Asian Journal of Physics Vol 32, Nos 1 & 2 (2023) 71-76

Vibrational study of the various forms of (solvated or unsolvated) mobile proton in materials for storage and production systems based on the hydrogen vector. Advantages, limitations and open questions*

Philippe Colomban
Laboratory “from molecule to nano-objects”(MONARIS UMR8233),
Sorbonne Université, CNRS, 4 Place Jussieu, 75005 Paris, France.


The desire to use hydrogen as an energy carrier requires a better knowledge of the materials that can serve as electrolyte or electrode, i.e. solids containing mobile protons. We present here through some examples the contribution and the limits of vibrational spectroscopies (Infrared, Raman and inelastic neutron scattering) to understand the structure and dynamics of proton species and discuss the questions to be resolved. © Anita Publications. All rights reserved.
Keywords: Energy, Hydrogen, Proton; Solid state, Spectroscopy, Infrared, Raman, Neutron scattering.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. beintema J, On the composition and the crystallography of autunite and the meta-autunites, Rec Trav Chim Paysbas, 57(1938)155–175.
  2. Colomban P, Proton conductors and their applications: A tentative historical overview of the early researches, Solid State Ion, 334(2019)125–144.
  3. Colomban P (ed), Proton conductors. Solids, membranes and gels-Materials and devices, (Cambridge University Press, Cambridge, U K), 1992.
  4. Knauth P, Vona M L D, Solid State Proton Conductors: Properties and Applications in Fuel Cells, (Wiley, N Y), 2012.
  5. Marrony M, Proton Conducting Ceramics, from Fundamental to Applied Research, (Pan Stanford Publishing, Singapore), 2016.
  6. Sala B, Lacroix O, Willemin S, Rhamouni K, Takenouti H, Van der Lee A, Goeuriot P, Bendjeriou B, Colomban P, Procédé d’optimisation de la conductivité assurée par le déplacement des protons H+ et/ou des ions OH- d’une membrane conductrice, Patent EP2168198A2. https://patents.google.com/patent/EP2168198A2.
  7. Slodczyk A, Zaafrani O, Sharp M D, Kilner J A, Dabrowski B, Lacroix O, Colomban Ph, Testing the Chemical/Structural Stability of Proton Conducting Perovskite Ceramic Membranes by in Situ/ex Situ Autoclave Raman Microscopy, Membranes, 3(2013)311–330.
  8. Upasen S, Batocchi P, Mavy F, Slodczyk A, Colomban P, Chemical and structural stability of La6Sr0.4Co0.2Fe0.8 O3− δ ceramic vs. medium/high water vapor pressure, Ceram Int, 41(2015)14137–14147.
  9. Ensberger F M The non-conformist ion, J Am Ceram Soc, 66(1983)747–750.
  10. Colomban P, Vibrational characterization of the various forms of (solvated or unsolvated) mobile proton in the solid state. Advantages, limitations and open questions, Solid State Ion, 393 (2023)116187; doi.org/10.1016/j.ssi.2023.116187.
  11. Colomban P, Proton and Protonic Species: The Hidden Face of Solid State Chemistry. How to Measure H-Content in Materials?, Fuel Cells, 13(2013)6–18.
  12. Bee M, Quasi-elastic neutron scattering, (Adam Hilger, Bristol), 1985
  13. Slodczyk A, Colomban P, Malikova N, Zaafrani O, Longeville S, Zanotti J M, Lacroix O, Sala B, Bulk protons in anhydrous perovskites—neutron scattering studies, Solid State Ion, 252(2013)7–11.
  14. Slodczyck A, Colomban P, Upasen S, Grasset F, André G, Structural stability of anhydrous proton conducting SrZr9Er0.1O3−δ perovskite ceramic vs. protonation/deprotonation cycling: Neutron diffraction and Raman studies, J Phys Chem Solids, 83(2015)85–95.
  15. Colomban P, Slodczyck A, The structural and dynamics neutron study of proton conductors: Difficulties and improvement procedures in protonated perovskite, Eur Phys J, Special Topics, 213(2012)171–193.
  16. Novak A, Hydrogen bonding in solids correlation of spectroscopic and crystallographic data, Struct Bond, 18 (1974)177–216.
  17. Colomban P, Novak A, Proton transfer and superionic conductivity in solids and gels, J Mol Struct, 177(1988)277–308.
  18. Pham-Thi M, Colomban Ph, Novak A, Vibrational study of H3OUO2PO43H2O (HUP) and related compounds. Phase transitions and conductivity mechanism: Part II, H3OUO2PO4·3H2O, J Phys Chem Solids, 46(1985)565–578.
  19. Colomban P, Lucazeau G, Mercier R, Novak A, Vibrational spectra and structure of H+(H2O)nβ- alumina, J Chem Phys, 67(1977)5244–5251.
  20. Colomban P, Fillaux F, Tomkinson J, Kearley G J, Inelastic neutron-scattering study of proton dynamics in β-alumina, Solid State Ion, 77(1995)45–50.
  21. Fillaux F, Leygue N, Baddour-Hadjean R, Parker S, Colomban P, Gruger A, Régis A, Yu T L, Inelastic neutron scattering studies of polyanilines and partially deuterated analogues, Chem Phys, 216(1997)281–293.
  22. Fillaux F, New proton dynamics in solids revealed by vibrational spectroscopy with neutrons, Solid State Ion, 125(1999)69–79.
  23. Colomban P, Tomkinson J, Novel forms of hydrogen in solids: theionic’proton and thequasi-free’proton, Solid State Ion, 97(1997)123–134.
  24. Mioc U, Davidovic M, Tjapkin N, Colomban P, Novak A, Equilibrium of the protonic species in hydrates of some heteropolyacids at elevated temperatures, Solid State Ion, 46(1991)103–109.
  25. Mioc U, Milonjic S K, Malovic D, Stamenkovic V, Colomban P, Mitovic M M, Dimitrijevic R, Structure and proton conductivity of 12-tungstophosphoric acid doped silica, Solid State Ion, 97(1997)239–246.
  26. Fillaux F, Leygue N, baddour-Hadjean R, Parker S, Colomban P, Gruger A, Régis A, Yu L T, Inelastic neutron scattering studies of polyanilines and partially deuterated analogues, Chem Phys, 216(1997)281–293.
  27. Fillaux F, Papoular R, Lautié A, Inelastic neutron scattering study of free proton dynamics in coal, Tomkinson J, J Non-Crystall Solids, 188(1995)161–168.
  28. Fillaux F, Cousson A, Gutmann M J, Proton transfer across hydrogen bonds: From reaction path to Schrödinger’s cat, Pure Appl Chem, 79(2007)1023–1039.
  29. Fillaux F, Quantum entanglement and nonlocal proton transfer dynamics in dimers of formic acid and analogues, Chem Phys Lett, 408(2005)302–306.
  30. Colomban P, Badot J C, Frequency Dependent Conductivity and Microwave relaxations in Protonic Conductors, Solid State Ion, 61(1993)55–62.
  31. Deng S, Zhang Y, Location and lattice dynamics of a proton in the perovskite structure, Phys Status Solidi, 253(2016)1688–1696.
  32. Braun A, Chen Q, Experimental neutron scattering evidence for proton polaron in hydrated metal oxide proton conductors, Nature Commun, 8(2017)15830; doi:10.1038/ncomms15830.