Asian Journal of Physics  Vol. 31 No 2, 2022, 283-302

A new generation of Raman spectroscopists: Thinking diversity in the analytical sciences
Janina Kneipp, Ulrich Panne, Dorota Bartkowiak, Dimitra Gkogkou, Christian Heck, Wan-Ing Lin, Tilmann Neubert, Elena Pavlenko, Christine Joy Uy Querebillo, Bita Rezania, Maximilian Ries, Victor M Rodriguez Zancajo, Radwan Mohammed Sarhan, Gergo Péter Szekeres, Yanlong Xin, Anur Yadav, Zhiyang Zhang and Vesna Zivanovic


Abstract

Analytical Raman spectroscopy finds itself at the interface of physics, chemistry, biology, modeling, and data science, and is evolving at a high pace due to the interaction of scientists trained in different fields. To address the major challenges regarding sensitivity and selectivity in the applications of Raman scattering, to push its physical limits, and to connect different levels of understanding of complex systems in the natural sciences, future generations of spectroscopists will need a diverse background. In this paper, we report on the activities of junior scientists of all genders in the field of Raman spectroscopy in a multidisciplinary, multi-institution graduate school. We demonstrate that bias-free recruitment, yielding a high percentage of female researchers, infrastructural support, and an environment promoting exchange leads to high-level research in basic and applied Raman spectroscopy. The examples illustrate our research activities in surface-enhanced Raman scattering (SERS) and molecular plasmonics, advances in the characterization and utilization of low-dimensional materials, and the application of Raman scattering for the characterization of complex biological systems. © Anita Publications. All rights reserved.
Keywords: Graduate education, Analytical chemistry, Surface-enhanced Raman scattering, Low-dimensional materials.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserved

References

  1. Montes-Bayón M, Kneipp J, Panne U, Report on KOSMOS Summer University at the School of Analytical Sciences Adlershof (Berlin): limits and scales in analytical sciences, Analytical and Bioanalytical Chemistry), 407(2015) 4869–4872.
  2. Schmid T, Jungnickel R, Dariz P, Insights into the CaSO4–H2O system: A Raman-spectroscopic study, Minerals, 10(2020)115; doi.org/10.3390/min10020115.
  3. Schmid T, Jungnickel R, Dariz P, Raman band widths of anhydrite II reveal the burning history of high-fired medieval gypsum mortars, J Raman Spectrosc, 50(2019)1154–1168.
  4. Dariz P, Schmid T, Phase composition and burning history of high-fired medieval gypsum mortars studied by Raman microspectroscopy, Mater Charact, 151(2019)292–301.
  5. Dariz P, Schmid T, Ferruginous phases in 19th century lime and cement mortars: A Raman microspectroscopic study, Mater Charact, 129(2017)9–17.
  6. Sarhan R M, Koopman W, Schuetz R, Schmid T, Liebig F, Koetz J, Bargheer M, The importance of plasmonic heating for the plasmon-driven photodimerization of 4-nitrothiophenol, Sci Rep, 9(2019)3060; doi.org/10.1038/s41598-019-38627-2.
  7. Zancajo V M R, Diehn, S.; Filiba, N.; Goobes, G.; Kneipp, J.; Elbaum, R., Spectroscopic Discrimination of Sorghum Silica Phytoliths, Front Plant Sci, 10(2019); doi.org/10.3389/fpls.2019.0157.
  8. Bartkowiak D, MgF2-coated gold nanostructures as a plasmonic substrate for analytical applications, Doctoral Thesis, (Humboldt-Universität zu Berlin), 2018.
  9. Bartkowiak D, Merk V, Reiter-Scherer V, Gernert U, Rabe J P, Kneipp J, Kemnitz E, Porous MgF2-over-gold nanoparticles (MON) as plasmonic substrate for analytical applications, RSC Adv, 6(2016)71557–71566.
  10. Gkogkou D. Anisotropic plasmonic nanoparticle arrays for surface-enhanced biosensors, Doctoral Thesis, (Technische Universität, Berlin, Berlin), 2017.
  11. Gkogkou D, Schreiber B, Shaykhutdinov T, Ly H K, Kuhlmann U, Gernert U, Facsko S, Hildebrandt P, Esser N, Hinrichs K, Weidinger I M, Oates T W H, Polarization- and Wavelength-Dependent Surface-Enhanced Raman Spectroscopy Using Optically Anisotropic Rippled Substrates for Sensing, ACS Sensors, 1(2016)318–323.
  12. Gkogkou D, Shaykhutdinov T, Oates T W H, Gernert U, Schreiber B, Facsko S, Hildebrandt P, Weidinger I M, Esser N, Hinrichs K, Characterization of anisotropically shaped silver nanoparticle arrays via spectroscopic ellipsometry supported by numerical optical modeling, Appl Surf Sci, 421(2017)460–464.
  13. Gkogkou D, Shaykhutdinov T, Kratz C, Oates T W H, Hildebrandt P, Weidinger I M, Ly K H, Esser N, Hinrichs K, Gradient metal nanoislands as a unified surface enhanced Raman scattering and surface enhanced infrared absorption platform for analytics, Analyst, 144(2019)5271–5276.
  14. Heck C, Gold and silver nanolenses self-assembled by DNA origami, (Doctoral Thesis, University of Potsdam), 2018.
  15. Heck C, Prinz J, Dathe A, Merk V, Stranik O; Fritzsche W; Kneipp J, Bald I, Gold Nanolenses Self-Assembled by DNA Origami, ACS Photonics, 4(2017)1123–1130.
  16. Prinz J, Heck C, Ellerik L, Merk V, Bald I, DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity, Nanoscale, 8(2016)5612–5620.
  17. Heck C, Kanehira Y, Kneipp J, Bald I, Placement of Single Proteins within the SERS Hot Spots of Self-Assembled Silver Nanolenses, Angew Chem Int Ed, 57(2018)7444–7447.
  18. Heck C, Kanehira Y, Kneipp J, Bald I, Amorphous carbon generation as a photocatalytic reaction on DNA-assembled gold and silver nanostructures, Molecules, 24(2019)2324; doi.org/10.3390/molecules24122324.
  19. Pavlenko E, Hybrid nanolayer architectures for ultrafast acousto-plasmonics in soft matter, Doctoral Thesis, (University of Potsdam), 2016.
  20. Pavlenko E S, Sander M, Mitzscherling S, Pudell J, Zamponi F, Rossle M, Bojahr A, Bargheer M, Azobenzene – functionalized polyelectrolyte nanolayers as ultrafast optoacoustic transducers. Nanoscale, 8(2016)13297–13302.
  21. Pavlenko E S, Sander M, Cui Q, Bargheer M, Gold Nanorods Sense the Ultrafast Viscoelastic Deformation of Polymers upon Molecular Strain Actuation, J Phys Chem C, 120(2016)24957–24964.
  22. Rezania B, Optical spectroscopy and scanning force microscopy of small molecules intercalated within graphene and graphene oxide interfaces, Doctoral Thesis, (Humboldt-Universität, zu Berlin), 2022.
  23. Xing Y, Metal-organic nanowires, Doctoral Thesis, (Technische Universität, Berlin), 2016.
  24. Xing Y, Wyss A, Esser N, Dittrich P S, Label-free biosensors based on in situ formed and functionalized microwires in microfluidic devices, Analyst, 140(2015)7896–7901.
  25. Xing Y, Esser N, Dittrich P S, Conductive single nanowires formed and analysed on microfluidic devices, J Mater Chem C, 4(2016)9235–9244.
  26. Xing Y, Sun G, Speiser E, Esser N, Dittrich P S, Localized Synthesis of Conductive Copper–Tetracyanoquinodimethane Nanostructures in Ultrasmall Microchambers for Nanoelectronics. ACS Appl Mater Interface, 9(2017)17271–17278.
  27. Xing Y, Speiser E, Singh D K, Dittrich P S, Esser N, Bi-Axial Growth Mode of Au–TTF Nanowires Induced by Tilted Molecular Column Stacking, J Phys Chem C, 121(2017)23200–23206.
  28. Ries M D C, Optical analysis of InN and InGaN nanostructures, Doctoral Thesis, (Technische Universität, Berlin, Berlin), 2021.
  29. Poliani E, Seidlitz D, Ries M, Choi S J, Speck J S, Hoffmann A, Wagner M R, Strong Near-Field Light–Matter Interaction in Plasmon-Resonant Tip-Enhanced Raman Scattering in Indium Nitride, J Phys Chem C, 124(2020)28178–28185.
  30. Seidlitz D, Poliani E, Ries M, Hoffmann A, Wagner M R, Nanoscale InN clusters and compositional inhomogeneities in InGaN epitaxial layers quantified by tip-enhanced Raman scattering, Appl Phys Lett, 118(2021)162107; doi.org/10.1063/5.0040760.
  31. Querebillo C J U, Combined vibrational spectroscopy and electrochemistry for studying biological and materials systems, Doctoral Thesis, (Technische Universität Berlin, Berlin), 2020.
  32. Querebillo C J, Öner I H, Hildebrandt P, Ly K H, Weidinger I M, Accelerated Photo-Induced Degradation of Benzidine-p-Aminothiophenolate Immobilized at Light-Enhancing TiO2 Nanotube Electrodes, Chem Eur J, 25(2019) 16048–16053.
  33. Öner I H, Querebillo C J, David C, Gernert U, Walter C, Driess M. Leimkühler S, Ly K H, Weidinger I M, High Electromagnetic Field Enhancement of TiO2 Nanotube Electrodes, Angew Chem Int Ed, 57(2018)7225–7229.
  34. Lin W.-I, Enhanced Raman scattering of molecular monolayers, Doctoral Thesis, (Humboldt-Universität zu Berlin), 2017.
  35. Lin W I, Shao F, Stephanidis B, Zenobi R, Tip-enhanced Raman spectroscopic imaging shows segregation within binary self-assembled thiol monolayers at ambient conditions, Anal and Bioanal Chem, 407(2015)8197–8204.
  36. Lin W.-I, Gholami M F, Beyer P, Severin N, Shao F, Zenobi R, Rabe J P, Strongly enhanced Raman scattering of Cu-phthalocyanine sandwiched between graphene and Au(111), Chem Commun, 53(2017)724–727.
  37. Yadav A, Iost R M; Neubert T J, Baylan S, Schmid T, Balasubramanian K, Selective electrochemical functionalization of the graphene edge, Chem Sci, 10(2019)936–942.
  38. Yadav A, Wehrhold M, Neubert T J, Iost R M, Balasubramanian K, Fast Electron Transfer Kinetics at an Isolated Graphene Edge Nanoelectrode with and without Nanoparticles: Implications for Sensing Electroactive Species, ACS Appl Nano Mater, 3(2020)11725–11735.
  39. Neubert T J, Wehrhold M, Kaya N S, Balasubramanian K, Faradaic effects in electrochemically gated graphene sensors in the presence of redox active molecules, Nanotechnology, 31(2020); doi.org/10.1088/1361-6528/ab98bc.
  40. Wehrhold M, Neubert T J, Yadav A, Vondráček M, Iost R M, Honolka J, Balasubramanian K, pH sensitivity of interfacial electron transfer at a supported graphene monolayer, Nanoscale, 11(2019)14742–14756.
  41. Sarhan R M, Plasmon-driven photocatalytic reactions monitored by surface-enhanced Raman spectroscopy, Doctoral Thesis, (University of Potsdam), 2019.
  42. Zhang Z, In situ Characterization of Plasmonic Catalysis Using Surface-enhanced Raman Scattering, Doctoral Thesis, (Humboldt-Universität zu Berlin), 2018.
  43. Sarhan R M, Koopman W, Pudell J, Stete F, Rössle M, Herzog M. Schmitt C N Z, Liebig F, Koetz J, Bargheer M, Scaling Up Nanoplasmon Catalysis: The Role of Heat Dissipation, J Phys Chem C, 123(2019)9352–9357.
  44. Zhang Z, Merk V, Hermanns A, Unger W E S, Kneipp J, Role of Metal Cations in Plasmon-Catalyzed Oxidation: A Case Study of p-Aminothiophenol Dimerization, ACS Catal, 7(2017)7803–7809.
  45. Zhang Z, Li Y, Frisch J, Bär M, Rappich J, Kneipp J, In situ surface-enhanced Raman scattering shows ligand-enhanced hot electron harvesting on silver, gold, and copper nanoparticles, J Catal, 383(2020)153–159.
  46. Zhang Z, Kneipp J, Ligand-supported hot electron harvesting: Revisiting the pH-responsive surface-enhanced Raman scattering spectrum of p-aminothiophenol, J Phys Chem Lett, 12(2021)1542–1547.
  47. Zhang Z, Gernert U, Gerhardt R F, Höhn E M, Belder D, Kneipp J, Catalysis by Metal Nanoparticles in a Plug-In Optofluidic Platform: Redox Reactions of p-Nitrobenzenethiol and p-Aminothiophenol, ACS Catal, 8(2018)2443–2449.
  48. Zhang Z, Kneipp J, Surface Molecular Patterning by Plasmon-Catalyzed Reactions, ACS Appl Mater Interfaces, 13(2021)43708–43714.
  49. Fiege K, Querebillo C J, Hildebrandt P, Frankenberg-Dinkel N, Improved Method for the Incorporation of Heme Cofactors into Recombinant Proteins Using Escherichia coli Nissle 1917, Biochemistry, 57(2018)2747–2755.
  50. Szekeres G P, Kneipp J, Different binding sites of serum albumins in the protein corona of gold nanoparticles, Analyst, 143(2018)6061–6068.
  51. Szekeres G P, Kneipp J, SERS probing of proteins in gold nanoparticle agglomerates, Front Chem, 7(2019)30; doi.org/10.3389/fchem.2019.00030.
  52. Szekeres G P, Montes-Bayón M, Bettmer J, Kneipp J, Fragmentation of Proteins in the Corona of Gold Nanoparticles as Observed in Live Cell Surface-Enhanced Raman Scattering, Anal Chem, 92(2020)8553–8560.
  53. Szekeres G P, Fernández-Iglesias N, Kneipp J, Montes-Bayón M, Bettmer J, Mass spectrometric approach for the analysis of the hard protein corona of nanoparticles in living cells, J Proteomics, 212(2020)103582; doi.org/10.1016/j.jprot.2019.103582.
  54. Szekeres P G, Werner S, Guttmann P, Spedalieri C, Drescher D, Živanovic V, Montes-Bayón M, Bettmer J, Kneipp J, Relating the composition and interface interactions in the hard corona of gold nanoparticles to the induced response mechanisms in living cells, Nanoscale, 12(2020)17450–17461.
  55. Živanović V, Madzharova F, Heiner Z, Arenz C, Kneipp J, Specific Interaction of Tricyclic Antidepressants with Gold and Silver Nanostructures as Revealed by Combined One- and Two-Photon Vibrational Spectroscopy, J Phys Chem C, 121(2017)22958–22968.
  56. Živanović V, Kochovski Z, Arenz C, Lu Y, Kneipp J, SERS and Cryo-EM Directly Reveal Different Liposome Structures during Interaction with Gold Nanoparticles, J Phys Chem Lett, 9(2018)6767–6772.
  57. Živanović V, Seifert S, Drescher D, Schrade P, Werner S, Guttmann P, Szekeres G P, Bachmann S, Schneider G, Arenz C, Kneipp J, Optical Nanosensing of Lipid Accumulation due to Enzyme Inhibition in Live Cells, ACS Nano, 13(2019)9363–9375.
  58. Živanović V, Semini G, Laue M, Drescher D, Aebischer T, Kneipp J, Chemical mapping of Leishmania infection in live cells by SERS microscopy, Anal Chem, 90(2018)8154–8161.
  59. Rodriguez Zancajo V M, Vibrational spectroscopy as a tool to understand plant silicification, Doctoral Thesis, (Humboldt-Universität, zu Berlin), 2021.
  60. Zancajo V M R, Lindtner T, Eisele M, Huber A J, Elbaum R, Kneipp J, FTIR Nanospectroscopy Shows Molecular Structures of Plant Biominerals and Cell Walls, Anal Chem, 92(2020)13694–13701.

Article