Asian Journal of Physics Vol. 33, Nos 5 & 6 (2024) 369-385

Adaptive optics based visual simulators: testing the limits of human vision

Lucie Sawides, and Maria Vinas-Pena
Institute of Optics. Spanish National Research Council, C/Serrano, 121, Madrid 28006, Spain


Adaptive optics (AO) visual simulators have transformed vision science by enabling precise manipulation of optical aberrations to investigate the interplay between ocular optics and visual perception. AO technology, initially developed for astronomical applications, has evolved over 25 years to address questions in vision science and ophthalmology. This review highlights AO visual simulators and their role in evaluating vision under natural and manipulated optics. AO simulators employ advanced technologies, including deformable mirrors, spatial light modulators, and optotunable lenses, to replicate complex optical designs like multifocal intraocular and contact lenses. These tools enable on-bench and in vivo testing, allow preclinical evaluation of optical designs, predict post-surgical outcomes, and assess individual tolerance to multifocality, bridging laboratory innovations with clinical applications to optimize patient-specific solutions. While challenges remain in simulating scattering and halo and integrating binocular eye movement and vergence tracking, AO visual simulators continue to provide invaluable insights into visual system functioning and the optimization of optical designs for clinical outcomes. © Anita Publications. All rights reserved.
Doi: 10.54955/AJP.33.5-6.2024.369-385
Keywords: Adaptive optics, Human vision, Visual simulators, Retinal blur, Mono- and polychromatic vision, Intraocular lenses, Multifocal corrections.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Liang J, Williams D R, Miller D T, Supernormal vision and high-resolution retinal imaging through adaptive optics, J Opt Soc Am A, 14(1997)2884–2892.
  2. Burns S A, Elsner A E, Sapoznik K A, Warner R L, Gast T J, Adaptive optics imaging of the human retina, Prog Retin Eye Res, 68(2019)1–30.
  3. Jonnal R S, Kocaoglu O P, Zawadzki R J, Liu Z, Miller D T, Werner J S, A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future, Invest Ophthalmol Vis Sci, 57(2016)OCT51–OCT68.
  4. Zhang Q, Hu Q, Berlage C, Kner P, Judkewitz B, Booth M, Ji N, Adaptive optics for optical microscopy [Invited], Biomed Opt Express, 14(2023)1732–1756.
  5. Marcos S, Artal P, Atchison D A, Hampson K, Legras R, Lundström L, Yoon G, Adaptive optics visual simulators: a review of recent optical designs and applications [Invited], Biomed Opt Express, 13(2022)6508–6532.
  6. Marcos S, Benedí-García C, Aissati S, Gonzalez-Ramos A M, Lago C M, Radhkrishnan A, Romero M, Vedhakrishnan S, Sawides L, Vinas M, VioBio lab adaptive optics: technology and applications by women vision scientists, Ophthalmic Physiol Opt, 40(2020)75–87.
  7. Marcos S, Werner J S, Burns S A, Merigan W H, Artal P, Atchison D A, Hampson K M, Legras R, Lundstrom L, Yoon G, Carroll J, Choi S S, Doble N, Dubis A M, Dubra, Elsner A, Jonnal R, Miller D T, Paques M, Smithson H E, Young L K, Zhang Y, Campbell M, Hunter J, Metha A, Palczewska G, Schallek J, Sincich L C, Vision science and adaptive optics, the state of the field, Vis Res, 132(2017)3–33.
  8. Marcos S, Sawides L, Peña M V, Aissati S, Adaptive optics visual simulators: wavefront control to manipulate vision, in Adaptive Optics and Wavefront Control for Biological Systems X (SPIE, 2024), Vol PC12851, p PC128510L.
  9. Roorda A, Adaptive optics for studying visual function: a comprehensive review, J Vis, 11(2011)6; doi.org/10.1167/11.5.6.
  10. Atchison D A, Guo H, Charman W N, Fisher S W, Blur limits for defocus, astigmatism and trefoil, Vis Res, 49(2009)2393–2403.
  11. Elliott S L, Choi S S, Doble N, Hardy J L, Evans J W, Werner J S, Role of high-order aberrations in senescent changes in spatial vision, J Vis, 9(2009)24; doi.org/10.1167/9.2.24.
  12. Gambra E, Sawides L, C. Dorronsoro, Marcos S, Accommodative lag and fluctuations when optical aberrations are manipulated, J Vis, 9(2009)4; doi.org/10.1167/9.6.4.
  13. Dalimier E, Dainty C, J Barbur, Effects of higher-order aberrations on contrast acuity as a function of light level, J Mod Opt, 11(2008)24–29.
  14. Marcos S, Sawides L, Gambra E, Dorronsoro C, Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities, J Vis, 8(2008)1; doi.org/10.1167/8.13.1.
  15. Fernández E J, Manzanera S, Piers P, Artal P, Adaptive optics visual simulator, J Refract Surg, 18 (2002)S634-S638.
  16. de Gracia P, Marcos S, Mathur A, Atchison D A, Contrast sensitivity benefit of adaptive optics correction of ocular aberrations, J Vis, 11(2011)5; doi.org/10.1167/11.12.5.
  17. Webster M A, Visual Adaptation, Annu Rev Vis Sci, 1(2015)547–567.
  18. Artal P, Chen L, Fernández E J, Singer B, Manzanera S, Williams D R, Neural compensation for the eye’s optical aberrations, J Vis, 4(2004)4; doi.org/10.1167/4.4.4.
  19. Sawides L, Marcos S, Ravikumar S, Thibos L, Bradley A, Webster M, Adaptation to astigmatic blur, J Vis,10(2010)22; doi.org/10.1167/10.12.22.
  20. Sawides L, de Gracia P, Dorronsoro C, Webster M, Marcos S, Adapting to blur produced by ocular high-order aberrations, J Vis, 11(2011)211; doi.org/10.1167/11.7.21.
  21. Kompaniez E, Sawides L, Marcos S, Webster M A, Adaptation to interocular differences in blur, J Vis, 13(2013)19; doi.org/10.1167/13.6.19.
  22. Radhakrishnan A, Dorronsoro C, Sawides L, Marcos S, Short-term neural adaptation to simultaneous bifocal images, PLoS One, 9(2014); doi.org/10.1371/journal.pone.0093089.
  23. Sabesan R, Yoon G, Visual performance after correcting higher order aberrations in keratoconic eyes, J Vis, 9(2009)6; doi.org/10.1167/9.5.6.
  24. Rouger H, Benard Y, Gatinel D, Legras R, Visual Tasks Dependence of the Neural Compensation for the Keratoconic Eye’s Optical Aberrations, J Optom, 3(2010)60–65.
  25. Vinas M, de Gracia P, Dorronsoro C, Sawides L, Marin G, Hernández M, Marcos S, Astigmatism impact on visual performance: meridional and adaptational effects, Optom Vis Sci, 90(2013)1430–1442.
  26. Vinas M, Sawides L, de Gracia P, Marcos S, Perceptual adaptation to the correction of natural astigmatism, PLoS One, 7(2012)e46361; doi.org/10.1371/journal.pone.0046361.
  27. Sawides L, de Gracia P, Dorronsoro C, Webster M A, Marcos S, Vision is Adapted to the Natural Level of Blur Present in the Retinal Image, PLoS One, 6(2011)e27031; doi.org/10.1371/journal.pone.0027031.
  28. Sawides L, Dorronsoro C, Haun A M, Peli E, Marcos S, Using pattern classification to measure adaptation to the orientation of high order aberrations, PLoS One, 8(2013)e70856; doi.org/10.1371/journal.pone.0070856.
  29. Radhakrishnan A, Dorronsoro C, Sawides L, Webster M A, Marcos S, A cyclopean neural mechanism compensating for optical differences between the eyes, Curr Biol, 25,(2015)R188–R189.
  30. Wyszecki G, Stiles W S, Color Science: Concepts and Methods, Quantitative Data and Formulae,2nd Edn, (Wiley, Hoboken), 2000.
  31. Benedi-Garcia C, Vinas M, Dorronsoro C, Burns S A, Peli E, Marcos S, Vision is protected against blue defocus, Sci Rep, 11(2021)352; doi.org/10.1038/s41598-020-79911-w.
  32. Yoon G.-Y, Williams D R, Visual performance after correcting the monochromatic and chromatic aberrations of the eye, J Opt Soc Am A, 19(2002)266–275.
  33. McLellan J S, Marcos S, Prieto P M, Burns, Imperfect optics may be the eye’s defence against chromatic blur, Nature, 417(2002)174–176.
  34. Seidemann A, Schaeffel F, Effects of longitudinal chromatic aberration on accommodation and emmetropization, Vis Res, 42(2002)2409–2417.
  35. Pérez-Merino P, Dorronsoro C, Llorente L, Durán S, Jiménez-Alfaro I, Marcos S, In Vivo Chromatic Aberration in Eyes Implanted With Intraocular Lenses, Invest Ophthalmol Vis Sci, 54(2013)2654–2661.
  36. Vinas M, Dorronsoro C, Garzón N, Poyales F, Marcos S, In vivo subjective and objective longitudinal chromatic aberration after bilateral implantation of the same design of hydrophobic and hydrophilic intraocular lenses, J Cataract Refract Surg, 41(2015)2115–2124.
  37. Vinas M, Gonzalez-Ramos A, Dorronsoro C, Akondi V, Garzon N, Poyales F, Marcos S, In Vivo Measurement of Longitudinal Chromatic Aberration in Patients Implanted With Trifocal Diffractive Intraocular Lenses, J Refract Surg, 33(2017)736–742.
  38. Vinas M, Dorronsoro C, Cortes D, Pascual D, Marcos S, Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics, Biomed Opt Express, 6(2015)948–962.
  39. Vinas M, Benedi-Garcia C, Aissati S, Pascual D, Akondi V, Dorronsoro C, Marcos S, Visual simulators replicate vision with multifocal lenses, Sci Rep, 9(2019)1539; doi.org/10.1038/s41598-019-38673-w.
  40. Benedi-Garcia C, Vinas M, Lago C M, Aissati S, de Castro A, Dorronsoro C, Marcos S, Optical and visual quality of real intraocular lenses physically projected on the patients eye, Biomed Opt Express, 12(2021)6360–6374.
  41. Marcos S, Martinez-Enriquez E, Vinas M , de Castro A, Dorronsoro C, Bang S P, Yoon G, Artal P, Simulating Outcomes of Cataract Surgery: Important Advances in Ophthalmology, Annu Rev Biomed Eng, 23(2021)277–306.
  42. Esteban-Ibañez E, Montagud-Martínez D, Sawides L, Zaytouny A, Castro A, Sisó-Fuertes I, Barcala X, Piñero D P, Furlan W D, Dorronsoro C, Gambra E, Simulation of daily soft multifocal contact lenses using SimVis Gekko: from in-vitro and computational characterization to clinical validation, Sci Rep, 14(2024)8592; doi.org/10.1038/s41598-024-59178-1.
  43. Vinas M, Aissati S, Gonzalez-Ramos A M, Romero M, Sawides L, Akondi V, Gambra E, Dorronsoro C, Karkkainen T, Nankivil D, Marcos S, Optical and Visual Quality With Physical and Visually Simulated Presbyopic Multifocal Contact Lenses, Transl Vis Sci Technol, 9(2020)20; doi.org/10.1167/tvst.9.10.20.
  44. Vedhakrishnan S, Vinas M, Aissati S, Marcos S, Vision with spatial light modulator simulating multifocal contact lenses in an adaptive optics system, Biomed Opt Express, 12(2021)2859–2872.
  45. Vedhakrishnan S, de Castro A, Vinas M, Aissati S, Marcos S, Accommodation through simulated multifocal optics, Biomed Opt Express, 13(2022)6695–6710.
  46. Vinas M, Dorronsoro C, Gonzalez V, Cortes D, Radhakrishnan A, Marcos S, Testing vision with angular and radial multifocal designs using Adaptive Optics, Vis Res, 132(2017)85–96.
  47. Vinas M, Aissati S, Romero M, Benedi-Garcia C, Garzon N, Poyales F, Dorronsoro C, Marcos S, Pre-operative simulation of post-operative multifocal vision, Biomed Opt Express, 10(2019)5801–5817.
  48. Siso-Fuertes I, Lago C M, Zaytouny A, Dorronsoro C, Derhartunian V, Arba-Mosquera S, Sawides L, Simvis Simulation of Lasik Corneal Ablation Patterns For Presbyopia Correction – Computational, On-Bench and Clinical Validations, 40th congress of ESCRS, E-Poster, PO465 (2022).
  49. Jaisankar D, Suheimat M, Rosén R, Atchison D A, Defocused contrast sensitivity function in peripheral vision, Ophthalmic Physiol Opt, 42(2022)384–392.
  50. Rosén R, Lundström L, Unsbo P, Adaptive optics for peripheral vision, J Mod Opt, 59(2012)1064–1070.
  51. Fernández E J, Prieto P M, Artal P, Binocular adaptive optics visual simulator, Opt Lett, 34(2009)2628–2630.
  52. Sabesan R, Zheleznyak L, Yoon G, Binocular visual performance and summation after correcting higher order aberrations, Biomed Opt Express, 3(2012)3176–3189.
  53. Porter J, Queener H, Lin J, Thorn K, Awwal AAS, Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications, (John Wiley & Sons), 2006.
  54. Applegate R A, Marsack J D, Thibos L N, Metrics of Retinal Image Quality Predict Visual Performance in Eyes With 20/17 or Better Visual Acuity, Optom Vis Sci, 83(2006)635–640.
  55. Atchison D A, Optical models for human myopic eyes, Vis Res, 46(2006)2236–2250.
  56. Vinas M, Dorronsoro C, Radhakrishnan A, Benedi-Garcia C, LaVilla E A, Schwiegerling J, Marcos S, Comparison of vision through surface modulated and spatial light modulated multifocal optics, Biomed Opt Express, 8(2017)2055–2068.
  57. Lago C M, de Castro A, Benedí-García C, Aissati S, Marcos S, Evaluating the effect of ocular aberrations on the simulated performance of a new refractive IOL design using adaptive optics, Biomed Opt Express, 13(2022)6682–6694.
  58. Nemes-Czopf A, Bercsényi D, Erdei G, Simulation of relief-type diffractive lenses in ZEMAX using parametric modelling and scalar diffraction, Appl Opt, 58(2019)893–8942.
  59. de Castro A, Ortiz S, Gambra E, Siedlecki D, Marcos S, Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging, Opt Express, 18(2010)21905–21917.
  60. Rosales P, Marcos S, Customized computer models of eyes with intraocular lenses, Opt Express, 15(2007)2204–2218.
  61. Tabernero J, Piers P, Benito A, Redondo M, Artal P, Predicting the Optical Performance of Eyes Implanted with IOLs to Correct Spherical Aberration, Invest Ophthalmol Vis Sci, 47(2006)4651–4658.
  62. Martinez-Enriquez E, de Castro A, Marcos S, Eigenlenses: a new model for full crystalline lens shape representation and its applications, Biomed Opt Express, 11(2020)5633–5649.
  63. Akondi V, Sawides L, Marrakchi Y, Gambra E, Marcos S, Dorronsoro C, Experimental validations of a tunable-lens-based visual demonstrator of multifocal corrections, Biomed Opt Express, 9(2018)6302– 6317.
  64. Schwarz C, Prieto P M, Fernández E J, Artal P, Binocular adaptive optics vision analyzer with full control over the complex pupil functions, Opt Lett, 36(2011)4779–4781.
  65. Thibos L N, Bradley A, Zhang X X, Effect of ocular chromatic aberration on monocular visual performance, Optom Vis Sci, 68(1991)599–607.
  66. Graef K, Schaeffel F, Control of accommodation by longitudinal chromatic aberration and blue cones, J Vis, 12 (2012)14; doi.org/10.1167/12.1.14.
  67. Atchison D A, Smith G, Chromatic dispersions of the ocular media of human eyes, J Opt Soc Am A, Sci Vis, 22(2005)29–37.
  68. Bedford R E, Wyszecki G, Axial Chromatic Aberration of the Human Eye, J Opt Soc Am, 47(1957)564–565.
  69. Ware C, Human axial chromatic aberration found not to decline with age, Graefe’s Arch Clin Exp Ophthalmol, 218(1982)39–41.
  70. Fernández E J, Unterhuber A, Prieto P M, Hermann B, Drexler W, Artal P, Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser, Opt Express, 13(2005)400–409.
  71. Howarth P A, The lateral chromatic aberration of the eye, Ophthalmic Physiol Opt, 4(1984)223–226.
  72. Thibos L N, Bradley A, Still D L, Zhang X, Howarth P A, Theory and measurement of ocular chromatic aberration, Vis Res, 30(1990)33–49.
  73. Rynders M, Lidkea B, Chisholm W, Thibos L N, Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes, J Opt Soc Am A, Opt Image Sci Vis, 12(1995)2348–2357.
  74. Marcos S, Burns S A, Prieto P M, Navarro R, Baraibar B, Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes, Vis Res, 41(2001)3861–3871.
  75. Aissati S, Vinas M, Benedi-Garcia C, Dorronsoro C, Marcos S, Testing the effect of ocular aberrations in the perceived transverse chromatic aberration, Biomed Opt Express, 11(2020)4052–4068.
  76. Zhao H, Mainster M A, The effect of chromatic dispersion on pseudophakic optical performance, Br J Ophthalmol, 91(2007)1225–1229.
  77. Nagata T, Kubota S, Watanabe I, Aoshima S, [Chromatic aberration in pseudophakic eyes], Nihon Geka Gakkai Zasshi, 103(1999)237–242.
  78. Marcos S, Marcos S, Benedí-García C, González-Ramos A, Vinas M, Alejandre N, Jiménez-Alfaro I, Interaction of Monochromatic and Chromatic Aberrations in Pseudophakic Patients, J Refract Surg, 36(2020)230–238.
  79. Bradley A, Xu R, Wang H, Jaskulski M, Hong X, Brink N, Noy S Van, The Impact of IOL Abbe Number on Polychromatic Image Quality of Pseudophakic Eyes, Clin Ophthalmol, 14(2020)2271–2281.
  80. Eppig T, Rawer A, Hoffmann P, Langenbucher A, Schröder S, On the Chromatic Dispersion of Hydrophobic and Hydrophilic Intraocular Lenses, Optom Vis Sci, 97(2020)305–313.
  81. Nakajima M, Hiraoka T, Yamamoto T, Takagi S, Hirohara Y, Oshika T, Mihashi T, Differences of Longitudinal Chromatic Aberration (LCA) between Eyes with Intraocular Lenses from Different Manufacturers, PLoS One,11 (2016)e0156227; doi.org/10.1371/journal.pone.0156227.
  82. Siedlecki D, Jóźwik A, Zając M, Hill-Bator A, Turno-Kręcicka A, In vivo longitudinal chromatic aberration of pseudophakic eyes, Optom Vis Sci, 91(2014)240–246.
  83. Vinas-Pena M, de Castro A, Dorronsoro C, Gonzalez-Ramos A, Redzovic S, Willet N, Garzon N, Marcos S, Understanding In Vivo Chromatic Aberrations in Pseudophakic Eyes Using on Bench and Computational Approaches, Photonics, 9(2022)226;org/10.3390/photonics9040226.
  84. Navarro R, Moreno-Barriuso E, Bará S, Mancebo T, Phase plates for wave-aberration compensation in the human eye, Opt Lett, 25(2000)236–238.
  85. Contrast improvement of confocal retinal imaging by use of phase-correcting plates – PubMed,” https://pubmed.ncbi.nlm.nih.gov/18007814/.
  86. Kusel R, Rassow B, Präoperative Abschätzung des mit Intraokularlinsen erreichbaren Sehvermögens, Klinische Monatsblätter für Augenheilkunde, 215(1999)127–131.
  87. Schaeffel F, Kaymak H, A rapid and convenient procedure to evaluate optical performance of intraocular lenses, Photonics, 1(2014)267–282.
  88. Pujol J, Aldaba M, Giner A, Arasa S, Luque J, Visual performance evaluation of a new multifocal intraocular lens design before surgery, Invest Ophthalmol Vis Sci, 55(2014)3752.
  89. Brezna W, Lux K, Dragostinoff N, Krutzler C, Plank N, Tobisch R, Boltz A, Garhöfer G, Told R, Witkowska K, Schmetterer L, Psychophysical vision simulation of diffractive bifocal and trifocal intraocular lenses, Transl Vis Sci Technol, 5(2016); doi.org/10.1167/tvst.5.5.13.
  90. Liou H.-L, Brennan N A, Anatomically accurate, finite model eye for optical modeling, J Opt Soc Am A, 14(1997) 1684–1695.
  91. Prieto P M, Fernández E J, Manzanera S, Artal P, Adaptive optics with a programmable phase modulator: applications in the human eye, Opt Express, 12(2004)4059–4071.
  92. Fernández E J, Prieto P M, Artal P, Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator, Opt Express, 17 (2009)11013–11025.
  93. Hervella L, Villegas E A, Prieto P M, Artal P, Assessment of subjective refraction with a clinical adaptive optics visual simulator, J Cataract Refract Surg, 45(2019)87–93.
  94. Cánovas C, Prieto P M, Manzanera S, Mira A, Artal P, Hybrid adaptive-optics visual simulator, Opt Lett, 35(2010) 96–198.
  95. Suchkov N, Fernández E J, Artal P, Wide-range adaptive optics visual simulator with a tunable lens, J Opt Soc Am A, 36(2019)722–730.
  96. Dorronsoro C, Radhakrishnan A, Alonso-Sanz J R, Pascual D, Velasco-Ocana M, Perez-Merino P, Marcos S, Portable simultaneous vision device to simulate multifocal corrections, Optica, 3(2016)918–924.
  97. Casutt S, Bueeler M, Blum M, Aschwanden M, Fast and precise continuous focusing with focus tunable lenses, in Optical Components and Materials XI, M. J. F. Digonnet and S. Jiang, (eds), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2014), Vol 8982, p 89820Y.
  98. Watson A B, Temporal Sensitivity, Handbook of Perception and Human Performance, Vol 1, (eds) Boff K R, Kaufman L, Thomas J P, (Wiley, New York), 1986, pp. 6-1–6-43.
  99. Lopez-de-Haro A G, Barcala X, Martinez-Ibarburu I, Marrakchi Y, Gambra E, Rodriguez-Lopez V, Sawides L, Dorronsoro C, Closed-loop experimental optimization of tunable lenses, Appl Opt, 61(2022)8091–8099.
  100. Marrakchi Y, Barcala X, Gambra E, Martinez-Ibarburu I, Dorronsoro C, Sawides L, Experimental characterization, modelling and compensation of temperature effects in optotunable lenses, Sci Rep, 13(2023)1575; org/10.1038/s41598-023-28795-7.
  101. Barcala X, Vinas M, Hidalgo F, Ruiz S, Nankivil D, Karkkainen T, Chehab K, Dorronsoro C, Marcos S, Comparison of vision with multifocal contact lenses and SimVis Gekko 102. simulations in a clinical site, Ophthalmol. Vis Sci, 61(2020)579.
  102. Barcala X, Vinas M, Ruiz S, Hidalgo F, Nankivil D, Karkkainen T, Gambra E, Dorronsoro C, Marcos S, Multifocal contact lens vision simulated with a clinical binocular simulator, Cont Lens Anterior Eye, 45(2022)101716; doi.org/10.1016/j.clae.2022.10171.
  103. Sawides L, de Castro A, Lago C M, Barcala X, Zaytouny A, Marcos S, Dorronsoro C, SimVis simulations of multifocal IOL designs based on public-literature data, in Proc SPIE (2021), Vol 11871.
  104. Barcala X, Zaytouny A, Rego-Lorca D, Sanchez-Quiros J, Sanchez-Jean R, Martinez-de-la-Casa J M, Dorronsoro C, Marcos S, Visual simulations of presbyopic corrections through cataract opacification, J Cataract Refract Surg, 49(2023)34–43.
  105. Akondi V, Dorronsoro C, Gambra E, Marcos S, Temporal multiplexing to simulate multifocal intraocular lenses: theoretical considerations, Biomed Opt Express, 8(2017)3410–3425.
  106. Marcos S, Moreno E, Navarro R, The depth-of-field of the human eye from objective and subjective measurements, Vis Res, 39(1999)2039–2049.
  107. Marcos S, Barbero S, Llorente L, Merayo-Lloves J, Optical Response to LASIK Surgery for Myopia from Total and Corneal Aberration Measurements, Invest Ophthalmol Vis Sci, 42(2001)3349–3356.
  108. Moreno-Barriuso E, Lloves J M, Marcos S, Navarro R, Llorente L, Barbero S, Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing, Invest Ophthalmol Vis Sci, 42(2001)1396–1403.
  109. Vedhakrishnan S, Vinas M, Benedi-Garcia C, Casado P, Marcos S, Visual performance with multifocal lenses in young adults and presbyopes, PLoS One, 17(2022)e0263659; doi.org/10.1371/journal.pone.0263659.
  110. Soomro S R, Sager S, Paniagua-Diaz A M, Prieto P M, Artal P, Head-mounted adaptive optics visual simulator, Biomed Opt Express, 15(2024)608–623.
  111. Paniagua-Diaz A M, Mompean J, Shomroo S, Artal P, Wearable and see-through visual simulator based on liquid crystals, in Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality, V (SPIE, 2024), Vol 12913, pp 63–64.