Asian Journal of Physics Vol. 33, No 12 (2024) 793-802

Investigation of photoactive properties in LiMn2O4 cathode for lithium-ion batteries

D A Medina-Sanchez1, J S Martinez-Flores1, S Rodriguez-Carrera1, L S Valle-Garcia1,
C D Mena-Muñoz1, L Skokan2, S Obernberger2, A Ruediger2, R Garza-Hernandez1, F Morales-Morales1,
A Benitez-Lara3, and F Ambriz-Vargas1
1Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León, Gto, México. C.P. 37150
2Centre Énergie, Matériaux et Télécommunications, INRS, 1650 Lionel-Boulet, Varennes, Québec, J3X1S2, Canada.
3Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Sta María Tonanzintla, 72840 San Andrés Cholula, Puebla

Dedicated to Prof (Dr) Daniel Malacara-Hernández


In the current era of energy transition, one of the main challenges in introducing electric vehicles to the market is the long charging times compared to gasoline refueling. This communication evaluates the photoactive processes in cathode electrode used in lithium-ion batteries. This research presents the fabrication of a CR 2032-coin cell battery equipped with a transparent quartz window, allowing for monitoring of the electrochemical properties of lithium-ion batteries in response to light exposure. The novelty of this research lies in the experimental demonstration of the photoactive process of LiMn2O4 cathodes when exposed to low-power UV light (4W). Specifically, it was shown that under UV light irradiation, the photoactivity of the LiMn2O4 material generates electron-hole pairs, resulting in reduced electronic resistance at the electrode/electrolyte interface. This reduction in resistance ultimately leads to shorter charging times. © Anita Publications. All rights reserved.
Doi: 10.54955/AJP.33.12.2024.793-802
Keywords: Lithium-ion battery; Photoactive properties; LiMn2O4 cathode; Energy transition.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. IRENA (2024), World Energy Transitions Outlook 2024: 1.5°C Pathway, International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2024/Nov/IRENA_World_energy_transitions_outlook_2024.pdf.
  2. Nitta N, Wu F, Lee J T, Yushin G, Li-ion battery materials: present and future, Materials Today, 18(2015)252–264.
  3. Whittingham M S, Lithium batteries and cathode materials, Chem Rev, 114(2014)11414–11443.
  4. Manthiram A, An outlook on lithium ion battery technology, Nature Commun, 8(2017)15103; doi.org/10.1021/acscentsci.7b00288.
  5. Julien C M, Massot M, C Poinsignon, Lattice vibrations of manganese oxides: Part I. Periodic structures, Mater Sci Eng B, 97(2003)217–230.
  6. Ambriz-Vargas F, Garza-Hernández R, Martínez-Flores S, Aguirre-Tostado F S, Martínez-Guerra E, Quevedo-López M, Fine-Tuning Cathode Performance: The Influence of Argon Deposition Pressure on LiMn2O4 Thin Film Electrochemistry for Li-Ion Batteries, Batteries, 449(2024); doi.org/10.3390/batteries10120449.
  7. Dixit M, Srivastava S, Jain A, A comprehensive review of fast charging infrastructure for electric vehicles: Perspectives, standards, and developments, J Energy Storage, 35(2021)102255; doi:10.1080/23080477.2018.1437323.
  8. Thackeray M M, David W I F, Bruce P G, Goodenough J B, Lithium insertion into manganese spinels, Mater Res Bull, 18(1983)461–472.
  9. Manthiram A, Yu X, Wang S, Lithium battery chemistries enabled by solid-state electrolytes, Nat Rev Mater, 2 (2017)16103; doi.org/10.1038/natrevmats.2016.103.
  10. Lee A, Vörös M, Dose W M, Niklas J, Poluektov O, Schaller R D, Iddir H, Maroni V A, Lee E, Ingram B, Curtiss L A, Johnson C S, Photo-accelerated fast charging of lithium-ion batteries, Nat Commun, 10(2019)4946; doi.org/10.1038/s41467-019-12863-6.
  11. Hee-Je K, Krishna T N V, Zeb K, Rajangam V, Chandu V V, Gopi M, Sambasivam S, Raghavendra K V G, Obaidat I M, A Comprehensive Review of Li-Ion Battery Materials and their Recycling Techniques, Electronics, 9 (2020), 1161; doi.org/10.3390/electronics9071161.
  12. Ortiz Y, Arévalo P, Peña D, Jurado F, Recent Advances in Thermal Management Strategies for Lithium-Ion Batteries: A Comprehensive Review, Batteries, 10(2024)83; doi.org/10.3390/batteries10080265.
  13. Zhang S, Deng W, Momen R, Yin S, Chen J, Massoudi A, Zou G, Hou H, Deng W, Ji X, Element substitution of a spinel LiMn2O4 cathode, J Mater Chem A, 9(2021)21532–21550.
  14. Berg H, Thomas J O, Neutron diffraction study of electrochemically delithiated LiMn2O4 spinel, Solid State Ion, 123(1999)227–234.
  15. Tang D, Sun Y, Yang Z, Ben L, Gu L, Xuejie H, Surface Structure Evolution of LiMn2O4 Cathode Material upon Charge/Discharge, Chem Mater, 26(2014)3535–3543.
  16. Nishimura K, Douzono T, Kasai M, Andou H, Muranaka Y, Kozono Y, Spinel-type lithium–manganese oxide cathodes for rechargeable lithium batteries, J Power Sources, 81–82(1999)420–424.
  17. Douafer S, Lahmar H, Benamira M, Rekhila G, Trari M, Physical and photoelectrochemical properties of the spinel LiMn2O4 and its application in photocatalysis, J Phys Chem Solids, 118(2018)62–67.
  18. Tan R, Hwang S W, Sivanantham A, Cho I S, Solution synthesis and activation of spinel CuAl2O4 film for solar water-splitting, J Catal, 400(2021)218–227.
  19. Kirankumar V S, Sumathi S, A review on photodegradation of organic pollutants using spinel oxide, Mater Today Chem, 18(2020)100355; doi.org/10.1016/j.mtchem.2020.100355
  20. Radzi Z, Arifin K, Kufian M, Balakrishnan V, Raihan S, Rahim N, Subramaniam S, Review of spinel LiMn2O4 cathode materials under high cut-off voltage in lithium-ion batteries: Challenges and strategies, J Electroanal Chem, 920(2022)116623; doi.org/10.1016/j.jelechem.2022.116623.
  21. Kim S, Kumar V, Seo D, Park Y, Kim J, Kim H, Kim J, Hong J, Kang K, Invited Paper: Preparation and Electrochemical Characterization of Doped Spinel LiMn88Ge0.1Li0.02O4 Cathode Material, Electron Mater Lett, 7(2011)105–108.
  22. Guan-Jhu C, Wei-Hsin C, Evaluation of Charging Methods for Lithium-Ion Batteries, Electronics, 12(2023)4095; doi.org/10.3390/electronics12194095.
  23. Shimokawa K, Matsubara S, Okamoto A, Ichitsubo T, Light-induced Li extraction from LiMn2O4/TiO2 in a water-in-salt electrolyte for photo-rechargeable batteries, Chem Commun, 58(2022)9634–9637.
  24. Zhang P, Cai M, Wei Y, Zhang J, Li K, Silva S R P, Shao G, Zhang P, Photo-Assisted Rechargeable Metal Batteries: Principles, Progress, and Perspectives, Adv Sci, 30(2024)2402448; doi.org/10.1002/advs.202402448.