Asian Journal of Physics  Vol. 31 No 2, 2022, 303-314

Detection of immune reaction by surface-enhanced Raman Spectroscopy: A mini-review
Kamilla Malek and Ewelina Wiercigroch


Abstract

This paper presents the recent progress in surface-enhanced Raman spectroscopy combined with immunochemical strategy in the detection of disease markers. The design and fabrication of immunoSERS labels are discussed in terms of their bioanalytical applications in ex vivo and in vitro screening of immune markers. We concisely discuss the sensing capability of immunoSERS for clinical-based translation. © Anita Publications. All rights reserved.
Keywords: Surface-enhanced Raman scattering (SERS), Immunochemistry technologies, Inflammation, cancer


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserved

References

  1. Koivunen M E, Krogsrud R L, Principles of immunochemical techniques used in clinical laboratories, LabMedicine, 37(2006)490–497.
  2. Renshaw S (ed). Immunohistochemistry and immunocytochemistry: Essential methods, (Wiley Blackwell, Chichester), 2007.
  3. Wang Z, Zong S, Wu L, Zhu D, Cui Y, SERS-activated platforms for immunoassay: probes, encoding methods, and applications, Chem Rev, 117(2017)7910–7963.
  4. Khlebtsov N, Dykman L, Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies, Chem Soc Rev, 40(2011)1647–1671.
  5. Kneipp J, Kneipp H, Wittig B, Kneipp K, Novel optical nanosensors for probing and imaging live cells, Nanotechnol Biol Med, 6(2010)214–226.
  6. Fabris L, SERS nanotags and their applications in biosensing and bioimaging, J Opt, 17(2015)114002; doi.org/10.1088/2040-8978/17/11/114002.
  7. Yue W, Yang Y, Wang Z, Han J, Syed A, Chen L, Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes, J Phys D Appl. Phys, 45(2012)425401; doi.org/10.1088/0022-3727/45/42/425401.
  8. Wang Y, Schlücker S, Rational design and synthesis of SERS labels, Analyst, 138(2013)2224–2238.
  9. Benz F, Chikkaraddy R, Salmon A, Ohadi H, de Nijs B, Mertens J, SERS of individual nanoparticles on a mirror: size does matter, but so does shape, J Phys Chem Lett, 7(2016)2264–2269.
  10. Lin K-Q, Yi J, Hu S, Liu B-J, Liu J-Y, Wang X, Ren B, Size effect on SERS of gold nanorods demonstrated via single nanoparticle spectroscopy, J Phys Chem C, 120(2016)20806–20813.
  11. Turkevich J, Stevenson P C, Hillier J, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss Faraday Soc, 11(1951)55–75.
  12. Chen G, Wang Y, Tan L H, Yang M, Tan L S, Chen Y, Chen H, High-purity separation of gold nanoparticle dimers and trimers J Am Chem Soc, 131(2009)4218–4219.
  13. Wustholz K L, Henry A-I, McMahon J M, Freeman R G, Valley N, Piotti M E, Natan M J, Schatz G C, van Duyne R P, Structure−Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy, J Am Chem Soc, 132(2010)10903–10910.
  14. Wadams R C, Fabris L, Vaia R A, Park K, Time-dependent susceptibility of the growth of gold nanorods to the addition of a cosurfactant, Chem Mater, 25(2013)4772–4780.
  15. von Maltzahn G, Centrone A, Park J-H, Ramanathan R, Sailor M J, Hatton T A, Bhatia S N, SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating, Adv Mater, 21(2009)3175–3180.
  16. Wang Y, Schlücker S, Rational design and synthesis of SERS labels, Analyst, 138(2013)2224–2238.
  17. Indrasekara A S D S, Meyers S, Shubeita S, Feldman L C, Gustafsson T, Fabris L, Gold nanostar substrates for SERS sensing in the femtomolar regime, Nanoscale, 6(2014)8891–8899.
  18. Gellner M, Steinigeweg D, Ichilmann S, Salehi M, Schütz M, Kömpe K, Haase M, Schlücker S, 3D self-assembled plasmonic superstructures of gold nanospheres: Synthesis and characterization at the single-particle level, Small, 7(2011)3445–3451.
  19. Fan Z, Tebbe M, Fery A, Agarwal S, Greiner A, Assembly of gold nanoparticles on gold nanorods using functionalized poly(n-isopropylacrylamide) as polymeric “glue”, Part Part Sys Character,33(2016)698–702.
  20. Fabris L, Bottom-up optimization of SERS hot-spots, ChembCommun, 48(2012)9346–9348.
  21. Cho S J, Ahn Y-H, Maiti K K, Dinish U S, Fu C Y, Thoniyot P, Olivo M, Chang Y-T, Combinatorial synthesis of a triphenylmethine library and their application in the development of Surface Enhanced Raman Scattering (SERS) probes, Chem Com, 46(2010)722–724.
  22. Samanta A, Maiti K K, Soh K-S, Liao X, Vendrell M, Dinish U S, Yun S-W, Bhuvaneswari R, Kim H, Rautela R, Chung J, Olivo M, Chang Y-T, Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection, Angew Chem Int Ed Engl, 50(2011)6089–6092.
  23. Ni J, Lipert R J, Dawson G B, Porter M D, Immunoassay Readout Method Using Extrinsic Raman Labels Adsorbed on Immunogold Colloids, Anal Chem, 71(1999)4903–4908.
  24. Porter M D, SERS as a bioassay platform: fundamentals, design, and applications, Chem Soc Rev, 37(2008)1001–1011.
  25. Fornasaro S, Alsamad F, Baia M, Batista de Carvalho L A E, Beleites C, Byrne H J, Chiadò A, Chis M, Chisanga M, Daniel A, Dybas J, Eppe G, Falgayrac G, Gebavi H, Faulds K, Gebavi H, Giorgis F, Goodacre R, Graham D, La Manna P, Laing S, Litti L, Lyng F M, Malek K, Malherbe C, Marques M P M, Meneghetti M, Mitri E, Grosev V M, Morasso C, Muhamadali H, Musto P, Novara C, Pannico M, Penel G, Piot O, Rindzevicius T, Rusu E, Schmidt M S, Sergo V, Sockalingum G D, Untereiner V, Vanna R, Wiercigroch E, Bonifacio A, Surface Enhanced Raman Spectroscopy for quantitative analysis: results of a large-scale European multi-instrument interlaboratory study, Anal Chem, 92(2020)4053–4064.
  26. Wiercigroch E, Stepula E, Mateuszuk L, Zhang Y, Baranska M, Chlopicki S, Schlücker S, Malek K, Localization of smooth muscle cells in the atherosclerotic brachiocephalic artery by immunoSERS microscopy, Biosen Bioelectron, 133(2019)79–85.
  27. Jehn C, Küstner B, Adam P, Marx A, Ströbel P, Schmuck C, Schlücker S, Water soluble SERS labels comprising a SAM with dual spacers for controlled bioconjugation, Phys Chem Chem Phys, 11(2009)7499–7504.
  28. Cormack P A G, Hernandez-Santana A, Arun Prasath R, McKenzie F, Graham D, Smith W E, Multidentate macromolecules for functionalisation, passivation and labelling of metal nanoparticles, Chem Comm, 22(2008)2517–2519.
  29. Indrasekara A S D S, Paladini B J, Naczynski D J, Starovoytov V, Moghe P V, Fabris L, Dimeric gold nanoparticle assemblies as tags for SERS- based cancer detection, Adv Healthcare Mater, 2(2013)1370; doi.org/10.1002/adhm.201200370.
  30. Li Y, Wang Z, Mu X, Ma A, Guo S, Raman tags: novel optical probes for intracellular sensing and imaging, Biotechnol Adv, 35(2017)168–177.
  31. Mulvaney S P, Musick M D, Keating C D, Natan M J, Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering, Langmuir, 19(2003)4784–4790.
  32. Kobayashi Y, Katakami H, Mine E, Nagao D, Konno M, Liz-Marzán M L, Silica coating of silver nanoparticles using a modified Stöber method, J Coll Inter Sci, 283(2005)392–396.
  33. Hermanson G T (ed.), Bioconjugation techniques, (Academic Press: Boston), 2013, pp 127–58.
  34. McKinnon K M, Flow cytometry: An overview, Curr Protoc Immunol, 120(2018)5.1.1–5.1.11.
  35. Lee S, Chon H, Yoon S-Y, Lee E K, Chang S-I, Lim D W, Choo J, Fabrication of SERS fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging, Nanoscale, 4(2012)124–129.
  36. Lee S, Chon H, Lee J, Ko J, Chung B H, Lim D W, Choo J, Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging, Biosens Bioelectron, 51(2014)238–243.
  37. Sangyeop L, Kim S, Choo J, Shin S Y, Lee Y H, Choi H Y, Ha S, Kang K, Oh C H, Biological imaging of HEK293 cells expressing PLCgamma1 using surface-enhanced Raman microscopy, Anal Chem, 79(2007)916–922.
  38. Yue J, Liu Z, Cai X, Ding X, Chen S, Tao K, Zhao T, Bull serum albumin coated [email protected] as SERS probes for ultrasensitive osteosarcoma cell detection, Talanta, 150(2016)503–509.
  39. Chen M, Zhang L, Gao M, Zhang X, High-sensitive bioorthogonal SERS tag for live cancer cell imaging by self-assembling core-satellites structure gold-silver nanocomposite, Talanta, 172(2017)176–181.
  40. Liu R, Zhao J, Han G, Zhao T, Zhang R, Liu B, Click functionalized SERS nanoprobes with improved labeling efficiency and capability for cancer cell imaging, Appl Mater Interfaces, 9(2017)38222–38229.
  41. Nima Z A, Mahmood M, Xu Y, Mustafa T, Watanabe F, Nedosekin D A, Mazen A J, Tariq F, Galanzha E I, Nolan J P, Basnakian A G, Zharov V P, Biris A S, Circulating tumor cell identifcation by functionalized silver-gold nanorods with multicolor, superenhanced SERS and photothermal resonances, Sci Rep, 4(2014)4752; doi.org/10.1038/srep04752.
  42. Wang X, Qian X M, Beitler J J, Chen Z G, Khuri F R, Lewis M M, Shin H J C, Nie S M, Shin D M, Detection of circulating tumor cells in human peripheral blood using surface enhanced Raman scattering nanoparticles, Cancer Res, 71(2011)1526−1532.
  43. Bhana S, Chaffin E, Wang Y, Mishra S R, Huang X, Capture and Detection of Cancer Cells in Whole Blood with Magnetic-Optical Nanoovals, Nanomedicine, 9(2014)593−606.
  44. Tsao S C, Wang J, Wang Y, Behren A, Cebon J, Trau M, Characterising the phenotypic evolution of circulating tumour cells during treatment, Nat Commun, 9(2018)1482; doi.org/10.1038/s41467-018-03725-8.
  45. Song J, Duan B, Wang C, Zhou J, Pu L, Fang Z, Wang P, Lim T T, Duan H, SERS-encoded nanogapped plasmonic nanoparticles: growth of metallic nanoshell by templating redox active polymer brushes, J Am Chem Soc, 136(2014)6838−6841.
  46. Schlücker S, Küstner B, Punge A, Bonfig R, Marx A, Ströbel P, Immuno Raman microspectroscopy: in Situ detection of antigens in tissue specimens by surface enhanced raman scattering, J Raman Spectrosc, 37(2006)719–721.
  47. Schütz M, Steinigeweg D, Salehi M, Kömpe K, Schlücker S, Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy, Chem Commun, 47(2011)4216–4218.
  48. Lei Sun K B S, Dentinger C, Lutz B, Nguyen L, Zhang J, Qin H, Yamakawa M, Cao M, Lu Y, Chmura A J, Zhu J, Su X, Berlin A A, Chan S, Knudsen B, Composite Organic−Inorganic Nanoparticles as Raman Labels for Tissue Analysis, Nanoletters, 7(2007)351v–356.
  49. Lutz B R, Dentinger C E, Nguyen L N, Sun L, Zhang J, Allen A N, Chan S, Knudsen B S, Spectral analysis of multiplex Raman probe signatures, ACS Nano, 2(2008)2306–2314.
  50. Lutz B, Dentinger C E, Sun L, Nguyen L N, Zhang J, Chmura A J, Allen A N, Chan S, Knudsen B S, Raman nanoparticle probes for antibody-based protein detection in tissues, J Histochem Cytochem, 56(2008)371–379.
  51. Wang X-P, Zhang Y, König M, Papadopoulou E, Walkenfort B, Kasimir-Bauer S, Bankfalvi A, Schlücker S, iSERS microscopy guided by wide field immunofluorescence: analysis of HER2 expression on normal and breast cancer FFPE tissue sections, Analyst, 141(2016)5113–5119.
  52. Chen Y, Zheng X, Chen G, He C, Zhu W, Feng S, Xi G, Chen R, Lan F, Zeng H, Immunoassay for LMP1 in nasopharyngeal tissue based on surface-enhanced Raman scattering, Int J Nanomed, 7(2012)73–82.
  53. Li J, Huiqiao L, Pengfei R, Wen Z, Xiaohu G, Liu D, A universal strategy for one-pot synthesis of SERS tags, Nanoscale, 10(2018)8292–8297.
  54. Taylor C R, Rudbeck L (eds), Immunochemical staining methods, 6th Edn, (Dako Denmark A/S).
  55. Zhang Y, Wang X-P, Perner S, Bankfalvi A, Schlücker S, Effect of antigen retrieval methods on nonspecific binding of antibody–metal nanoparticle conjugates on formalin-fixed paraffin-embedded tissue, Anal Chem, 90(2018)760–768.
  56. Salehi M, Schneider L, Strobel P, Marx A, Packeisend J, Schlücker S, Two-color SERS microscopy for protein colocalization in prostate tissue with primary antibody–protein A/G–gold nanocluster conjugates, Nanoscale, 6(2014)2361–2367.
  57. Gajda M, Jawień J, Mateuszuk Ł, Lis G J, Radziszewski A, Chlopicki S, Litwin J A, Triple immunofluorescence labeling of atherosclerotic plaque components in ApoE/LDLR-/- mice, Folia Histochem Cytobiol, 46(2008)143–146.

Article