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An analytical theoretical study of 2D and 3D objects using the laws of Fraunhofer diffraction is presented. The induction 
of symmetry following the Fourier properties of algebraic rules is demonstrated. For a completely random distribution 
in any type of 2D and 3D real object, there is no symmetry. However, when the real object is propagated to the far 
field forming the diffracted field, a particular symmetry of conjugate pairs is generated for every point as a reflection 
through the origin. © Anita Publications. All rights reserved.
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1 Introduction 	  

	 Wave propagation is well established, commonly described by the Fresnel–Kirchhoff formulation 
[1,2] and Fourier transformations [3,4]. Recent optical studies have applied Fourier methods in imaging and 
holography [5-7]. For real objects, distributions such as Gaussian, Poisson, or random exhibit symmetry only 
when point pairs are present, producing conjugate components across the origin. Complex (phase) objects, 
however, lack this symmetry. Moreover, 2D and 3D Fourier transforms can be represented in four distinct 
ways depending on periodicity and discreteness [8,9]. Here, we show that the far-field diffraction pattern 
of an asymmetric aperture reveals symmetrical behavior, providing a basis to analyze Fourier spectrum 
symmetries with the Fraunhofer propagator for 2D and 3D real objects.

Fig 1. Diagram of Fraunhofer diffraction pattern formed by a light wave passing through an aperture.
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	 The Eq (1) is the Fraunhofer diffraction integral, it refers to the far-field diffraction pattern observed 
when light waves pass through an aperture or around an obstacle, with the wavefronts considered to be 
parallel (Fig 1). This type of diffraction occurs when the light source and observation point are at a large 
distance from the diffracting object.

	 U(u, v)= e
– j k z

jλz
 e–  j k(x 2 + y 2)/2z ∫R2 f (x, y) e–(  j k(ux + vy)/z dx dy. 	 (1)

Here, λ is the wavelength of the light source, k = 2π/λ is the wave number, z is the observation distance. 
The aperture is situated in the plane (x, y) and U(u, v) is the diffracted field in the plane (u, v).
	 Eq (1) shows that Fraunhofer diffraction is directly proportional to the Fourier transform of the 
aperture function Eq (2).
	 U(u, v) ∝ F [  f (x, y)].	 (2)
where u = x'/λz and v = y'/λz.
	 We will now demonstrate that, regardless of the distribution of f (x, y), its Fourier transform exhibits 
symmetries with respect to the axes, provided that f (x, y) is a real function. This property is optically evident 
in the diffraction patterns of apertures.

2 Theory: Fourier symmetry of Fraunhofer diffraction patterns

2.1 Analytical testing of 2D case
	 In the 2D case, we showed that the symmetry of the conjugated pair is preserved for real 2D 
objects, whereas the literature considers this only in the 1D and 2D cases, with sign changes, using basic 
mathematical arguments [3,4,8,10]. For objects with arbitrary random distribution, their diffracted field is 
symmetrical [11-13]. The sampling of each vector corresponds to an independent conjugate pair. Following 
the logic and approach for a transformed 1D object, F(–u, 0) = [F(u, 0)]*, F(0,–v) = [F(0, v)]*, and F(–u,–v) 
= [F(u, v)]*.
	 The cross-terms are more complex, since the variables u and v appear in the kernel of the Fourier 
transform. Following the symmetry conditions [10], we must satisfy F(–u, v) = [F(u, –v)]*, or F(u, –v) = 
[F(–u, v)]*.
	 The analytical proof of the conjugate-pair symmetry for 2D real objects, based on the sign change 
of –u and –v, is presented below using the Fourier transform.

	 F(– u, v) = ∫R2 f (x, y) e– 2π j(–ux + vy) dx dy = ∫R2 f (x, y) e 2π j(ux – vy) dx dy 

		  = 
∫R2 f (x, y) e –2π j(ux – vy) dx dy

 
*
 = [F(u, – v)]*	 (3)

Similarly, by exchanging the sign of v we obtain the Eq (4),
	 F(u, –v) = [F(–u, v)]*	  (4)
	 We show that the symmetry for real objects f(x, y), meets the following quadrants: F(–u, –v) = 
[F(u, v)]*, F(u, v) = [F(–u, –v)]*, F(–u, v) = [F(u, –v)]* and F(u, –v) =[F(u, –v)]*. This is regardless of the 
distribution type and randomness of the real function. 
	 In practice for observing the intensity from Eq (1), we calculate its complex amplitude as shown 
in Eq (5).
	 I(u, v) = | F (u, v)|2 = Fr (u, v)2 + Fi (u, v)2	 (5)
where Fr and Fi are the real and imaginary parts, respectively in Eq (5). Let us note that F* and F have the 
same intensity. Figure 1 shows the symmetries in the Fourier transform of asymmetric apertures.
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Fig 2. Asymmetric apertures and their respective Fourier transform with symmetry.

	 The symmetry in the diffracted field appears regardless of the shape of the aperture, whether 
symmetric or asymmetric, and is preserved even under conditions of randomness, representing the extreme 
case of asymmetry.

(a) (b)
Fig 3. (a) Example of a random real-valued amplitude distribution. (b) Magnitude of its Fourier transform, 
showing conjugate symmetry about the origin. 

	 In Fig 4, a 180° rotation of Fig 3(b) followed by its subtraction from the original yields a zero 
matrix, confirming the inherent symmetry of the Fourier spectrum. Figure 5 shows the random number 
distribution together with its propagated spectrum, where the symmetry produced by the Fourier transform 
is clearly visible. 
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2.2 Complex objects case
In this case g(x, y) is an arbitrary phase function and f(x, y) represents the amplitude.

	 U(u, v) = 
e– j k z

jλz
 e–  j k(x 2 + y 2)/2z ∫R2 f (x, y) e– j[ k(ux + vy) + g(x + y)]/z dx dy.	 (6)

	 The Fourier kernel is altered, and as a result, its propagation obeys the linear term plus the aggregate 
phase, therefore, the symmetry of the amplitude is not fulfilled.

   
(a) (b)

Fig 4. (a) This image corresponds to Fig 3(b) rotated by 180°. (b) Result of subtracting the rotated spectrum 
in Fig 4(a) from the original spectrum in Fig 3(b), showing that the difference is a zero matrix and thus 
confirming the inherent symmetry of the Fourier spectrum. 

Fig 5. Cross-sectional profiles along the x-axis. The green line represents the random number distribution 
from Fig 3(a), and the red line represents the Fourier spectrum from Fig 3(b), showing the induced 
symmetry after propagation. 

The image below displays a triangular shape with a phase distribution as follows:
	 g(x, y) = 10 (x2 + y2)	 (7)
	 When the object is pure phase (e.g., the triangular phase mask of Fig 6(a)), its Fourier spectrum does 
not exhibit conjugate symmetry, in contrast to the amplitude-only triangle of Fig 2, whose spectrum does 
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display the expected symmetry. Similarly, Fig 7(a) shows a distribution of phase elements represented by 
random numbers, where each gray level corresponds to a phase value. Figure 7(b) shows Fourier transform 
of the phase matrix in Fig 7(a), showing no symmetry with respect to the origin.

(a) (b)

Fig 6. (a) Phase object and (b) its propagated field

2.2.1 Random phase numbers
	 The behavior of the distribution of random phase numbers with amplitude between 0 and 2π is 
shown in a general way, through propagation by applying Fourier transform.

(a) (b)

Fig 7. Distribution of (a) phase random numbers and (b) not symmetric spectrum.

	 Figure 8(a) shows the 180° rotation of Fig 7(b). Figure 8(b) presents the difference between the 
original spectrum in Fig 7(b) and its rotated version in Figure 8(a). As observed, the resulting matrix in Fig 
8(b) is not a zero matrix, indicating that phase matrices do not generate symmetry with respect to the origin 
when propagated using the Fourier transform. In the plot shown in Fig 9, there is no symmetry observed 
in the propagated field of the random phase number distribution.
2.3 Analytical testing of 3D case
	 The 3D case follows a similar behavior. We show that the symmetry of the conjugate pair is also 
preserved for 3D real objects, following the same criteria for Fourier 2D objects. 
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	 All sign the combinations, i.e., F(–u, v, w), F(u, –v, –w), F(u, v, w), F(u, –v, w), F(u, v, –w), F(–u, 
–v, –w), F(–u, v, –w) and F(–u, –v, w) can build viable symmetries. 

(a) (b)

Fig 8. (a) Fourier spectrum of Figure 7(b) rotated by 180° about the origin. (b) Difference between the 
original spectrum in Figure 7(b) and the rotated spectrum in (a). The non-zero result in (b) demonstrates 
that the Fourier spectrum of the phase object does not exhibit symmetry with respect to the origin.

 
Fig 9. Cross-sectional profiles along the x-axis. The green line represents the phase random number 
distribution from Fig 7(a), and the red line represents the Fourier spectrum from Fig 7(b), showing 
no symmetry after propagation. 

	 To preserve the symmetry, we show an octant as a particular case that must satisfy F(–u, v, w) = 
F*(u, –v, –w), or F(u, –v, –w) = F*(–u, v, w). 

	 F(– u, v, w) = ∫R3 f (x, y, z) e– 2π j(–ux + vy + wz) dx dy dz = ∫R3 f (x, y, z) e 2π j(ux – vy – wz) dx dy dz 

	                 = 
∫R2 f (x, y, z) e –2π j(ux – vy – wz) dx dy dz

 
*
 = [F(u, – v, – w)]*	 (8)
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Equation (6) shows the symmetry of the conjugate pairs of a 3D real object. Following these steps, it can 
be seen, that for real objects, the following symmetries are true:
 	 F(–u, v, w) = F*(u, –v, –w)	 (9)
 	 F(u, –v, –w) = F*(–u, v, w)	 (10)
 	 F(u, v, w) = F*(–u,–v, –w)	 (11)
 	 F(u, –v, w) = F* (–u,v, –w)	 (12)
	 F(u, v, –w) = F*(–u,–v, w)	 (13)
	 F(–u, –v, –w) = F*(u, v, w)	 (14)
	 F(–u, v,–w) = F*(u, –v, w)	 (15)
	 F(–u,–v, w) = F*(u, v, –w)	 (16)
	 The visualization of the symmetry in the propagated field of a 3D object is presented in Fig 10, 
which represents Eqs (9-16). We generated a 3D real amplitude object in Matlab R2022a using the function, 
f = f1∙f2 + f3 , where f1 = exp (sin(k(x + z2)), f2 = exp(k(x + 3y – z)) and f3 = exp(cos(kz2)) with k = 2π/3. 

(a) (b)

(c) (d)
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(e) (f)

Fig 10. Projections of the Fourier transform of the amplitude object: (a) section in the x-plane at u = –2.45 and 
(b) its reflection at u = 2.45; (c) section in the y-plane at v = –2.45 and (d) its reflection at v = 2.45; (e) section 
in the z-plane at w = –2.45 and (f) its reflection at w = 2.45. These projections numerically demonstrate the 
symmetry of the propagated field of the amplitude object. 

After computing the 3D Fourier transform, we extracted planar slices at fixed u, v and w from negative 
to positive values to verify the predicted conjugate symmetry across each axis. The functions f1, f2, and f3 
were chosen to enhance the visualization of the propagation behavior and to verify the symmetry in the 
Fourier field at the limits of u, v, and w. A mask with more sampling points was applied to enhance the 
visualization of the Fourier field.

3 Discussion

	 This work explored the connections between the Fourier transform and diffractive optics. The 
symmetry inherent in the Fourier transform is made evident through direct calculations, using the property 
of reflection in Fourier space for 2D and 3D cases, of amplitude objects. The Fourier kernel has a linear 
character that causes amplitude objects to acquire symmetry as observed in section 2.1 when propagating. 
However, for phase objects this linearity is lost due to the additional phase term included in the kernel, as 
shown in Eq(6), section 2.2. In other words, once the kernel is modified by the phase element, its propagation 
no longer preserves the symmetry that is characteristic of amplitude objects.
	 This Hermitian (conjugate) symmetry is particularly valuable for reducing computational complexity, 
minimizing both processing time and memory usage when storing complex data. The associated Fourier-
based methods that exploit this property—such as storing only half of the non-redundant spectrum or 
reconstructing coefficients by mirroring—are especially useful in handling large data sets or computationally 
intensive tasks, making Fourier-based approaches essential for efficient and accurate analysis in diffractive 
optics. Moreover, the interaction between the mathematical framework of Fourier analysis and the physical 
behavior of light diffraction underscores the broad usefulness of Fourier techniques in both theoretical and 
practical applications within the realm of diffractive optics. 

3 Conclusions

	 For real objects propagated under Fraunhofer conditions, the transformed fields inherit conjugate-
symmetry vectors about lines through the origin, independently of the distribution type, randomness, or 
dimensionality (2D/3D). This physical property of conjugate symmetry is conserved in 1D, 2D, and 3D space. 
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In the 2D and 3D domain it is evident in the field of holography, which can store complex information to 
retrieve information giving the possibility of recovering the initial information of the object. On the other 
hand, in the field of computational data (complex numbers), it is possible to retrieve information because 
the transformation has an exact inverse. 
	 For phase objects, the proposed symmetries are not fulfilled due to the linear alteration of the 
Fourier kernel. But this asymmetry still allows for an inverse transform, the accuracy of this transform 
depends on kernel degradation. When the object is propagated, its diffracted pattern is usually expressed 
with amplitude and phase, and we only see the magnitude of the result. More studies are needed to explore 
symmetries in the phase map. 
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