Asian Journal of Physics Vol. 33, Nos 1 & 2 (2024) 47-60

Thermal properties of 2D materials in the monolayer limit: Raman scattering techniques

Clara Trillo Yagüe and Andrés Cantarero
Molecular Science Institute, University of Valencia, PO Box 22085 Valencia, Spain


Raman spectroscopy has become the most suitable method to measure the thermal conductivity of two dimensional (2D) semiconductors (also named layered or van der Waals materials) in a few layer samples or in the monolayer (ML) limit. Raman spectroscopy is an optical technique, therefore avoids the use of contacts, which can complicate the modelization of the experiment, masking the real values of the thermal conductivity of the 2D material. The technique employs a laser as the heating element and the Raman signal as a thermometer. In its simple set up we need a laser, which can be focused on the flake of the material with a high magnifcation objective and a single monochromator with an edge filter can be used to monitor the temperature. The in-plane thermal conductivity is obtained by appropriately modeling the experiment. Care has to be taken in designing the experiment to simplify the theoretical model and control all possible sources of errors and uncertainties. In this work, we discuss the fundamental principles of the method, the details of the theoretical modeling, the approximations made in the model and the main uncertainties giving rise to over- or under estimations of the thermal conductivity. We also advise from wrong interpretations found in the literature. Finally, a list of thermal conductivity values of 2D materials is given and discussed. © Anita Publications. All rights reserved.
Keywords: Raman scattering, Thermal conductivity, 2D materials. Graphene.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Allen M J, Tung V C, Kaner R B, Honeycomb Carbon: A Review of Graphene, Chem Rev, 110(2010)132–145.
  2. Olabi A G, Abdelkareem M A, Wilberforce T, Sayed E T, Application of graphene in energy storage device–A review, Renewable and Sustainable Energy Reviews, 135(2021)110026; doi.org/10.1016/j.rser.2020.110026.
  3. Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H, Lei J, Wu D, Liu F, Fu Q, Zeng Q, Hsu C-H, Yang C, Lu L, Yu T, Shen Z, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G, Liu Z, A library of atomically thin metal chalcogenides, Nature, 556(2018)355–359.
  4. Yang K, Cahangirov S, Cantarero A, Rubio A, D’Agosta R, Thermoelectric properties of atomically thin silicene and germanene nanostructures, Phys Rev B, 89(2014)125403; doi.org/10.1103/PhysRevB.89.125403.
  5. Wei J, Sajjad M, Zhang J, Li D, Mao Z, The rise of novel 2D materials beyond graphene: a comprehensive review of their potential as supercapacitor electrodes, Surf Interfaces, 42(2023)103334; doi.org/10.1016/j.surfin.2023.103334.
  6. Zhang H, Liu C.-X, Qi X.-L, Dai X, Fang Z, Zhang S.-C, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat Phys, 5(2009)438–442.
  7. Kou L, Ma Y, Sun Z, Heine T, Chen C, Two-dimensional topological insulators: Progress and prospects, J Phys Chem Lett, 8(2017)1905–1919.
  8. Kumbhakar P, Jayan J S, Sreedevi M A, Sreeram P, Saritha A, Ito T, Tiwary C S, Prospective applications of two-dimensional materials beyond laboratory frontiers: A review, iScience, 26(2023)106671; doi.org/10.1016/j.isci.2023.106671.
  9. Kuball M, Pomeroy J W, A review of Raman thermography for electronic and opto-electronic device measurement with submicron spatial and nanosecond temporal resolution, IEEE Trans Device Mater Reliab, 16(2016)667–684.
  10. Lundh J S, Zhang T, Zhang Y, Xia Z, Wetherington M, Lei Y, Kahn E, Rajan S, Terrones M, Choi S, 2d materials for universal thermal imaging of micro-and nanodevices: An application to gallium oxide electronics, ACS Appl Electron Mater, 2(2020)2945–2953.
  11. Lin Z, Liu C, Chai Y, High thermally conductive and electrically insulating 2D boron nitride nanosheet for efficient heat dissipation of high-power transistors, 2D Mater, 3(2016)041009; doi.10.1088/2053-1583/3/4/04 10009.
  12. Cai W, Moore A L, Zhu Y, Li X, Chen S, Shi L, Ruoff R S, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano Lett, 10(2010)1645–1651.
  13. Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett, 8(2008)902–907.
  14. Chen S, Moore A L, Cai W, Suk J W, An J, Mishra C, Amos C, Magnuson C W, Kang J, Shi L, Ruoff R S, Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments, ACS Nano, 5(2011)321–328.
  15. Yan R, Simpson J R, Bertolazzi S, Brivio J, Watson M, Wu X, Kis A, Luo T, Walker A R H, Xing H G, Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy, ACS Nano, 8(2014)986–993.
  16. Beechem T, Yates L, Graham S, Invited Review Article: Error and uncertainty in Raman thermal conductivity measurements, Rev Sci Instrum, 86(2015)041101; doi.org/10.1063/1.4918623.
  17. Yalon E, Aslan B, Smithe K K H, McClellan C J, Suryavanshi S V, Xiong F, Sood A, Neumann C M, Xu X, Goodson K E, Heinz T F, Pop E, Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS2 by Raman Thermometry, ACS Appl Mater Interfaces, 9(2017)43013–43020.
  18. Yu Y, Minhaj T, Huang L, Yu Y, Cao L, In-plane and interfacial thermal conduction of two-dimensional transition-metal dichalcogenides, Phys Rev Appl, 13(2020)034059; doi.org/10.1103/PhysRevApplied.13.034059.
  19. Liu J, Li P, Zheng H, Review on techniques for thermal characterization of graphene and related 2D materials, Nanomaterials, 11(2021)2787; doi.org/10.3390/nano11112787.
  20. Zhang L, Lu Z, Song Y, Zhao L, Bhatia B, Bagnall K R, Wang E N, Thermal expansion coefficient of monolayer molybdenum disulfide using micro-Raman spectroscopy, Nano Lett, 19(2019)4745–4751.
  21. Reig D S, Varghese S, Farris R, Block A, Mehew J D, Hellman O, Wozniak P, Sledzinska M, Sachat A El, Chavez-Angel E, Valenzuela S O, van Hulst N F, Ordejon P, Zanolli Z, Torres C M S, Verstraete M J, Tielrooij K.-J, Unraveling Heat Transport and Dissipation in Suspended MoSe2 from Bulk to Monolayer, Adv Mater, 34(2022)2108352; doi.org/10.1002/adma.202108352.
  22. Jin S, He Z, Ding Q, Cai H, Zhang H, Zeng Q, Li G, Zhao C, Ni N, Wang B, Improved measurement of local thermal conductivities of coatings by the steady-state Raman spectroscopy method: A case study in TRISO particles, J Eur Ceram, 44(2024)1412–1420.
  23. Jo I, Pettes M T, Ou E, Wu W, Shi L, Basal-plane thermal conductivity of few-layer molybdenum disulfide, Appl Phys Lett, 104(2014)201902; doi.org/10.1063/1.4876965.
  24. Yang L, Cui X D, Zhang J Y, Wang K, Shen M, Zeng S S, Dayeh S A, Feng L, Siang B, Lattice strain effects on the optical properties of MoS2 nanosheets, Sci Rep, 4(2014)5649; doi.org/10.1038/srep05649.
  25. Zhang X, Sun D, Li Y, Lee G.-H, Cui X, Chenet D, You Y, Heinz T F, J C Hone, Measurement of Lateral and Interfacial Thermal Conductivity of Single- and Bilayer MoS2 and MoSe2 Using Refined Optothermal Raman Technique, ACS Appl Mater Interfaces, 7(2015)25923–25929.
  26. Bae J J, Jeong H Y, Han G H, Kim J, Kim H, Kim M S, Moon B H, Lim S C, Lee Y H, Thickness-dependent in-plane thermal conductivity of suspended MoS2 grown by chemical vapor deposition, Nanoscale, 9(2017)2541–2547.
  27. Rodriguez-Fernandez C, Nieminen A, Ahmed F, Pietila J, Lipsanen H, Caglayan H, Unraveling Thermal Transport Properties of MoTe2 Thin Films Using the Optothermal Raman Technique, ACS Appl Mater Interfaces, 15(2023)35692–35700.
  28. Peimyoo N, Shang J, Yang W, Wang Y, Cong C, Yu T, Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy, Nano Res, 8(2015)1210–1221.
  29. M Fang, Liu X, Liu J, Chen Y, Su Y, Wei Y, Zhou Y, Peng G, Cai W, Deng C, Zhang X.-A, Improved Thermal Anisotropy of Multi-Layer Tungsten Telluride on Silicon Substrate, Nanomaterials, 13(2023)1817; doi.org/10.3390/nano13121817.
  30. Yin S, Zhang W, Tan C, Chen L, Chen J, Li G, Zhang H, Zhang Y, Wang W, Li L, Thermal Conductivity of Few-Layer PtS2 and PtSe2 Obtained from Optothermal Raman Spectroscopy, J Phys Chem C, 125(2021)16129–16135.
  31. Zhang M, Zou B, Zhang X, Zhou Y, Sun H, Thermal conductivity of exfoliated and chemical vapor deposition-grown tin disulfide nanofilms: role of grain boundary conductance, J Alloys Compd, 856(2021)158119; doi.org/10.1016/j.jallcom.2020.158119.
  32. Zou B, Zhou Y, Zhang X, Zhang M, Liu K, Gong M, Sun H, Thickness-Dependent Ultralow In-Plane Thermal Conductivity of Chemical Vapor-Deposited SnSe2 Nanofilms: Implications for Thermoelectrics, ACS Appl Nano Mater, 3(2020)10543–10550.
  33. Chen L, Zhang W, Zhang H, Chen J, Tan C, Yin S, Li G, Zhang Y, Gong P, Li L, In-Plane Anisotropic Thermal Conductivity of Low-Symmetry PdSe2, Sustainability, 13(2021)4155; doi.org/10.3390/su13084155.
  34. Gish J T, Lebedev D, Stanev T K, Jiang S, Georgopoulos L, Song T W, Lim G, Garvey E S, Valdman L, Balogun O, Sofer Z, Sangwan V K, Stern N P, Hersam M C, Ambient-Stable Two-Dimensional CrI3 via Organic-Inorganic Encapsulation, ACS Nano, 15(2021)10659–10667.
  35. Singh M P, Mandal M, Sethupathi K, Rao M S R, Nayak P K, Study of Thermometry in Two-Dimensional Sb2Te3 from Temperature-Dependent Raman Spectroscopy, Nanoscale Res Lett, 16(2021)22; doi.org/10.1186/s11671-020-03463-1.
  36. Cai Q, Scullion D, Gan W, Falin A, Zhang S, Watanabe K, Taniguchi T, Chen Y, Santos E J G, Li L H, High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion, Sci Adv, 5(2019); doi. 10.1126/sciadv.aav0129.
  37. Jo I, Pettes M T, Kim J, Watanabe K, Taniguchi T, Yao Z, Shi L, Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride, Nano Lett, 13(2013)550–554.
  38. Zheng X, Wei Y, Wei Z, Luo W, Guo X, Zhang X, Liu J, Chen Y, Peng G, Cai W, Qin S, Huang H, Deng C, Zhang X, Highly anisotropic thermal conductivity of few-layer CrOCl for efficient heat dissipation in graphene device, Nano Res, 15(2022)9377–9385.
  39. Kargar F, Coleman E A, Ghosh S, Lee J, Gomez M J, Liu Y, Magana A S, Barani Z, Mohammadzadeh A, Debnath B, Wilson R B, Lake R K, Balandin A A, Phonon and Thermal Properties of Quasi-Two-Dimensional FePS3 and MnPS3 Antiferromagnetic Semiconductors, ACS Nano, 14(2020)2424–2435.
  40. Yan Z, Jiang C, Pope T R, Tsang C F, Stickney J L, Goli P, Renteria J, Salguero T T, Balandin A A, Phonon and thermal properties of exfoliated TaSe2 thin films, J Appl Phys, 114(2013)204301; doi.org/10.1063/1.4833250.
  41. Huang S, Segovia M, Yang X, Koh Y R, Wang Y, Ye P D, Wu W, Shakouri A, Ruan X, Xu X, Anisotropic thermal conductivity in 2D tellurium, 2D Mater, 7(2019)015008; doi.10.1088/2053-1583/ab4eee.
  42. Luo Z, Maassen J, Deng Y, Du Y, Garrelts R P, Lundstrom M S, Ye P D, Xu X, Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus, Nat Commun, 6(2015)8572; doi.org/10.1038/ncomms9572.
  43. Xiao P, Chavez-Angel E, Chaitoglou S, Sledzinska M, Dimoulas A, Torres C M S, Sachat A E, Anisotropic Thermal Conductivity of Crystalline Layered SnSe2, Nano Lett, 21(2021)9172–9179.