Asian Journal of Physics Vol. 30 Nos 8 & 9 (2021) 1283-1288

Controlling the topological charge of superposition of Bessel-Gaussian beams
V V Kotlyar, A А Kovalev and A G Nalimov


Abstract

We show that by continuously varying the amplitude of a constituent beam in the superposition of two Bessel-Gaussian (BG) beams with topological charges (TC) m and n (m < n) the TC of the entire superposition can be controlled. It is shown that if the amplitude of the constituent beam with TC n is larger than that of the beam with TC m, the superposition contains n optical vortices (OV), namely, an OV with TC m in the form of on-axis isolated intensity null and n – m simple OVs with TC 1 localized off-center along rays that make with one another angles of 2π/(n – m). By getting the amplitudes of the BG beams closer to each other, n – m simple OVs are moved away from the beam center along the said rays. At equal amplitudes, n – m OVs are removed to infinity and TC of the superposition equals (n + m)/2. If the amplitude of the beam with TC m is larger than that of the beam with TC n, the only m-fold on-axis intensity null is present in the superposition. Similarly, TC of the superposition can be controlled by changing the scaling factor of one of the constituent BG beams. © Anita Publications. All rights reserved.
Keywords: Topological charge, Bessel -Gaussian beams, Optical vortices, Orbital angular momentum.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserved

References

  1. Zhang Y, Yang X, Gao J, Orbital angular momentum transformation of optical vortex with aluminum metasurfaces, Sci Rep, 9(2019)9133; doi.org/10.1038/s41598-019-45727-6.
  2. Volyar A V, Bretsko M V, Akimova Y E, Egorov Y A, Avalanche instability of the orbital angular momentum higher order optical vortices, Comput Opt, 43(2019)14–24.
  3. Zhang H, Li X, Ma H, Tang M, Li H, Tang J, Cai Y, Grafted optical vortex with controllable orbital angular momentum distribution, Opt Express, 27(2019)22930–22938.
  4. Wei D, Cheng Y, Ni R, Zhang Y, Hu X, Zhu S, Xiao M, Generating controllable Laguerre-Gaussian laser modes through intercavity spin-orbital angular momentum conversion of light, Phys Rev Appl, 11(2019)014038; doi.org/10.1103/PhysRevApplied.11.014038.
  5. Kotlyar V V, Kovalev A A, Porfirev A P, Kozlova E S, Orbital angular momentum of laser beam behind an off-axis spiral phase plate, Opt Lett, 44(2019)3673–3676.
  6. Ruffalo G, Massari M, Romanato F, Multiplication and division of the orbital angular momentum of light with diffractive transformation optics, Light-Sci Appl, 8(2019) 113; doi.org/10.1038/s41377-019-0222-2.
  7. Gong L, Zhao Q, Zheng H, Hu X, Huang K, Yang J, Li Y, Optical orbital-angular-momentum multiplexed data transmission under high scattering, Light-Sci Appl, 8(2019)27; doi.org/10.1038/s41377-019-0140-3.
  8. Kazemi S H, Mahmoudi M, Identifying orbital angular momentum of light in quantum wells, Laser Phys Lett. 16(2019) 076001; doi.org/10.1088/1612-202X/ab183e.
  9. Konzelmann A M, Kruger S O, Giessen H, Interaction of orbital angular momentum light with Rydberg excitons: modifying dipole selection rules, Phys Rev B, 100(2019)115308;org/10.1103/PhysRevB.100.115308.
  10. Rybakov F N, Kiselev N S, Chiral magnetic skyrmions with arbitrary topological charge, Phys Rev B, 99, 064437 (2019); doi.org/10.1103/PhysRevB.99.064437.
  11. Zhang L, Zhang L, Liu X, Dynamical detection of topological charges, Phys Rev A, 99(2019) 053606; doi.org/10.1103/PhysRevA.99.053606.
  12. Volyar A V, Bretsko M V, Akimova Y E, Egorov Y A, Milyukov V V, Sectoral perturbation of vortex beams: Shannon entropy, orbital angular momentum and topological charge, Comput Opt, 43(2019)723–734.
  13. Soskin M S, Gorshkov V N , Vastnetsov M V, Malos J T, Heckenberg N R, Topological charge and angular momentum of light beams carrying optical vortex, Phys Rev A, 56(1987)4064; doi.org/10.1103/PhysRevA.56.4064.
  14. Jesus-Silva A J, Fonseca E J S, Hickmann J M , Study of the birth of a vortex at Fraunhofer zone, Opt Lett, 37(2012)4552–4554.
  15. Wen J, Wang L, Yang X, Zhang J, Zhu S, Vortex strength and beam propagation factor of fractional vortex beams, Opt Express, 27(2019)5893–5904.
  16. Wang H, Liu L, Zhou C, Xu J, Zhang M, Teng S, Cai Y, Vortex beam generation with variable topological charge based on a spiral slit, Nanophotonics, 8(2019)317–324.
  17. Berry M V, Optical vortices evolving from helicoidal integer and fractional phase steps, J Opt A: Pure Appl Opt, 6(2004)259–268.
  18. Gotte J B, Franke-Arnold S, Zambrini R, Barnett S M , Quantum formulation of fractional orbital angular momentum, J Mod Opt, 54(2007)1723–1738.
  19. Basistiy I V, Soskin M S , Vasnetsov M V, Optical wavefront dislocations and their properties, Opt Commun, 119(1995)604–612.
  20. Gori F, Guattary G, Padovani C, Bessel-Gauss beams, Opt Commun, 64(1987)491–495.
  21. Kotlyar V V, Kovalev A A, Volyar A V, Topological charge of a linear combination of optical vortices: topological competition, Opt Express, 28(2020)826–8281.