Asian Journal of Physics Vol 31, Nos 11 & 12 (2022) 1117-1128

Combining digital holography and transport of intensity equation for quantitative phase imaging: a review

Ram Kumar1, Naveen K Nishchal1, and Kehar Singh2
1Department of Physics, Indian Institute of Technology Patna, Bihta, Patna-801 106, Bihar, India
2Optics and Photonics Center, Indian Institute of Technology Delhi, New Delhi-110 016, India

Dedicated to Professor Partha Banerjee for his enormous contributions to the advancement of research
and education in holography through his unique vision and outstanding dedication


Recent advances in the field of digital sensors and computational facilities have turned digital holography (DH) into a powerful tool for many applications such as quantitative phase imaging, optical metrology, evaluation of cell parameters, optical cryptography, and optical pattern recognition among others. The transport of intensity equation (TIE) is one of the deterministic phase-retrieval methods, which does not use interferometric geometry. In this method, the phase is calculated directly from a set of intensities rather than iteratively approximating a solution. Recently, use of the TIE in the DH reconstruction process has been reported as a phase-retrieval method. Combining both DH and TIE provides better solution to the phase-retrieval. Refocusing property of the DH helps exploit the translation issue of digital sensor along the optical axis while capturing the intensity distributions at different depths. The issue of phase unwrapping is solved through the use of TIE. Hence, both the methods complement each other. In this paper, we review briefly the applicability of the combination of DH with TIE. © Anita Publications. All rights reserved.
Keywords: Digital holography, Transport of intensity equation, Quantitative phase imaging, Interferometry.

DOI: 10.54955.AJP.31.11-12.2022.1117-1128


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Gabor D, A new microscopic principle, Nature, 161(1948)777–778.
  2. Nishchal N K, Joseph J, Singh K, Securing information using fractional Fourier transform in digital holography, Opt Commun, 235(2004)253–259.
  3. Kelly D P, Meinecke T, Sabitov N, Sinzinger S, Sheridan J T, Digital holography and phase retrieval: a theoretical investigation, Proc SPIE, 8074(2011) Art ID:80740C1; doi.org/10.1117/12.892010.
  4. Osten W, Faridian A, Gao P, Korner K, Naik D, Pedrini G, Singh A K, Takeda M, Wilke M, Recent advances in digital holography, Appl Opt, 53(2014)G44–G63.
  5. Kreis T, Application of digital holography for non-destructive testing and metrology: A review, IEEE Trans Industr Inform, 12(2016)240–247.
  6. Tahara T, Quan X, Otani R, Takali Y, Matoba O, Digital holography and its multidimensional imaging applications: A review, Microsc, 67(2018)55–67.
  7. Zuo C, Chen Q, Qu W, Asundi A, Phase aberration compensation in digital holographic microscopy based on principle component analysis, Opt Lett, 38(2013)1724–1726.
  8. Liu Y, Wang Z, Huang J, Recent progress on aberration compensation and coherent noise suppression in digital holography, Appl Sci, 8(2018)444; doi.org/10.3390/app8030444.
  9. Pitkaaho T, Pitkakangas V, Niemela M, Rajput S K, Nishchal N K, Naughton T J, Space-variant video compression and processing in digital holographic microscopy sensor networks with application to potable water monitoring, Appl Opt, 57(2018) E190–E198.
  10. Javidi B, Carnicer A, Anand A, Barbastathis G, Chen W, Ferraro P, Goodman J W, Horisaki R, Khare K, Kujawinska M, Leitgeb R A, Marquet P, Nomura T, Ozcan A, Park Y K, Pedrini G, Picart P, Rosen J, Saavedra G, Shaked N T, Stern A, Tajahuerce E, Tian L, Wetzstein G, Yamaguchi M, Roadmap on digital holography, Opt Express, 29(2021)35078–35118.
  11. Fienup J, Phase retrieval algorithms: a personal tour, Appl Opt, 52(2013)45–56.
  12. Rosen J, Brooker G, Digital spatially incoherent Fresnel holography, Opt Lett, 32(2007)912–914.
  13. Ou X, Horstmeyer R, Yang C, Zheng G, Quantitative phase imaging via Fourier ptychographic microscopy, Opt Lett, 38(2013)4845–4848.
  14. Li H, Bozhok A, Takakura Y, Dellinger J, Twardowski P, Zallat J, Lensless in-line digital holography versus Fourier ptychography: phase estimation of a large transparent bead, Opt Eng, 59(2020)083104; doi.org/10.1117/1.OE.59.8.083104.
  15. Du M, Loetgering L, Eikema K S E, Witte S, Ptychographic optical coherence tomography, Opt Lett, 46(2021)1337–1340.
  16. Teague M R, Deterministic phase retrieval: a Green’s function solution, J Opt Soc Am, 73(1983)1434–1441.
  17. Streibl N, Phase imaging by the transport equation of intensity, Opt Commun, 49(1984)6–10.
  18. Gureyev T E, Nugent K A, Rapid quantitative phase imaging using the transport of intensity equation, Opt Commun, 133(1997)339–346.
  19. Waller L, Tian L, Barbastathis G, Transport of intensity phase amplitude imaging with higher order intensity derivatives, Opt Express, 18(2010)12552–12561.
  20. Banerjee P, Basunia M, Poon T-C, Zhang H, An optimized transport-of-intensity solution for phase imaging, Proc SPIE, 9870(2016) Art ID:98700A; doi.org/10.1117/12.2229019.
  21. Komuro K, Nomura T, Quantitative phase imaging using transport of intensity equation with multiple bandpass filters, Appl Opt, 55(2016)5180–5186.
  22. Gupta A K, Nishchal N K, Transport of intensity equation for phase imaging: A review, Asian J Phys, 28(2019)777–786.
  23. Zuo C, Li J, Sun J, Fan Y, Zhang J, Lu J, Zhang R, Wang B, Huang L, Chen Q, Transport of intensity equation: a tutorial, Opt Lasers Eng, 135(2020)106187; doi.org/10.1016/j.optlaseng.2020.106187.
  24. Zhang J, Chen Q, Sun J, Tian L, Zuo C, On a universal solution to the transport-of-intensity equation, Opt Lett, 45(2020)3649–3652.
  25. Gupta A K, Nishchal N K, Transport of intensity equation for low-light quantitative phase imaging and security applications, Proc SPIE, 11898(2021) Art ID:118980W; doi.org/10.1117/12.2601102                .
  26. Gupta A K, Fatima A, Nishchal N K, Nomura T, Phase imaging based on modified transport of intensity equation using liquid crystal variable retarder with partial coherent illumination, Opt Rev, 27(2020)142–148.
  27. Waller L, Luo Y, Yang S Y, Barbastathis G, Transport of intensity phase imaging in a volume holographic microscope, Opt Lett, 35(2010)2961–2963.
  28. Zuo C, Chen Q, Qu W, Asundi A, Direct continuous phase demodulation in digital holography with use of the transport-of-intensity equation, Opt Commun, 309(2013)221–226.
  29. Zhou W-J, Guan X, Liu F, Yu Y-J, Zhang H, Poon P-C, Banerjee P P, Phase retrieval based on transport of intensity and digital holography, Appl Opt, 57(2018)A229–A234.
  30. Wittkopp J M, Khoo T C, Carney S, Pisila K, Bahreini S J, Tubbesing K, Mahajan S, Sharikova A, Petruccelli J C, Khmaladze A, Comparative phase imaging of live cells by digital holographic microscopy and transport of intensity equation methods, Opt Express, 28(2020)6123–6133.
  31. Stoykova E, Zhou H, Banerjee P P, Phase retrieval by transport of intensity in inline digital holography, OSA Imaging and Applied Optics Congress 2020, (3D, AOMS, COSI, DH, ISA) OSA 2020. Paper HF2D.3pdf
  32. Zhou H, Stoykova E, Hussain M, Banerjee P P, Performance analysis of phase retrieval using transport of intensity with digital holography, Appl Opt, 60(2021)A73–A83.
  33. Gupta A K, Nishchal N K, Banerjee P P, Transport of intensity equation-based photon-counting phase imaging, OSA Continuum, 3(2020)236–245.
  34. Gupta A K, Nishchal N K, Low-light phase imaging using in-line digital holography and the transport of intensity equation, J Opt (IOP), 23(2021) Art ID:025701; doi. 10.1088/2040-8986/abe18a.
  35. Zhou W, Liu S, Wang C, Zhang H, Yu Y, Poon T-C, Elimination of quadratic phase aberration in digital holographic microscopy by using transport of intensity, Front in Photon, 3(2022) Art ID:848453; doi. 10.3389/fphot.2022.848453.
  36. Zhikhoreva A A, Belashov A V, Belyaeva T N, Salova A V, Kornilova E S, Semenova I V, Vasyutinskii O S, Comparative analysis of TIE imaging and off-axis digital holography for evaluation of cell parameters, IEEE Int’l. Conf on Laser Optics, June 20-24, 2022, Saint Petersburg, (2022).
  37. Tang J, Zhang J, Dou J, Zhang J, Di J, Zhao J, Comparison of common-path off-axis digital holography and transport of intensity equation in quantitative phase measurement, Opt Lasers Eng, 157(2022) Art ID:107126; doi.org/10.1016/j.optlaseng.2022.107126.
  38. Nishchal N K, Optical Cryptosystems, (IOP Publs, Bristol, UK), 2019.
  39. Gupta A K, Kumar P, Nishchal N K, Fully-phase encryption using transport of intensity equation, OSA Imaging and Applied Optics Congress (2020), Paper HF2D.4
  40. Gupta A K, Kumar P, Nishchal N K, AlFalou A, Polarization-encoded fully-phase encryption using transport of intensity equation, Electronics (MDPI), 10(2021) Art ID:969; doi.org/10.3390/electronics10080969.
  41. Rajput S K, Kumar D, Nishchal N K, Photon counting imaging and phase mask multiplexing for multiple images authentication and digital hologram security, Appl Opt, 54(2015)1657–1666.
  42. Gupta A K, Mahendra R, Nishchal N K, Single-shot phase imaging based on transport of intensity equation, Opt Commun, 477(2020) Art ID:126347; doi.org/10.1016/j.optcom.2020.126347.
  43. Gupta A K, Nishchal N K, A composite method of transport-of-intensity equation for the recovery of broad range of spatial frequencies, J Opt (Springer), 51(2022)605–612.
  44. Wu X-f, Shanmuagvel S C, Zhu Y-h, Transport of intensity equation based phase retrieval using deep transfer learning, Imaging and Applied Congress 2022 (3D, AOA. COSI. ISA. pcAOP) @ Opt Publ Group 2022. CM2A.3
  45. Plaipichit S, Visessamit J,Wicharn s, Buranasri, P. Phase extracting imaging by stacking defocus transport of intensity equation, Digital Holography and 3-D imaging (DH) 2022 Optica Publishing Group 2022. Paper Th3A.7
  46. Wu X-f, Wu Z-l, Zhu Y-h, Learning a split-and-synthesis network for hybrid uniform and structured illumination-based phase retrieval, Imaging and Applied Congress 2022 (3D, AOA. COSI. ISA. pcAOP) @ Opt Publ Group 2022. Paper CTu3F.5
  47. Zuo C, Chen Q, Sun J-s, Zhang Y-z, Gu G-h, A microscopic imaging method of phase contrast and differential interfere contrast based on the transport of intensity equation, US Patent Publ No: US 2022/0011563A1, Publ date Jan 13,2022.
  48. Li J-j, Zhou N, Sun J-s, Zhou S, Bai Z-d, Lu L-p, Chen Q, Zuo C, Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy, Light: Sci Appl, 11(2022) Art ID: 154; doi.org/10.1038/s41377-022-00815-7.
  49. Hai N, Kumar R, Rosen J, Single-shot TIE using polarization multiplexing (STIEP) for quantitative phase imaging, Opt Lasers Eng, 151(2022) Art ID: 106912; doi.org/10.1016/j.optlaseng.2021.106912.
  50. Yoneda N, Onishi A, Saita Y, Komura K, Nomura T, Single-shot higher-order transport-of-intensity quantitative phase imaging based on computer-generated holography, Opt Express, 29(2021)4783–4801.
  51. Lu L-P, Fan Y, Sun J-S, Zhang J-L, Wu X-J, Chen Q, and Zuo C, Accurate quantitative phase imaging by the transport of intensity equation: a mixed-transfer-function approach, Opt Lett, 462021)1740–1743.
  52. Rajput S K, Kumar M, Quan X-Y, Morita M, Furuyashiki T, Awatsuji Y, Tajahuerce E, Matoba O, Three-dimensional fluorescence imaging using the transport of intensity equation, J Biomed Opt, 25(2020) Art ID:032004; doi.org/10.1117/1.JBO.25.3.032004.