Asian Journal of Physics Vol. 30 Nos 8 & 9 (2021) 1243-1252

Optimizing sampling and padding at the pupil plane for light propagation simulations based in Fourier transforms for wavefront coding
Nirmal Mazumder1, Ishita Chakraborty1, Sintu Rongpipi2, Indira G1, Esther W Gomez2,3, and Enrique D Gomez2,6,7


This review discusses about the applications of label free nonlinear optical imaging techniques used for cellulose characterization. Nonlinear optical microscopy provides high spatial resolution and high depth penetration. Sum frequency generation (SFG), second harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS) are the three most recent techniques in the field of cellulose characterization to study polymorphism, chemical and structural composition of cellulose.© Anita Publications. All rights reserved.
Keywords: Cellulose; Sum frequency generation; Second Harmonic generation; Nonlinear optical microscopy.

Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserved


  1. Jacquet N, Vanderghem C, Danthine S, Quiévy N, Blecker C, Devaux J, Paquot M, Influence of steam explosion on physicochemical properties and hydrolysis rate of pure cellulose fibers, Bioresource Technol, 121(2012)221–227.
  2. Klemm D, Heublein B, Fink H P, Bohn A, Cellulose: fascinating biopolymer and sustainable raw material. Angewandte chemie international edition, 44(2005)3358–3393.
  3. Fussell A L, Isomäki A, Strachan C J, Nonlinear optical imaging–Introduction and pharmaceutical applications, Am Pharmaceut Rev, 16(2013)54–63.
  4. Kurz V L S, Orientation, conformation and phase transitions of thin polymer films and self-assembled monolayers studied by SFG spectroscopy, (Doctoral Dissertation), 2010.
  5. Fussell A L, Isomäki A, Strachan C J, Nonlinear optical imaging–Introduction and pharmaceutical applications. Am Pharmaceut Rev, 16(2013)54–63.
  6. Campagnola P J, Dong C.-Y, Second harmonic generation microscopy: principles and applications to disease diagnosis, Laser Photon Rev, 5(2010)13–26.
  7. Wang H.-F, Sum frequency generation vibrational spectroscopy (SFG-VS) for complex molecular surfaces and interfaces: Spectral line shape measurement and analysis plus some controversial issues, Prog Surface Sci, 91(2016) 155–182.
  8. Barnette A L, Bradley L C, Veres B D, Schreiner E P, Park Y B, Park J, Park S, Kim S H, Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (sfg) vibration spectroscopy, Biomacromolecules, 12 (2011)2434–2439.
  9. Barnette A L, Lee C, Bradley L C, Schreiner E P, Park Y B, Shin H, Cosgrove D J, Park S, Kim S H, Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (sfg) vibration spectroscopy and comparison with other analytical methods, Carbohydr Polym, 89(2012)802–809.
  10. Chen X, Lee C M, Wang H.-F, Jensen L, Kim S H, Experimental and theoretical study of azimuth angle and polarization dependences of sum-frequency-generation vibrational spectral features of uniaxially aligned cellulose crystals, J Phys Chem C, 121(2017)18876-18886.
  11. Lee C M, Kafle K, Park Y B, Kim S H, Probing crystal structure and mesosle assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (sfg) spectroscopy. Phys Chem Chem Phys, 16(2014)10844-10853.
  12. Lee C M, Mittal A, Barnette A L, Kafle K, Park Y B, Shin H, Johnson D K, Park S, Kim S H, Cellulose polymorphism study with sum-frequency-generation (sfg) vibration spectroscopy: Identification of exocyclic CH2OH conformation and chain orientation, Cellulose, 20(2013)991–1000.
  13. Lee C, Dazen K, Kafle K, Moore A, Johnson D K, Park S, Kim S H, In Cellulose chemistry and properties: Fibers, nanocelluloses and advanced materials; Rojas O J (Ed), Springer; 2016.
  14. Lee C, Kafle K, Belias D, Park Y B, Glick R, Haigler C, Kim S, Comprehensive analysis of cellulose content, crystallinity, and lateral packing in gossypium hirsutum and gossypium barbadense cotton fibers using sum frequency generation, infrared and Raman spectroscopy, and x-ray diffraction, Cellulose, 22(2015)971–989.
  15. Makarem M, Kim H, Emami P, Melendez J, Steinbach A, Lipkie T, Deleris I, Desmet C, Wallecan J, Kim S H, Impact of drying on Meso- and Nanoscale structures of Citrus fiber: A study by SFG, ATR-IR, XRD, and DLS, Ind Eng Chem Res, 59 (2020)2718-2724.
  16. Kim N H, Imai T, Wada M, Sugiyama J, Molecular directionality in cellulose polymorphs, Biomacromolecules, 7(2006)274-280.
  17. Makarem M, Lee C M, Kafle K, Huang S, Chae I, Yang H, Kubicki J D, Kim S H, Probing cellulose structures with vibrational spectroscopy, Cellulose, 26(2019)35–79.
  18. Kafle K, Xi X, Lee C M, Tittmann B R, Cosgrove, D J, Park Y B, Kim, S H Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy, Cellulose, 21(2014)1075–1086.
  19. Hieu H C, Tuan N A, Li H, Miyauchi Y, Mizutani G, Sum frequency generation microscopy study of cellulose fibers, Appl Spectrosc, 65(2011)1254–1259.
  20. Huang S, Makarem M, Kiemle S N, Hamedi H, Sau M, Cosgrove D J, Kim S H, Inhomogeneity of cellulose microfibril assembly in plant cell walls revealed with sum frequency generation microscopy, J Phys Chem B, 122(2018)5006–5019.
  21. Kontturi E, Thüne P C, Alexeev A, Niemantsverdrie J W, Introducing open films of nanosized cellulose—atomic force microscopy and quantification of morphology, Polymer, 46(2005)3307–3317.
  22. Agarwal U P, 1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials. Front Plant Sci, 5(2014)490;
  23. Bubner P, Plank H, Nidetzky B, Visualizing cellulase activity, Biotechnol Bioeng, 110(2013)1529–1549.
  24. Agarwal U P, Analysis of cellulose and lignocellulose materials by Raman spectroscopy: A review of the current status, Molecules, 24(2019)1659;
  25. Brown R M (Jr), Millard A C, Campagnola P J, Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy, Opt Lett, 28(2003)2207–2209.
  26. Slepkov A D, Ridsdale A, Pegoraro A F, Moffatt D J, Stolow A, Multimodal CARS microscopy of structured carbohydrate biopolymers, Biomed Opt Express, 1(2010)1347–1357.
  27. Samim M, Sandkuijl D, Tretyakov I, Cisek R, Barzda V, Differential polarization nonlinear optical microscopy with adaptive optics controlled multiplexed beams, Int J Mol Sci, 14(2013)18520–18534.
  28. Zugenmaier P, Crystalline cellulose and derivatives: characterization and structures, (Springer Science & Business Media), 2008.
  29. Barnett J R, Bonham V A, Cellulose microfibril angle in the cell wall of wood fibres, Biolog Rev, 79(2004)461–472.
  30. Peciulyte A, Kiskis J, Larsson P T, Olsson L, Enejder A, Visualization of structural changes in cellulosic substrates during enzymatic hydrolysis using multimodal nonlinear microscopy, Cellulose, 23(2016)1521–1536.
  31. Zimmerley M, Younger R, Valenton T, Oertel D C, Ward J L, Potma E O, Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study, J Phys Chem B, 114(2010)10200–10208.
  32. Enejder A, Brackmann C, Bodin A, Åkeson M, Gatenholm P, CARS and SHG microscopy for the characterization of bacterial cellulose. In Multiphoton Microscopy in the Biomedical Sciences IX, (Vol. 7183, p. 71830U). International Society for Optics and Photonics. (2009, February); 71830U;
  33. Yue S, Slipchenko M N, Cheng J X, Multimodal nonlinear optical microscopy, Laser Photon Rev, 5(2011)496–512.
  34. Min W, Freudiger C W, Lu S, Xie X S, Coherent nonlinear optical imaging: Beyond fluorescence microscopy, Ann Rev Phys Chem, 62(2011)507–530.
  35. Mazumder N, Balla N K, Zhuo G.-Y, Kistenev Y V, Kumar R, Kao F.-J, Krivova N A, Label-free non-linear multimodal optical microscopy—Basics, development, and applications. Front Phys, 7(2019)170;