Editor-in-Chief : V.K. Rastogi
Asian Journal of Physics | Vol. 30 Nos 8 & 9 (2021) 1283-1288 |
Controlling the topological charge of superposition of Bessel-Gaussian beams
V V Kotlyar, A А Kovalev and A G Nalimov
Abstract
We show that by continuously varying the amplitude of a constituent beam in the superposition of two Bessel-Gaussian (BG) beams with topological charges (TC) m and n (m < n) the TC of the entire superposition can be controlled. It is shown that if the amplitude of the constituent beam with TC n is larger than that of the beam with TC m, the superposition contains n optical vortices (OV), namely, an OV with TC m in the form of on-axis isolated intensity null and n – m simple OVs with TC 1 localized off-center along rays that make with one another angles of 2π/(n – m). By getting the amplitudes of the BG beams closer to each other, n – m simple OVs are moved away from the beam center along the said rays. At equal amplitudes, n – m OVs are removed to infinity and TC of the superposition equals (n + m)/2. If the amplitude of the beam with TC m is larger than that of the beam with TC n, the only m-fold on-axis intensity null is present in the superposition. Similarly, TC of the superposition can be controlled by changing the scaling factor of one of the constituent BG beams. © Anita Publications. All rights reserved.
Keywords: Topological charge, Bessel -Gaussian beams, Optical vortices, Orbital angular momentum.
Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserved
References
- Zhang Y, Yang X, Gao J, Orbital angular momentum transformation of optical vortex with aluminum metasurfaces, Sci Rep, 9(2019)9133; doi.org/10.1038/s41598-019-45727-6.
- Volyar A V, Bretsko M V, Akimova Y E, Egorov Y A, Avalanche instability of the orbital angular momentum higher order optical vortices, Comput Opt, 43(2019)14–24.
- Zhang H, Li X, Ma H, Tang M, Li H, Tang J, Cai Y, Grafted optical vortex with controllable orbital angular momentum distribution, Opt Express, 27(2019)22930–22938.
- Wei D, Cheng Y, Ni R, Zhang Y, Hu X, Zhu S, Xiao M, Generating controllable Laguerre-Gaussian laser modes through intercavity spin-orbital angular momentum conversion of light, Phys Rev Appl, 11(2019)014038; doi.org/10.1103/PhysRevApplied.11.014038.
- Kotlyar V V, Kovalev A A, Porfirev A P, Kozlova E S, Orbital angular momentum of laser beam behind an off-axis spiral phase plate, Opt Lett, 44(2019)3673–3676.
- Ruffalo G, Massari M, Romanato F, Multiplication and division of the orbital angular momentum of light with diffractive transformation optics, Light-Sci Appl, 8(2019) 113; doi.org/10.1038/s41377-019-0222-2.
- Gong L, Zhao Q, Zheng H, Hu X, Huang K, Yang J, Li Y, Optical orbital-angular-momentum multiplexed data transmission under high scattering, Light-Sci Appl, 8(2019)27; doi.org/10.1038/s41377-019-0140-3.
- Kazemi S H, Mahmoudi M, Identifying orbital angular momentum of light in quantum wells, Laser Phys Lett. 16(2019) 076001; doi.org/10.1088/1612-202X/ab183e.
- Konzelmann A M, Kruger S O, Giessen H, Interaction of orbital angular momentum light with Rydberg excitons: modifying dipole selection rules, Phys Rev B, 100(2019)115308;org/10.1103/PhysRevB.100.115308.
- Rybakov F N, Kiselev N S, Chiral magnetic skyrmions with arbitrary topological charge, Phys Rev B, 99, 064437 (2019); doi.org/10.1103/PhysRevB.99.064437.
- Zhang L, Zhang L, Liu X, Dynamical detection of topological charges, Phys Rev A, 99(2019) 053606; doi.org/10.1103/PhysRevA.99.053606.
- Volyar A V, Bretsko M V, Akimova Y E, Egorov Y A, Milyukov V V, Sectoral perturbation of vortex beams: Shannon entropy, orbital angular momentum and topological charge, Comput Opt, 43(2019)723–734.
- Soskin M S, Gorshkov V N , Vastnetsov M V, Malos J T, Heckenberg N R, Topological charge and angular momentum of light beams carrying optical vortex, Phys Rev A, 56(1987)4064; doi.org/10.1103/PhysRevA.56.4064.
- Jesus-Silva A J, Fonseca E J S, Hickmann J M , Study of the birth of a vortex at Fraunhofer zone, Opt Lett, 37(2012)4552–4554.
- Wen J, Wang L, Yang X, Zhang J, Zhu S, Vortex strength and beam propagation factor of fractional vortex beams, Opt Express, 27(2019)5893–5904.
- Wang H, Liu L, Zhou C, Xu J, Zhang M, Teng S, Cai Y, Vortex beam generation with variable topological charge based on a spiral slit, Nanophotonics, 8(2019)317–324.
- Berry M V, Optical vortices evolving from helicoidal integer and fractional phase steps, J Opt A: Pure Appl Opt, 6(2004)259–268.
- Gotte J B, Franke-Arnold S, Zambrini R, Barnett S M , Quantum formulation of fractional orbital angular momentum, J Mod Opt, 54(2007)1723–1738.
- Basistiy I V, Soskin M S , Vasnetsov M V, Optical wavefront dislocations and their properties, Opt Commun, 119(1995)604–612.
- Gori F, Guattary G, Padovani C, Bessel-Gauss beams, Opt Commun, 64(1987)491–495.
- Kotlyar V V, Kovalev A A, Volyar A V, Topological charge of a linear combination of optical vortices: topological competition, Opt Express, 28(2020)826–8281.