Asian Journal of Physics Vol. 30 Nos 8 & 9 (2021) 1365-1375

Applications of multi-wavelength quantitative phase microscopy

Manoj Kumar1, Osamu Matoba1, Xiangyu Quan1, Yasuhiro Awatsuji2 and Yosuke Tamada3


Abstract

In this paper, some recent advances in the field of multi-wavelength quantitative phase microscopy based on digital holography are presented. The advantages of the multi-wavelength microscopic systems with their contribution to the measurement in many aspects are discussed. The endpoint of this study demonstrates some potential applications of a new configuration of the dual-wavelength digital holographic microscope. © Anita Publications. All rights reserved.
Keywords: Digital holographic microscopy, Quantitative phase imaging, Multi-wavelength, Refractive index and thickness measurement..


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserved

References

  1. Seebacher S, Osten W, Baumbach T, Jüptner W, The determination of material parameters of microcomponents using digital holography, Opt Lasers Eng, 36(2001)103-126.
  2. Yi F, Inkyu M, Lee Y H, Three-dimensional counting of morphologically normal human red blood cells via digital holographic microscopy, J Biomed Opt, 20(2015)016005; doi.org/10.1117/1.JBO.20.1.016005
  3. Hejna M, Jorapur A, Song J S, Judson R L, High accuracy label-free classification of single-cell kinetic states from holographic cytometry of human melanoma cells, Sci Rep, 7(2017)1; doi.org/10.1038/s41598-017-12165-1.
  4. Aknoun S, Savatier J, Bon P, Galland F, Abdeladim L, Wattellier B F, Monneret S, Living cell dry mass measurement using quantitative phase imaging with quadriwave lateral shearing interferometry: an accuracy and sensitivity discussion, J Biomed Opt, 20(2015)126009; doi.org/10.1117/1.JBO.20.12.126009.
  5. Rappaz B, Cano E, Colomb T, Kuhn J, Depeursinge C, Simanis V, Magistretti P J, Marquet P, Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy, J Biomed Opt, 14(2009)034049; doi.org/10.1117/1.3147385.
  6. Rappaz B, Marquet P, Cuche E, Emery Y, Depeursinge C, Magistretti P, Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy, Opt Express,13(2005)9361–9373.
  7. Charrière F, Marian A, Montfort F, Kuehn J, Colomb T, Cuche E, Marquet P, Depeursinge C, Cell refractive index tomography by digital holographic microscopy, Opt Lett, 31(2006)178–180.
  8. Fu D, Choi W, Sung Y, Yaqoob Z, Dasari R R, Feld M, Quantitative dispersion microscopy, Biomed Opt Express, 1(2010)347–353.
  9. Born M, Wolf E, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th Edn, Cambridge University Press, Cambridge (1999).
  10. Schnars U, Juptner W P O, Digital recording and numerical reconstruction of holograms, Meas Sci Technol, 13(2002)R85–R101.
  11. Nehmetallah G, Williams L, Nguyen T, Latest advances in single and multiwavelength digital holography and holographic microscopy. Holography for Breakthrough Applications, (Intech Open Publications, London, UK), 2020.
  12. Tian X, Tu X, Della Croce K, Yao G, Cai H, Brock N, Pau S, Liang R, Multi-wavelength quantitative polarization and phase microscope, Biomed Opt Express, 10(2019)1638–1648.
  13. Mann C J, Bingham P R, Paquit V C, Tobin K W, Quantitative phase imaging by three-wavelength digital holography, Opt Express,16(2008)9753–9764.
  14. Gao P, Yao B, Rupp R, Min J, Guo R, Ma B, Zheng J, Lei M, Yan S, Dan D, Ye T, Autofocusing based on wavelength dependence of diffraction in two-wavelength digital holographic microscopy, Opt Lett, 37(2012)1172–1174.
  15. Ferraro P, Grilli S, Miccio L, Alfieri D, De Nicola S, Finizio A, Javidi B, Full color 3-D imaging by digital holography and removal of chromatic aberrations, J Disp Technol, 4(2008)97–100.
  16. Rappaz B, Charrière F, Depeursinge C, Magistretti P J, Marquet P, Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium, Opt Lett, 33(2008)744–746.
  17. Jafarfard M R, Moon S, Tayebi B, Kim D Y, Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness, Opt Lett, 39(2014)2908–2911.
  18. Park Y, Yamauchi T, Choi W, Dasari R, Feld M S, Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells, Opt Lett, 34(2009)3668–3670.
  19. Pham H, Bhaduri B, Ding H, Popescu G, Spectroscopic diffraction phase microscopy, Opt Lett, 37(2012)3438–3440.
  20. Fu D, Choi W, Sung Y, Yaqoob Z, Dasari R R, Feld M S, Quantitative dispersion microscopy, Biomed Opt Express, 1(2010)347–353.
  21. Rinehart M, Zhu Y, Wax A, Quantitative phase spectroscopy, Biomed Opt Express, 3(2012)958–965.
  22. Jang Y, Jang J, Park Y, Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells, Opt Express, 20(2012)9673–9681.
  23. Di J, Zhang J, Xi T, Ma C, Zhao J, Improvement of measurement accuracy in digital holographic microscopy by using dual-wavelength technique, J Micro/Nanolithography, MEMS, and MOEMS, 14(2015)041313; dorg/10.1117/1.JMM.14.4.041313.
  24. Wagner C, Osten W, Seebacher S, Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring, Opt Eng, 39(2000)79–85.
  25. Gass J, Dakoff A, Kim M, Phase imaging without 2π ambiguity by multiwavelength digital holography, Opt Lett, 28(2003)1141–1143.
  26. Parshall D, Kim M, Digital holographic microscopy with dual-wavelength phase unwrapping, Appl Opt, 45(2006)451–459.
  27. Kuhn J, Colomb T, Montfort F, Charriere F, Emery Y, Cuche E, Marquet P, Depeursinge C, Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition, Opt Express, 15(2007)7231-7242.
  28. Khmaladze A, Kim M, Lo C, Phase imaging of cells by simultaneous dual-wavelength reflection digital holography, Opt Express, 16(2008)10900–10911.
  29. Rinehart M T, Shaked N T, Jenness N J, Clark R L, Wax A, Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera, Opt Lett, 35(2010)2612-2614.
  30. Monemhaghdoust Z, Montfort F, Emery Y, Depeursinge C, Moser C, Dual wavelength full field imaging in low coherence digital holographic microscopy, Opt Express, 19(2011)24005-24022.
  31. Jeon S, Cho J, Jin J N, Park N C, Park Y P, Dual-wavelength digital holography with a single low-coherence light source, Opt Express, 24(2016)18408-18416.
  32. Di J, Li Y, Xie M, Zhang J, Ma C, Xi T, Li E, Zhao J, Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry, Appl Opt, 55(2016)7287–7293.
  33. Khmaladze A, Matz R L, Zhang C, Wang T, Holl M M B, Chen Z, Dual-wavelength linear regression phase unwrapping in three-dimensional microscopic images of cancer cells, Opt Lett, 36(2011)912–914.
  34. Curl C L, Bellair C J, Harris T, Allman B E, Harris P J, Stewart A G, Roberts A, Nugent K A, Delbridge L M, Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy, Cytom Part A, 65A(2005)88–92.
  35. Zhang Q, Zhong L, Tang P, Yuan Y, Liu S, Tian J, Lu X, Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging, Sci Rep, 7(2017)2532; doi. org/10.1038/s41598-017-02797-8.
  36. Kumar M, Quan X, Awatsuji Y, Tamada Y, Matoba O, Single-shot common-path off-axis dual-wavelength digital holographic microscopy, Appl Opt, 59(2020)7144–7152.
  37. Kumar M, Quan X, Awatsuji Y, Cheng C, Hasebe M, Tamada Y, Matoba O, Common-path multimodal three-dimensional fluorescence and phase imaging system, J Biomed Opt, 25(2020)032010; doi.org/10.1117/1.JBO.25.3.032010.
  38. Kumar M, Quan X, Awatsuji Y, Tamada Y, Matoba O, Digital holographic multimodal cross-sectional fluorescence and quantitative phase imaging system, Sci Rep, 10(2020)1–13.