Asian Journal of Physics Vol 30, No 12 (2021) 1699-1796

Printable metallic nanoparticle-induced surface plasmonic resonance enhancement on infrared
photodetector under femtosecond laser frequency comb illumination

Guiru Gu1, Thitikorn Kemsri2†, Boyang Xiang2, Cheryl Schnitzer3 and Xuejun Lu2
1Department of Physics & Astronomy, Stonehill College, 320 Washington Street, Easton, MA 02357, USA
2Department of Electrical and Computer Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
3Department of Chemistry, Stonehill College, 320 Washington Street, Easton, MA 02357, USA
Dedicated to Prof D V G L N Rao


In this paper, we report surface plasmonic enhancement of printable metallic nanoparticles on a GaAs p-i-n photodetector under a femtosecond (fs) laser frequency comb illumination at the central wavelength of 850-nm. The detection speed of the GaAs p-i-n photodetector is increased from 2.3 GHz to 3.4 GHz. The plasmonic enhancement of the nanoparticles is compared to that of the nano-disk optical antenna array fabricated using the electron-beam (E-beam) photolithography technique. Compared to the E-beam photolithography-made nano-disk optical antennas, the printable nanoparticle approach offers a cost-effective plasmonic enhancement method with a significantly simplified fabrication process and high throughput. © Anita Publications. All rights reserved.
Keywords: Printable nanoparticles, Surface plasmonic enhancement, Optical antennas, Simultaneous enhancement of photodetection bandwidth and sensitivity.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. (a) Gu G, Mojaverian N, Vaillancourt J, Lu X, Surface plasmonic resonance induced near-field vectors and their contribution to quantum dot infrared photodetector enhancement, J Phys D: Appl Phys, 47(2014)435106; doi.10.1088/0022-3224/47/43/435106.
    (b) Liu R, Vasinajindakaw P, Gu G, Vaillancourt J, Lu X, Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves, J Phys D: Appl Phys, 46 (2013)015102; doi.10.1088/0022-3727/46/1/015102.
  1. (a) Chang C-C, Sharma Y D, Kim Y-S, Bur J A, Shenoi R V, Krishna S, Huang D, Lin S-Y, A surface plasmon enhanced infrared photodetector based on InAs quantum dots, Nano Lett, 10 (2010)1704–1709.
    (b) Vasinajindakaw P, Vaillancourt J, Gu G, Liu R, Ling Y, Lu X, A Fano-type interference enhanced quantum dot infrared photodetector, Appl Phys Lett, 98 (2011)211111; doi.org/10.1063/1.3593128.
    (c) Lee S C, Krishna S, Brueck S R J, Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors, Appl Phys Lett, 97(2010)021112; doi.org/10.1063/1.3454776.
    (d) Gu G, Vaillancourt J, Puminun Vasinajindakaw P, Xuejun Lu, Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement, Semicond Sci Technol, 28(2013)105005; doi.10.1088/0268-1242/28/10/ 105005.
  1. (a) Wu W, Bonakdar A, Mohseni H, Plasmonic enhanced quantum well infrared photodetector with high detectivity, Appl Phys Lett, 96(2010)161107; doi.org/10.1063/1.3419885.
    (b) Mojaverian N, Gu G, Lu X, A plasmonic dipole optical antenna coupled quantum dot infrared photodetector, J Phys D: Appl Phys, 48(2015)475102; doi. 10.1088/0022-3727/48/47/475102.
    (c) Zhang Y, Vaillancourt J, Gu G, Guo W, Lu X, Quantum selection rule dependent plasmonic enhancement in quantum dot infrared photodetectors, J Appl Phys, 119(2016)93103; doi.org/10.1063/1.4949511.
  2. Gu G, Kemsri T, Xiang B, Aghdam A G, Lu X, Circular disk plasmonic optical antenna array-enhanced avalanche photodiode with simultaneously enhanced gain and detection speed, J Nanophotonics, 15(2021)026013; doi.org/10.1117/1.JNP.15.026013.