Asian Journal of Physics Vol 32, Nos 5 – 8 (2023) 331-340

Modelling photopolymer behavior as optical recording medium

ASergi Gallego1,2, Cristian Neipp1,2, Roberto Fernández1,2, Juan C Bravo1, Joan J Sirvent-Verdú1, Andrés Pérez-Bernabéu1, Inmaculada Pascual1,3 and Augusto Beléndez1,2
1,3I.U. Física Aplicada a las Ciencias y las Tecnologías. Universidad de Alicante. Carret.
San Vicente del Raspeig s/n. E03690 San Vicente del Raspeig –Alicante. Spain
2Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal. Universidad de Alicante. Spain
3Departamento de Óptica, Farmacología y Anatomía. Universidad de Alicante. Spain
Dedicated in memory of Prof John Sheridan


Since photopolymers were first used as a holographic recording medium in the 1970s, one of the most important goals to be achieved was a quantitative understanding of their behaviour. In general, photopolymers are composed of one or more monomers, a binder and a dye that absorbs light in a certain region of the spectrum. The absorbed photons initiate polymerisation in the bright regions creating a concentration gradient compensated by the diffusion of chemical molecules described by Fick’s law. The first models to simulate the etching process in this type of materials were proposed in the early 1990s; they were very simple models where the authors assumed a harmonic in the monomer concentration, a constant rate of polymerisation and diffusion without direct influence of the refractive index of the monomer and the polymer. From this point on, improvements started to be made in the so-called “diffusion models”. One of the most important breakthroughs, proposed by John Sheridan’s research group in 2000, is the non-local behaviour of the photopolymer due to the finite size of the polymer chains. This phenomenon affects the limit of holographic recording resolution. Our research group at the University of Alicante (Spain) had the honour to collaborate with John Sheridan’s group developing new advances in the modelling of photopolymers as an optical recording medium, such as the three-dimensional expansion of the models, and the explanation of surface variations or models to explain the recording of diffractive optical elements in this type of materials. In this papSer, we review this collaboration to improve diffusion models applied to photopolymers. © Anita Publications. All rights reserved.
Keywords: Holography, Hologram, Photopolymer, Non-local diffusion model.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Bjelkhagen H I (Ed), Selected Papers on Holographic Recording Materials, SPIE Milestone Series Vol MS 130, (SPIE Optical Engineering Press, Bellingham), 1996.
  2. Close D H, Jacobson A D, Margerum J D, Brault R G, McClung F J, Hologram recording on photopolymer holographic recording material, Appl Phys Lett,14(1969)159–160.
  3. Moran J M, Kaminow I P, Properties of holographic gratings photoinduced in polymethyl methacrylate, Appl Opt,12(1973)1964–1970.
  4. Colburn W S, Haines K A, Volume hologram formation in photopolymer material, Appl Opt, 10(1971)1636–1641.
  5. Walkman D A, Li H-Y S, Horner M G, Volume Shrinkage in Slant Fringe Gratings of a Cationic Ring-Opening Holographic Recording Material, J Imaging Sci Technol,41(1997)497–514.
  6. Bruder F-K, Deuber F, Fäcke T, Hagen R, Hönel D, Jurbergs D, Rölle T, Weiser M S, Reaction diffusion model applied to high resolution Bayfol® HX photopolymer, Proc SPIE, 7619(2010)76190I; doi. doi.org/10.1117/12.841956.
  7. Bruder F-K, Fäcke T, Rölle T, The Chemistry and Physics of Bayfol® HX Film Holographic Photopolymer, Polymers, 9(2017)472; doi:10.3390/polym9100472.
  8. Wopschall R H, Pampalone T R, Dry photopolymer film for recording holograms, Appl Opt, 11(1972)2096–2097.
  9. Ingwall R T, Troll M, Mechanism of hologram formation in DMP-128 photopolymer, Opt Eng, 28(1989)586–591.
  10. Adhami R R, Lanteigne D J, Gregory D A, Photopolymer hologram formation theory, Microw Opt Technol Lett, 4(1991)106–109.
  11. Zhao G, Mouroulis P, Diffusion model of hologram formation in dry photopolymers materials, J Mod Opt, 41 (1994)1929–1939.
  12. Aubrecht I, Miler M, Koudela I, Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth, J Mod Opt, 45(1998)1465–1477.
  13. Kwon J H, Hwang H C, Woo K C, Analysis of temporal behaviour of beams diffracted by volume gratings formed in photopolymers, J Opt Soc Am B, 16(1999)1651–1357.
  14. Piazzolla S, Jenkins B K, First-harmonic diffusion model for holographic grating formation in photopolymers, J Opt Soc Am B, 17(2000)1147–1157.
  15. Sheridan J T, Lawrence J R, Nonlocal-response diffusion model of holographic recording in photopolymer, J Opt Soc Am A, 17(2000)1008–1014.
  16. Lawrence J R, O’Neill F T, Sheridan J T, Photopolymer holographic recording material parameter estimation using a nonlocal diffusion based model, J Appl Phys, 90(2001)3142–3148.
  17. Wu S, Glytsis E N, Holographic gratings formation in photopolymers: analysis and experimental results based on a non-local diffusion based model and rigorous couple-wave analysis, J Opt Soc Am A, 20(2003)1177–1188.
  18. Qi Y, Gleeson M R, Guo J, Gallego S, Sheridan J T, “Quantitative comparison of five different photosensitizers for use in a photopolymer, Phys Res Int, 2012(2012)975948; doi:10.1155/2012/975948.
  19. Mackey D, Babeva T, Naydenova I, Toal V, A diffusion model for spatially dependent photopolymerization. In Progress in Industrial Mathematics at ECMI 2008, Fitt A, Norbury J, Ockendon H, Wilson E, (Eds), (Springer, Berlin, Heidelberg), 2010.
  20. Li H, Qi Y, Sheridan J T, Three-dimensional extended nonlocal photopolymerization driven diffusion model. Part I. Absorption, J Opt Soc Am A, 31(2014)2638–2647.
  21. Kelly J V, Gleeson M R, Close C E, O’Neill F T, Sheridan J T, Gallego S, Neipp C, Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model, Express, 13(2005) 6990–7004.
  22. Kelly J V, O’Neill F T, Sheridan J T, Neipp C, Gallego S, Ortuño M, Holographic photopolymer materials: nonlocal polymerization-driven diffusion under nonideal kinetic conditions, J Opt Soc Am A, 22(2005)407–416.
  23. Neipp C, Beléndez A, Sheridan J T, Kelly J V, O’Neill F T, Gallego S, Ortuño M, Pascual I, Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity, Opt Express, 11(2003)1876–1886.
  24. Gleeson M R, Sheridan J T, Bruder F-K, Rölle T, Berneth H, Weiser M-S, Fäcke T, Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model, Opt Express, 9(2011) 26325–26342.
  25. Neipp C, Gallego S, Ortuño M, Márquez A, Álvarez M L, Beléndez A, Pascual I, First-harmonic diffusion-based model applied to a polyvinyl-alcohol– acrylamide-based photopolymer, J Opt Soc Am B, 20(2003)2052–2060.
  26. Gallego S, Márquez A, Ortuño M, Francés J, Pascual I, Beléndez A, Diffractive and interferometric methods to characterize photopolymers with liquid crystal molecules as holographic recording material, J Eur Opt Soc: Rapid Publ, 7(2012)12024.
  27. Neipp C, Beléndez A, Gallego S, Ortuño M, Pascual I, Sheridan J T, Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material, Opt Express, 11(2003) 1835–1843.
  28. Gallego S, Ortuño M, Neipp C, Márquez A, Beléndez A, Pascual I, Kelly J V, Sheridan J T, 3 Dimensional analysis of holographic photopolymers based memories, Opt Express, 13(2005)3543–3557.
  29. Gallego S, Neipp C, Ortuño M, Beléndez A, Fernández E, Pascual I, Analysis of monomer diffusion in depth in photopolymer materials, Opt Commun, 274(2007)43–49.
  30. Márquez A, Neipp C, Gallego S, Ortuño M, Pascual I, Beléndez A, Holographically edge enhanced image formation system, Opt Lett, 28(2003)1510–1512.
  31. Ortuño M, Gallego S, García C, Neipp C, Pascual I, Holographic characteristics of a 1-mm-thick photopolymer to be used in holographic memories, Appl Opt, 42(2003)7008–7012.
  32. Gallego S, Ortuño M, Neipp C, Fernández E, Beléndez A, Pascual I, Improved maximum uniformity and capacity of multiple holograms recorded in absorbent photopolymers, Opt Express, 15(2007)9308–9319.
  33. Gallego S, Ortuño M, Neipp C, Márquez A, Beléndez A, Pascual I, Kelly J V, Sheridan J T, Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers, Opt Express, 13(2005)1939–1947.
  34. Gallego S, Tomita Y, Editorial for the Special Issue “Polymeric and Polymer Nanocomposite Materials for Photonic Applications, Polymers, 12(2020)3036; doi.org/10.3390/polym12123036.
  35. Gallego S, Fernández R, Márquez A, Ortuño M, Neipp C, Gleeson M R, Sheridan J T, Beléndez A, Two diffusion photopolymer for sharp diffractive optical elements recording, Opt Lett, 40(2015)3221–3224.
  36. Fernández R, Gallego S, Márquez A, Francés J, Navarro-Fuster V, Beléndez A, Blazed Gratings Recorded in Absorbent Photopolymers, Materials, 9(2016)195; doi.org/10.3390/ma9030195.
  37. Fernández R, Gallego S, Márquez A, Francés J, Navarro-Fuster V, Pascual I, Diffractive lenses recorded in absorbent Photopolymers, Opt Express, 24(2016)1559–1572.
  38. Fernández R, Gallego S, Márquez A, Neipp C, Calzado E M, Francés J, Morales-Vidal M, Beléndez A, Complex Diffractive Optical Elements Stored in Photopolymers, Polymers, 11(2019)1920.
  39. Sheridan J T, Gleeson M, Close C, Monomer diffusion rates in photopolymer material: Part I. Low spatial frequency holographic gratings: reply, J Opt Soc Am B, 29(2012)460–462.
  40. Close C E, Gleeson M R, Mooney D A, J. T. Sheridan J T, Monomer diffusion rates in photopolymer material. Part II. High-frequency gratings and bulk diffusion, J Opt Soc Am A, 28(2011)842–850.
  41. Li H, Qi Y, Sheridan J T, Three-dimensional extended nonlocal photopolymerization driven diffusion model. Part II. Photopolymerization and model development, J Opt Soc Am B, 31(2014)2648–2656.
  42. Fernández R, Navarro-Fuster V, Martínez-Guardiola F J, Gallego S, Márquez A, Pascual I, Beléndez A, Modeling diffractive lenses recording in environmentally friendly photopolymer, Polymers, 9(2017)278; doi.org/10.3390/polym9070278.