a great deal, allowing a better sampling of the optical surface under study. In a recent work 
Rodriguez-Rodriguez [34], used the same configuration with static flat screens. They showed experimental 
results with calibrated spheres as well as with an informed volunteer. These ideas are shown in Fig 10.

(a) (b) (c)
Fig 10. Topographer based in Dynamic Point Shifting Method by OLED System, (a) Dynamic null-screen, (b) OLED 
Prism Configuration and LEDs sources, (c) Image captured with the DyPoS in a quadrangular prism Null-screen target. 

	 In this way, we can notice that the null-screen method includes different screen designs with also 
different geometries, where, of course, each configuration has its advantages and disadvantages.

10 Conclusions

	 In this paper, two of the main problems related to the early specular topographers have been 
described, they are the field curvature and the skew ray problems; main references to this matter are listed 
for better understanding and study. Also, the so called Null-screen testing methods and how they solved the 
main problems were described. Further, recent developments of this method were documented including 
different target configurations, the design of the null screen and the most used method to quantify the shape 
of the human cornea. The Null Screen method for a quantitative evaluation of the corneal topography has 
demonstrated to be a very efficient tool for knowing the shape of the anterior corneal surface for different 
applications including the fitting of rigid contact lens.

Acknowledgements 

	 The research described in this publication was made possible in part by PAPIIT grants from 
DGAPA-UNAM IT103823, IA106823. Also, the support by SECIHTI (LaNOV, grant number LNC-2023-
121) is recognzed.



Null screens and corneal topography	 365

 

References 
	 1.	 Levine J R, The true inventors of the keratoscope and photo-keratoscope, Br J Hist Sci, 2(1965)324–342. 
	 2.	 Gullstrand A, Photographic-ophthalmometric and clinical investigations of corneal refraction, Optom Vis Sci, 

43(1966)143–197. 
	 3.	 Koch D D (1992), Wakil J S, Samuelson S W, Haft E A, Comparison of the accuracy and reproducibility of the 

keratometer and the EyeSys Corneal Analysis System Model I, J Cataract Refract Surg, 18(1992)342–347.
	 4.	 Eyesys (2024); http://eyesys.com/products/desktop.html.
	 5.	 Atlas (2024); https://www.zeiss.com/meditec/en/products/zeiss-corneal-topographers/zeiss-atlas-500-corneal-

topographer-us.html.
	 6.	 Cornea (2024); https://www.essilor-instruments.com/product-cornea-550/. 
	 7.	 Cairns G, McGhee CNJ, Orbscan computerized topography: Attributes, applications, and limitations, J Cataract 

Refract Surg, 31(2005)205–220.
	 8.	 Pentacam; https://www.pentacam.com/int, (2024).
	 9.	 Mohammadpour M, Heidari Z Pentacam, In: Mohammadpour M (ed), Diagnostics in Ocular Imaging, (Springer), 

2021.
	10.	 Dorronsoro C, Pascual D, Pérez-Merino P, Kling S, Marcos S, Dynamic OCT measurement of corneal deformation 

by an air puff in normal and cross-linked corneas, Biomed Opt Express, 3(2012)473–487.
 11.	 Ludlam W M, Wittenberg S, Measurements of the ocular dioptric elements utilizing photographic methods. Part 

II. Cornea-Thoretical considerations, Optom Vis Sci, 43(1966)249–267.	
	12.	 Mejía-Barbosa Y, Malacara-Hernández D, Object surface for applying a modifed Hartmann test to measure corneal 
		  topography, Appl Opt, 40(2001)5778–5786.
	13.	 El Hage S G, A New Conception of the Corneal Topology and Its Application, Optica Acta: Int J Opt, 19(1972)431–

433.
	14.	 Klein S A, Axial curvature and the skew ray error in corneal topography, Optom Vis Sci, 74(1997)931–944.
	15.	 Applegate R A, Howland C H, Noninvasive Measurement of Corneal Topography, IEEE Engineering in Medicine 

and Biology Magazine, 14(1995)30–42.
	16.	 Schwiegerling J, Miller J M, A Videokeratoscope Using a Distorted Checkerboard Target, in Vision Science and 

its Applications, Technical Digest Series, (Optica Publishing Group, 1998), paper MA.4.
	17.	 Díaz-Uribe R, Campos-García M, Null-screen testing of fast convex aspheric surfaces, Appl Opt, 39(2000)2670–2677. 
	18.	 Sicam V A, van der Heijde R G. Topographer reconstruction of the nonrotation-symmetric anterior corneal surface 

features, Optom Vis Sci, 83(2006)910–918.
	19.	 Sicam V A, Snellenburg J J, van der Heijde RG, van Stokkum I H, Pseudo forward ray-tracing: a new method for 

surface validation in cornea topography, Optom Vis Sci, 84(2007)915–923.
	20.	 Gómez-Tejada D, Malacara-Hernández Z, Malacara-Doblado D, Malacara Hernández D, Zonal integration of circular 

Hartmann and Placido patterns with nonrotationally symmetric aberrations, J Opt Soc Am A, 37(2020)1381–1389.
	21.	 Moreno-Oliva V I, Campos-García M, Bolado-Gómez R, Díaz-Uribe R, Point shifting in the optical testing of fast 

aspheric concave surfaces by a cylindrical screen, Appl Opt, 47(2008)644–651.
	22.	 Moreno-Oliva V I, Campos-García M, Díaz-Uribe R, Improving the quantitative testing of fast aspherics with two-

dimensional point shifting by only rotating a cylindrical null screen, J Opt A: Pure Appl Opt, 10(2008)104029; 
doi.10.1088/1464-4258/10/10/104029. 

 23.	 Campos-García M, Bolado-Gómez R, Díaz-Uribe R, Testing fast aspheric concave surfaces with a cylindrical null 
screen, Appl Opt, 47(2008)849–859.

	24.	 Moreno-Oliva V I, Campos-García M, Granados-Agustín F S, Santiago-Alvarado A, Díaz-Uribe R, Improving fast 
aspheric convex surface test with dynamic null screens using LCDs, Appl Opt, 50(2011)3101–3109.

	25.	 Campos-García M, Díaz-Uribe R, Granados-Agustin F S, Testing fast aspheric convex surfaces with a linear array 
of sources, Appl Opt, 43(2004)6255–6264.



366	 Rufino Díaz-Uribe, Martín Isaías Rodríguez-Rodríguez, and Yobani Mejía

	26.	 Avendaño-Alejo M, Díaz-Uribe R, Testing a fast off-axis parabolic mirror using tilted null-screens, Appl Opt, 45 
(2006)2607–2614.

	27.	 Avendaño-Alejo M, Moreno-Oliva V I, Campos-García M, Díaz Uribe R, Quantitative evaluation of an off-axis 
parabolic mirror by using a tilted null-screen, Appl Opt, 48(2009)1008–1015.

	28.	 Aguirre-Aguirre D, Villalobos-Mendoza B, Díaz-Uribe R, Manuel Campos-García, Null-screen design for highly 
freeform surface testing, Opt Express, 28(2020)36706–36722.

	29.	 Gonzalez-Utrera D, Aguirre-Aguirre D, Rodríguez-Rodríguez M I, Díaz-Uribe R, Null-screen testing of the 
complementary freeform surfaces of an adjustable focus lens, Opt Express, 29(2021)21698–21710.

	30.	 Gonzalez-Utrera D, Aguirre-Aguirre D, Díaz-Uribe R, Alternative Method to Design Null-screen for testing Freeform 
Surfaces, Frontier in Optics/Laser Science, Lee B, Mazzali C, Corwin K, Jason Jones R J, (eds), OSA Technical 
Digest (Optica Publishing Group, 2020), paper FM1A.4.

	31.	 Gonzalez-Utrera D, Villalobos-Mendoza B, Diaz-Uribe R, Aguirre-Aguirre D, Modeling, fabrication, and metrology 
of 3D printed Alvarez lenses prototypes, Opt Express, 32(2024)3512–3527.	

	32.	 Campos-García M, Cossio-Guerrero C, Moreno-Oliva V I, Huerta-Carranza O, Surface shape evaluation with a 
corneal topographer based on a conical null-screen with a novel radial point distribution, Appl Opt, 54(2015)5411– 
5419.

	33.	 Rodriguez-Rodríguez M I, Jaramillo-Nuñez A, Díaz-Uribe R, Dynamic point shifting with null screen using three 
LCDs as targets for corneal topography, Appl Opt, 54(2015)6698–6710.

	34.	 Rodriguez-Rodríguez M I, Gonzalez-Utrera D, Aguirre-Aguirre D, Vohnsen B, Díaz-Uribe R, Corneal topographer 
using null-screen patterned within a quadrangular acrylic prism, Opt Continuum, 3(2024)36–50.	

	35.	 Díaz-Uribe R, Campos-García M, Medium Precision Geometrical Test for Very Fast Aspheres, in Frontiers in 
Optics, OSA Technical Digest (CD) (Optica Publishing Group), 2006, paper OFTuA1.

	36.	 Aguirre-Aguirre D, Campos-García M, Díaz-Uribe R, Villalobos-Mendoza B, General equations for the null-screen 
test for aspherical surfaces with deformation coefcients, Appl Opt, 57(2018)10230–10238.

	37.	 Rodríguez-Rodríguez M I, Método de corrimiento dinámico de puntos en queratometría por pantallas nulas, Ph D 
Thesis, Instituto Nacional de Astrofísica Óptica y Electrónica, México, (2015). 	

	38.	 Rodriguez-Rodríguez M I, Jaramillo-Nuñez A, Díaz-Uribe R, Dynamic point shifting with null screen using three 
LCDs as targets for corneal topography, Appl Opt, 54(2015)6698–6710.

	39.	 Rodríguez Rodríguez M I, Valderrama-Juárez C E, Damián-Zamacona J R, Díaz-Uribe R, Corneal topography 
using Dynamic point shifting method in quadrangular OLED prism, 2022; Proc SPIE Vol 12221: 122211C 1-10. 

	40.	 Mejía Y, Díaz-Uribe R, Third order distortion analysis from an envelope curve, Opt Commun, 454(2020)124492; 
doi.org/10.1016/j.optcom.2019.124492.

	41.	 Aguirre-Aguirre D, Diaz-Uribe R, Campos-Garcia M, Villalobos-Mendoza B, Izazaga-Pérez R, Huerta-Carranza 
O, Fast conical surfaces evaluation with null-screens and randomized algorithms, Appl Opt, 56(2017)1370–1382.

	42.	 Mejía Y, Galeano J C, Corneal topographer based on the Hartmann test, Optom Vis Sci, 86(2009)370–381.
	43.	 Rayces J L, Exact Relation between Wave Aberration and Ray Aberration, J Mod Opt, 11(1964)85–88.
	44.	 Snellenburg J J, Braaf B, Hermans E A, van der Heijde RGL, Sicam VADP, Forward ray tracing for image 

projection prediction and surface reconstruction in the evaluation of corneal topography systems, Opt Express, 
18(2010)19324–19338.	

	45.	 Díaz-Uribe R, Granados-Agustín F, Theory for Evaluation of the Corneal Shape in Laser Keratopography, in Vision 
Science and its Applications, Technical Digest Series, (Optica Publishing Group, 1996), paper SuB.1. 

	46.	 Díaz-Uribe R, Granados-Agustín F, Corneal Shape Evaluation by Using Laser Keratopography, Optom Vis Sci, 
76((1999)40–49.

	47.	 Díaz-Uribe R, Medium-precision null-screen testing of off-axis parabolic mirrors for segmented primary telescope 
optics: the Large Millimeter Telescope, Appl Opt, 39(2000)2790–2804.

	48.	 Ghozeil I, Simmons J E, Screen Test for Large Mirrors, Appl Opt, 13(1974)1773–1777. 
	49.	 Cornejo-Rodriguez A, Ronchi Test, in Optical Shop Testing, Chapter 9, 3rd Edn, (ed) Daniel Malacara, (John Wiley 

& Sons, Inc.), 2007. 



Null screens and corneal topography	 367

 

	50.	 Malacara-Doblado D, Ghozei I, Hartmann–Shack, and Other Screen Tests, in Optical Shop Testing, Chapter 10, 
3rd edn, (ed) Daniel Malacara, (John Wiley & Sons, Inc,), 2007. 

	51.	 Southwell W H, Wave-Front Estimation from Wave-Front Slope Measurements, J Opt Soc Am, 70(1980)998–1006.
	52.	 William H, Teukolsky S A, Vetterling William, Flannery B P, Numerical Recipes in C: The Art of Scientific 

Computing, 2nd edn, (Cambridge University Press, USA), 1992, 
	53.	 Mahajan V N, Zernike Polynomials and Wavefront Fitting, in Optical Shop Testing, Chapter 13, 3rd edn, (ed) 

Daniel Malacara, (John Wiley & Sons, Inc), 2007. 
	54.	 Hernández-Gómez G, Malacara-Doblado D, Malacara-Hernández Z, Díaz-Uribe R, Malacara-Hernández D, Modal 

Integration of Hartmann and Shack-Hartmann Patterns, J Opt Soc Am A, 31(2014)846–851. 
	55.	 Funes-Maderey I, Díaz-Uribe R, Corneal topography reconstruction by videoqueratometry in three 

dimensions,1997OSA Annual Meeting, Long Beach. California, EUA. 12 - 17 October,1997. See also: I. Funes-Maderey, 
Videoqueratometría de campo plano, BSc thesis in Physics, Facultad de Ciencias, UNAM, México, December,1998. 

	56.	 Colín-Flores R, Díaz-Uribe R, Análisis de la planicidad de campo para imágenes de pantallas cilíndricas formadas 
por superfcies esféricas en la aproximación parabasal. XLVIII Congreso Nacional de Física, Sociedad Mexicanade 
Física, Guadalajara, Jalisco, México, 17-21 October, 2005. 	

	57.	 Estrada-Molina A, Topografo Corneal Portatil Basado en Pantallas Nulas (Portable Corneal Topographer Based on 
Null Screens), Ph D Thesis, Universidad Nacional Autonoma de Mexico, México, (2014). 

	58.	 https://blepsvision.com/ consulted May 26th, 2024.
	59.	 Campos-García M, Armengol-Cruz V E, Osorio-Infante A I, Evaluating the anterior corneal surface using an 

improved null-screen system, OSA Continuum, 2(2019)736–748. 
	60.	 Campos-García M, Aguirre-Aguirre D, Moreno-Oliva V I, Huerta-Carranza O, Armengol-Cruz V de E, Measurement 

and correction of misalignments in corneal topography using the null-screen method, OSA Continuum, 4(2021)158–170.
	61.	 Campos-García M, Pantoja-Arredondo L Á, Aguirre-Aguirre D, Moreno-Oliva V I, Huerta-Carrranza O, 

ArmengolCruz V E, Measurements of corneal topography using a compact null-screen corneal topographer with a 
mobile device, Proc SPIE 11873, Optical Fabrication, Testing, and Metrology VII, 118730F (12 September 2021); 
doi. org/10.1117/12.2592802. 

	62.	 Peña-Conzuelo A, Campos-García M, Modeling the conical corneal null-screen topographer with the Fermat 
principle, Proc SPIE 11352, Optics and Photonics for Advanced Dimensional Metrology, 113521C (1 April 2020); 
doi.org/10.1117/12.2556053.

63.		 Peña-Conzuelo A (2020-2), Campos-García M, Aguirre-Aguirre D, Huerta-Carranza O, Analysis of the systematic 
and random errors in the conical corneal null-screen topographer, Proc SPIE 11352, Optics and Photonics for 
Advanced Dimensional Metrology, 113521H (1 April 2020); doi.org/10.1117/12.2556056. 

	64.	 Campos-García M, Huerta-Carranza O, Pantoja-Arredondo L Á, Cruz-Félix Á S, Santiago-Alvarado A, Aguirre-
Aguirre D, Moreno-Oliva V I, Camargo-Fierro C, Conical null-screen design for evaluating a biónic surface using 
a smartphone-based corneal topographer, Proc SPIE 12221, Optical Manufacturing and Testing XIV, 122210L (3 
October 2022); doi.org/10.1117/12.2633701. 

	65.	 Campos-García M, Aguirre-Aguirre D, Pérez-Lomelí J S, Peña-Conzuelo A, Huerta-Carranza O, Camargo-Fierro 
C, Design of a compact corneal topographer to characterize the shape of the cornea, Proc SPIE 11352, Optics and 
Photonics for Advanced Dimensional Metrology, 113521A (1 April 2020); doi.org/10.1117/12.2556052. 

	66.	 Campos-García, Aguirre-Aguirre D, Lechuga-Núñez J A, Peña-Conzuelo A, Design of a null-screen for a compact 
corneal topographer, Proc SPIE 11057, Modeling Aspects in Optical Metrology VII, 110570I (21 June 2019). doi.
org/10.1117/12.2526241.

	67.	 Huerta-Carranza O, Campos-García M, Moreno-Oliva V I, Aguirre-Aguirre D, Pérez-Lomelí J S, Smartphone-based 
corneal topography with null-screens, Appl Opt, 61(2022)1381–1388. 

	68.	 Rodríguez-Rodríguez M I, Jaramillo-Núñez A, Díaz-Uribe R, Dynamic point shifting in null screen videokeratometry, 
Proc SPIE 8011: 80119H.2011; 1–8.

	69.	 Díaz-Uribe R (2021), Rodríguez-Rodríguez M I, APARATO MÉTODO Y SISTEMA PORTÁTIL PARA MEDIR 
LA TOPOGRAFÍA CORNEAL [Portable Apparatus, Method and System for measuring the corneal topography], 
Mexican Patent 378804, IMPI (10 March 2021). 



368	 Rufino Díaz-Uribe, Martín Isaías Rodríguez-Rodríguez, and Yobani Mejía

	70.	 Valderrama-Juárez E, Díaz-Uribe R, Experimental results of a quadrangular OLED prism topographer prototype 
with Dynamic Point Shifting, in Latin America Optics and Photonics (LAOP) Conference 2022, Technical Digest 
Series (Optica Publishing Group), paper W3D.4. 

	71.	 Rodríguez- Rodríguez M I, Valderrama-Juárez C E, Damián-Zamacona J R, Díaz-Uribe R, Corneal topography 
using Dynamic point shifting method in quadrangular OLED prism, Proc SPIE, 2022; 12221: 122211C 1-10. 

[Received: 16.06.2024; rev recd: 28.06.2024; accepted: 29.06.2024]

Rufino Díaz-Uribe obtained the BSc (1980), MSc (1982) and the Ph D (1990) degrees in 
physics from the National University of Mexico (UNAM). Presently he is at the Institute for 
Applied Sciences and Technology-UNAM. His main research area is Optical Testing, he de-
veloped the Null Screen method for measuring the topography of human corneas and the shape 
of mirrors used as solar concentrators. In 1996 and 2019 he was honored by the UNAM for his 
teaching work. He is Senior member of SPIE (2016) and OPTICA (2017). In 2016 he founded 
Bleps Vision, a startup for developing a portable corneal topographer.

Graduated in Physics from the Benemérita Universidad Autónoma de Puebla (BUAP), Mas-
ter's and PhD in Sciences in the Specialty of Optics, from the National Institute of Astro-
physics, Optics and Electronics (INAOE). Postdoc at the Instituto de Ciencias Aplicadas y 
Tecnología (ICAT-UNAM) and the University College Dublin UCD, Southern Ireland. He is 
currently a Full-Time Associate Professor in the Optometry School at FES-Iztacala UNAM. 
His current research interests are Visual Optics, Corneal Topography, Optical Instrumentation 
for the evaluation of aspherical and free-form surfaces.

Yobani Mejía-Barbosa is as full-time professor at the Department of Physics at the Universi-
dad Nacional de Colombia, where he has taught courses in optics for more than 15 years. He 
received his BS and MS degrees in physics from the Universidad Nacional de Colombia in 
1991 and 1995, respectively, and his Ph D degree in optics from the Centro de Investigaciones 
en Óptica, México, in 2001. His current research interests include optical design, interferom-
etry, visual optics, and classical coherence. He is a member of SPIE and a senior member of 
OPTICA.


