Asian Journal of Physics Vol. 33, Nos 3 & 4 (2024) 219-238

Atmospheric turbulence and its optical manifestations

Victor Nosov, Vladimir Lukin, Eugene Nosov and Andrei Torgaev
V E Zuev Institute of Atmospheric Optics SB RAS, 1 Academician Zuev sq., Tomsk 634055, Russia

Dedicated to Professor Anna Consortini for her significant contributions and pioneering works in the field of atmospheric turbulence and her continuous commitment to promote optics at global level 


The results of long-term experimental studies of coherent turbulence of the mountain boundary layer of the atmosphere using acoustic and optical methods are presented. The presence of regions of coherent (non-Kolmogorov) turbulence in the atmosphere over the territories of mountain observatories, in which a single large coherent structure has a significant influence, has been experimentally confirmed. In such regions of coherent turbulence, the attenuation of light fluctuations is registered. This leads to a significant reduction in the jitter of astronomical images and to an improvement in their quality. It is established that astronomical observations are accompanied by a frequent transition from Kolmogorov turbulence to coherent turbulence. This change in the type of turbulence gives intermittency in the jitter of astronomical images. This paper (which is of an overview nature) presents results of many years of experimental studies of the effect of intermittent turbulence performed in high- mountain Russian astronomical observatories. © Anita Publications. All rights reserved.
Doi: 10.54955/AJP.33.3-4.2024.219-238
Keywords: Turbulence, Airflow; Coherent structure, Coherent turbulence; Dispersion.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Monin A S, Yaglom A M, Statistical hydromechanics, Part 1. M. 1965, p 460.
  2. Obukhov A M, Proceedings of the Academy of Sciences of the USSR, Ser geophysical, 1953. No. 2. 155-165.
  3. Gurvich A S, Atmosphere and Ocean Physics. Notes of Academy of Sciences of the USSR, 4(1963)160–169.
  4. Tatarsky V I, Propagation of waves in a turbulent atmosphere, M: Science Nauka, 1967, p 464 p.
  5. Burlamacchi P, Consortini A, Ronchi L, Time-resolved measurements of the phase fluctuations of a coherent beam at the emergence from a turbulent layer, Appl Opt, 6(1967)1273–1275.
  6. Consortini A, Ronchi L, Choice of the model of atmospheric turbulence, Appl Opt, 11(1972)1205–1211.
  7. Consortini A, Ronchi L, Moroder E, Role of the outer scale of turbulence in atmospheric degradation of optical images, J Opt Soc Am, 63(1973)1246–1248.
  8. Lukin V P, Pokasov V V, Khmelevtsov S, Investigation of temporal characteristics of optical waves phase propagating in ground-boundary layer, Radiofizika, 15(1972)1861–1866.
  9. Lukin V P, Pokasov V V, Phase fluctuations of optical waves propagating in turbulent atmosphere, Izvestia VUZov, Radiophysics, 16(1973)1726–1729.
  10. Mironov V L, Lukin V P, Pokasov V V, Khmelevtsov S S, Phase fluctuations of optical waves propagating in a turbulent atmosphere, Izv. Academy of Sciences of the USSR, Radio Engineering and Electronics, 20(1975)1164–1170.
  11. Bouricius G M B, Clifford S F, Experimental study of atmospheric ally induced phase fluctuations in an optical signal, J Opt Soc Am, 60(1970)1484–1489.
  12. Lukin V, Pokasov V, Optical wave phase fluctuations, Appl Opt, 20(1981)121–135.
  13. Gubkin S M, Emaleev O N, Lukin V P, Mutnitskii N G, Pokasov V V, Experimеntal investigations of astroclimatic characteristics of Elbrus region, Soviet Astron, 27(1983)456–459.
  14. Lukin V P, Optical measurements of the outer scale of atmospheric turbulence, Proc SPIE, 1993(1968)327–336.
  15. Lukin V P, Investigation of some peculiarities in the structure of large–scale atmospheric turbulence, Proc SPIE, 2200(1994)384–395; doi.org/10.1117/12.177255.
  16. Lukin V P, Comparison of the spectral model of atmospheric turbulence, Proc SPIE, 2222(1994)527–535.
  17. Lukin V P, Investigation of the anisotropy of the atmospheric turbulence spectrum in the low-frequency range, Proc SPIE, 2471(1995)347–355; doi.org/10.1117/12.211944.
  18. Lukin V P, Antoshkin L V, Botugina N N, Emaleev O N, Investigation of turbulence spectrum in the ground atmospheric layer, Atmos Ocean Opt, 8(1995)993–996.
  19. Borgnino J, Estimation of the spatial coherence outer scale relevant to long baseline interferometry and imaging in optical astronomy, Appl Opt, 29(1990)1863–1865.
  20. Borgnino J, Martin F, Ziad A, Effect of a finite spatial-coherence outer scale on the covariances of angle-of-arrival fluctuations, Opt Commun, 91(1992)267–279.
  21. Ziad A, Borgnino J, Martin F, Agabi A, Experimental estimation of the spatial-coherence outer scale from a wavefront statistical analysis, Astron Astrophys, 282(1994)1021–1033.
  22. Vernin J, Mechanism of formation of optical turbulence, ASP Conference Series, 266(2002)2–17.
  23. Dewan E M, Grossbard N, The inertial range “outer scale” and optical turbulence, Environ Fluid Mech, 7(2007) 383–396.
  24. Reinhard G W, Collins S A, Outer-Scale Effects in Turbulence-Degraded Light-Beam Spectra, J Opt Soc Am, 62(1972)1526–1528.
  25. Coulman C E, Vernin J, Coquegniot Y, Caccia J L, Outer scale of turbulence appropriate to modeling refractive-index structure profiles, Appl Opt, 27(1988)155–160.
  26. Lukin V P, Atmospheric turbulence parameters measurements // Proc. IUA Site 2000. ASP Conference Series. 266(2002)18–27.
  27. Lukin V P, Nosov E V, Fortes B.V, Effective outer scale of turbulence for imaging through the atmosphere, Proc SPIE, 3219(1998)98–106.
  28. Coulman C E, Vernin J, Significance of anisotropy and the outer scale of turbulence for optical and radio seeing, App Opt, 30(1991)118–126.
  29. Consortini A, Innocenti C, Paoli G, Estimate method for outer scale of atmospheric turbulence, Opt Commun, 214(2002)9–14.
  30. Innocenti C, Consortini A, Method for estimating the outer scale of atmospheric turbulence and its dependence on the model, Proc SPIE, 5237(2004)25–30.
  31. Sun Y Y, Consortini A, Li Z P, A new method for measuring the outer scale of atmospheric turbulence, Waves in Random and Complex Media, 17(2007)1–8.
  32. Lukin V P, Outer scale of turbulence and its influence on fluctuations of optical waves, Phys Usp, 64(2021)64 (2021)280; doi. 10.3367/UFNe.2020.10.038849.
  33. Tokovinin A, Where is the surface-layer turbulence?, Proc SPIE, 77331N(2010); doi. org/10.1117/12.856409.
  34. Nosov V V, Lukin V P, Nosov E V, Torgaev A V, Formation of Turbulence at Astronomical Observatories in Southern Siberia and North Caucasus, Atmos Ocean Opt, 32(2019)464–482.
  35. Nosov V V, Lukin V P, Nosov E V, Torgaev A V, The emergence and evolution of the concept “coherent turbulence”, Journal of Physics: Conference Series, 2020, 1499( 012005).1–7.
  36. Lukin V P, Nosov E V, Kovadlo P G, Nosov V V, Torgaev A V, Causes of non-Kolmogorov turbulence in the atmosphere, Appl Opt, 55(2016)B163–B168.
  37. Lukin V P, Bol’basova L A, Nosov V V, Comparison of Kolmogorov’s and coherent turbulence, Appl Opt, 53(2014) B231–B236.
  38. Nosov V V, Atmospheric Turbulence in the Anisotropic Boundary Layer, In Optical waves and laser beams in the irregular atmosphere, 2nd edn; Blaunshtein N., Kopeika N, (Boca Raton, Taylor & Francis Group, CRC Press: London, New York, USA). 2018; Chap. 3. 67–180.
  39. Nosov V V, Lukin V P, Kovadlom P G, Nosov E V, Torgaev A V, Optical properties of turbulence in the mountainous boundary layer of the atmosphere, (Novosibirsk: Publishing House of SB RAS), 2016, p 153.
  40. Nosov V V, Lukin V P, Nosov E V, Torgaev A V, Grigoriev V M, Kovadlo P G, Coherent structures in the turbulent atmosphere, In Mathematical Models of Non-linear Phenomena, Processes and Systems: From Molecular Scale to Planetary Atmosphere, 3rd edn; Nadicto A B, Uvarova L A, Latyshev, A V, (Nova Science Publishers: N Y, USA), 2013; Chap 20, pp 297–330.
  41. Nosov V V, Grigoriev V M, Kovadlo P G, Lukin V P, Nosov E V, Torgaev A V, Astroclimate of specialized stations of the Large Solar Vacuum Telescope: Part I. Part II. SPIE 2008. 6936, 69360P, 69360Q.
  42. Inhomogeneously Heated Surfaces. In Nonlinearity: Problems, Solutions and Applications, 3rd edn; Uvarova L A, Nadicto A B, Latyshev A V, (Nova Science Publishers: N Y, USA), 2017; Vol 1, Chap 17, pp 335–412.
  43. Nosov V V, Lukin V P, Nosov E V, Torgaev A V, Grigoriev V M, Kovadlo P G, Coherent structures in turbulent atmosphere, Proc SPIE, 2009. 7296. 729609.
  44. Nosov V V, Lukin V P, Nosov E V, Torgaev A V, Turbulence Structure over Heated Surfaces: Numerical Solutions, Atmos Ocean Opt, 29(2016)234–243.
  45. Nosov V V, Lukin V P, Nosov E V, Torgaev A V, A V Kolmogorov’s and coherent turbulence in the atmosphere, Imaging and Applied Optics 2019. OSA Paper PM3C.3.
  46. Nosov V V, Lukin V P, Nosov E V, Torgaev A V, Afanas’ev V L, Balega Y U, Vlasyuk V V, Panchuk V E, Yakopov G V, Astroclimate Studies in the Special Astrophysical Observatory of the Russian Academy of Sciences, Atmos Ocean Opt, 32(2019)8–18.
  47. Nosov V V, Lukin V P, Nosov E V, Torgaev A V, Representation of the synoptic spectra of atmospheric turbulence by sums of spectra of coherent structures, IOP Conference Series: Earth and Environmental Science (EES), 2019.231. No 012040. 1–7.
  48. Nosov V V, Lukin V P,Torgaev A V, Kovadlo P G, Atmospheric coherent turbulence, Atmos Ocean Opt, 26(2013)201–206.
  49. Nosov V V, Grigoriev V M, Kovadlo P G, Lukin V P, Nosov E V, Torgaev A V, Intermittency of the astronomical images jitter in the high-mountain observations, Proc SPIE, 9292OV(2014); doi.org/10.1117/12.2074614.
  50. Nosov V V, Lukin V P, Nosov E V, Torgaev A V, The effect of intermittency of astronomical images in the high-altitude observations, Imaging and Applied Optics. 2019. OSA Paper JW2A.36; doi.org/10.1364/COSI.2019.JW2A.36.
  51. Brandt P N, Mauter H A, Smartt R, Day-time seeing statistics at Sacramento Peak Observatory, Astron Astrophys, 188(1987)163–168.
  52. Nosov V V, Lukin V P, Nosov E V, Torgaev A V, Measurement of atmospheric turbulence characteristics by the ultrasonic anemometer and the calibration processes, Atmosphere, 10(2019)460; doi.org/10.3390/atmos10080460.
  53. Azbukin A A, Bogushevich A Y, Lukin V P, Nosov V V, Nosov E V, Torgaev A V, Hardware-Software Complex for Studying the Structure of the Fields of Temperature and Turbulent Wind Fluctuations, Atmos Ocean Opt, 5(2018)479–485.