Asian Journal of Physics Vol 32, Nos 5 – 8 (2023) 319-334

Diffraction theories for off­ Bragg replay: J T Sheridan’s seminal work and consequences

Martin Fally
University of Vienna, Faculty of Physics, Boltzmanngasse 5, A­1090 Wien, Austria
Dedicated in memory of Prof John Sheridan


Based on the seminal work by John T Sheridan [1] we discuss the usefulness and validity of simple diffraction theories frequently used to determine and characterize optical holographic gratings. Experimental investigations obtained in recent years highlight the correctness of his analysis which favour an alternative approach over the most widely used Kogelnik theory. © Anita Publications. All rights reserved.
Keywords: Holography, Diffraction theory.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Sheridan J T, A comparison of diffraction theories for off­-Bragg replay, J Mod Opt, 39(1992)1709–1718.
  2. Kogelnik H, Coupled wave theory for thick hologram gratings, AT&T Tech J, 48 (1969)2909; doi:10.1002/j.1538 7305.1969.tb01198.x.
  3. Uchida N, Calculation of diffraction efficiency in hologram gratings attenuated along the direction perpendicular to the grating vector, J Opt Soc Am, 63(1973)280–287.
  4. Kong J A, Second-­order coupled­-mode equations for spatially periodic media, J Opt Soc Am, 67(1977)825–829.
  5. Moharam M G, Gaylord T K, Rigorous coupled-­wave analysis of planar ­grating diffraction, J Opt Soc Am, 71(1981)811–818.
  6. Gaylord T K, Moharam M G, Planar dielectric grating diffraction theories, Appl Phys B, 28(1982)1–14.
  7. Moharam M G, Grann E B, Pommet D A, Gaylord T K, Formulation for stable and efficient im­plementation of the rigorous coupled­-wave analysis of binary gratings, J Opt Soc Am A, 12(1995)1068–1076.
  8. Sheppard C J R, The application of the dynamical theory of x­-ray diffraction to thick hologram gratings, Int J Electron, 41(1976)365; doi:10.1080/00207217608920647.
  9. Fally M, Klepp J,Tomita Y, An experimental study on the validity of diffraction theories for off­-Bragg replay of volume holographic gratings, Appl Phys B, 108(2012)89; doi:10.1007/s00340­012­5090­x.
  10. Prijatelj M, Klepp J, Tomita Y, Fally M, Far­ off­-Bragg reconstruction of volume holographic gratings: A comparison of experiment and theories, Phys Rev A, 87(2013)063810; doi:10.1103/PhysRevA.87.063810.
  11. Loewen E G, Popov E, Diffraction Gratings and Applications. Optical Science and Engineering, 1st edn, (Taylor & Francis, Boca Raton), 1997.
  12. Antonakakis T, Baida F I, Belkhir A, Cherednichenko K, Cooper S, Craster R, Demésy G, Desanto J, Granet G, Gralak B, Goray L, Li L, Maystre D, Stout B, Zolla F, Schmidt G, Skeleton E, Guenneau S, Nicolet A, Popov E, Vial B,Gratings: Theory and Numeric Applications, 2nd edn, (Presses Universitaires de Provence), 2014.
  13. Bao G, Li P, Maxwell’s Equations in Periodic Structures,Vol 208 of Applied Mathematical Sciences, (Springer & Science Press, Beijing), 2022; doi:10.1007/978-­981­-16-­0061­-6.
  14. Guibelalde E, Coupled wave analysis for out­-of-­phase mixed thick hologram gratings, Opt Quant Electron, 16(1984) 173; doi:10.1007/BF00620135.
  15. Sutter K, Günter P, Photorefractive gratings in the organic crystal 2­-cyclooctylamino-­5­-nitropyridine doped with 7,7,8,8-­tetracyanoquinodimethane, J Opt Soc Am B, 7(1990)2274–2278.
  16. Kahmann F, Separate and simultaneous investigation of absorption gratings and refractive-­index gratings by beam coupling analysis, J Opt Soc Am A, 10(1993)1562–1569.
  17. Carretero L, Madrigal R F, Fimia A, Blaya S, Beléndez A, Study of angular responses of mixed amplitude-­ phase holographic gratings: shifted Borrmann effect, Opt Lett, 26(2001)786–788.
  18. Fally M, Ellabban M A, ­Drevensek-Olenik I, Out-of-phase mixed holographic gratings: a quantative analysis, Opt Express, 16(2008)6528–6536.
  19. Ellabban M A, Fally M, Rupp R A, Kovács L, Light ­induced phase and amplitude gratings in centrosymmetric gadolinium gallium garnet doped with Calcium, Opt Express, 14(2006)593–602.
  20. Ellabban M A, Glavan G, Klepp J, Fally M, A comprehensive study of photorefractive properties in poly(ethylene glycol)dimethacrylate-­ionic liquid composites, Materials, 10(2017)9; doi.org/10.3390/ma10010009.
  21. Fally M, Tomita Y, Fimia A, Madrigal R, Guo J, Kohlbrecher J, Klepp J, Experimental determination of nanocomposite grating structures by light­ and neutron­ diffraction in the multi­wave-­coupling regime, Opt Express, 29(2021)16153–16163.
  22. Darwin C, XXXIV. the theory of X­-ray reflexion, Phil Mag Ser 6 , 27(1914)315; doi:10.1080/14786440208635093.
  23. Darwin C, LXXVIII. the theory of X­-ray reflexion. Part II. Phil Mag Ser 6, 27(1914)675; doi:10.1080/147864404086 35139.
  24. Ewald P P, Zur Begründung der Kristalloptik, Ann Phys ­Leipzig, 354(1916)1; doi:10.1002/andp.19163540102. IV Folge Band 49; Einleitung zu Teil I (Dispersionstheorie) und Teil II (Theorie der Reflexion und Brechung).
  25. Ewald P P, Zur Begründung der Kristalloptik, Ann Phys ­Leipzig, 354(1916)117; doi:10.1002/andp.19163540202. IV Folge Band 49; Teil II:Theorie der Reflexion und Brechung.
  26. Ewald P P, Zur Begründung der Kristalloptik, Ann Phys ­Leipzig, 359(1917)557; doi:10.1002/andp.19173592402.. IV Folge Band 54; Teil III: Die Kristalloptik der Röntgenstrahlen (Fortsetzung).
  27. Ewald P P, Zur Begründung der Kristalloptik, Ann Phys ­Leipzig, 359(1917)519; doi:10.1002/andp.19173592305.IV Folge Band 54; Teil III: Die Kristalloptik der Röntgenstrahlen.
  28. Bethe H, Theorie der Beugung von Elektronen an Kristallen, Ann Phys ­Leipzig, 392(1928)55; doi:10.1002/andp.19283921704.
  29. Bloch F, Über die Quantenmechanik der Elektronen in Kristallgittern, Zeitschrift für Physik, 52(1928)555; doi:10.1007/BF01339455.
  30. Sheridan J, Sheppard C, An examination of the theories for the calculation of diffraction by square­-wave gratings.1.Thickness and Period Variations for Normal Incidence, Optik, 85(1990)25.
  31. Sheridan J, Sheppard C, An examination of the theories for the calculation of diffraction by square-­wave gratings.2. Angular Variation, Optik, 85(1990)57–66.
  32. Sheridan J, Sheppard C, An examination of the theories for the calculation of diffraction by square-­wave gratings.3. Approximate Theories, Optik, 85(1990)135–152.
  33. Sheridan J T, Solymar L, Diffraction by volume gratings–approximate solution in terms of boundary diffraction coefficients, J Opt Soc Am A, 9(1992)1586–1591.
  34. Sheridan J T, Solymar L, Spurious beams in dielectric gratings of the reflection type–a solution in terms of boundary diffraction coefficients, Opt Commun, 94(1992)8–12.
  35. Sheridan J, Sheppard C, Coherent imaging of periodic thick fine isolated structures, J Opt Soc Am A, 10(1993)614–632.
  36. Sheridan J, Stacked volume holographic gratings. 1. Transmission gratings in series, Optik, 95(1993)73–80.
  37. Sheridan J, Stacked volume holographic gratings. 2. Reflection gratings in series, Optik, 96(1994)1–12.
  38. Sheridan J, Sheppard C, Modeling of images of square-­wave gratings and isolated edges using rigorous diffraction theory, Opt Commun, 105(1994)367–378.
  39. Sheridan J, Generalization of the boundary diffraction method for volume gratings, J Opt Soc Am A, 11(1994)649–656.
  40. Raman C V, Nath N S N, The diffraction of light by high frequency sound waves:Part I, Proc Ind Acad Sci (A), A2(1936)406–412.
  41. Raman C V, Nath N S N, The diffraction of light by sound waves of high frequency: Part II, Proc Ind Acad Sci (A), A2(1936)413–420.
  42. Goodman J W, Introduction to Fourier Optics, (Roberts & Company, Englewood, Colorado), 2005.
  43. Zachariasen W H, Theory of X­-Ray diffraction in Crystals, (John Wiley & Sons), 1945.
  44. Batterman B W, Cole H, Dynamical diffraction of X rays by perfect crystals, Rev Mod Phys, 36(1964)681; doi:10.1103/RevModPhys.36.681.
  45. Leith E N, Upatnieks J, Reconstructed wavefronts and communication theory, J Opt Soc Am, 52(1962)1123–1130.
  46. Chen F S, LaMacchia J T, Fraser D B, Holographic storage in lithium niobate, Appl Phys Lett, 13(1968)223–225.
  47. Klein W R, Tipnis C B, Hiedemann E A, Experimental Study of Fraunhofer Light Diffraction by Ultrasonic Beams of Moderately High Frequency at Oblique Incidence, J Acoust Soc Am, 38(1965)229; doi:10.1121/1.1909641.
  48. Burckhardt C B, Diffraction of a plane wave at a sinusoidally stratified dielectric grating, J Opt Soc Am, 56(1966) 1502–1508.
  49. Burckhardt C B, Efficiency of a dielectric grating, J Opt Soc Am, 57(1967)601–603.
  50. Gabor D, Stroke G W, The theory of deep holograms, Proc Roy Soc A, 304(1968)275–289.
  51. Phariseau P, On the diffraction of light by progressive supersonic waves, Proc Ind Acad Sci (A), 44(1956)165–170.
  52. Syms R R A, Solymar L, Planar volume phase holograms formed in bleached photographic emulsions, Appl Opt, 22(1983)1479; doi:10.1364/AO.22.001479.
  53. Syms R R A,Vector effects in holographic optical elements, Opt Acta, 32(1985)1413; doi:10.1080/713821663.
  54. Syms R R A, Practical Volume Holography, (Oxford University Press, Oxford), 1990.
  55. Moharam M G, Gaylord T K, Chain­-matrix analysis of arbitrary­ thickness dielectric reflection gratings, J Opt Soc Am, 72(1982)187–190.
  56. Moharam M G, Gaylord T K, Diffraction analysis of dielectric surface-­ relief gratings, J Opt Soc Am, 72(1982)1385–1392.
  57. Moharam M G, Gaylord T K, Rigorous coupled­-wave analysis of metallic surface-­relief gratings, J Opt Soc Am A, 3(1986)1780–1787.
  58. Moharam M G, Pommet D A, Grann E B, Gaylord T K, Stable implementation of the rigorous coupled-wave analysis for surface-­relief gratings– ­enhanced transmittance matrix approach, J Opt Soc Am A, 12(1995)1077–1086.
  59. Lalanne P, Morris G M, Highly improved convergence of the coupled­-wave method for TM polarization, J Opt Soc Am A, 13(1996)779–784.
  60. Gaylord T K, Moharam M G,Thin and thick gratings: terminology clarification, Appl Opt, 20(1981)3271; doi:10.1364/AO.20.003271.
  61. Moharam M G, Gaylord T K, Magnusson R, Criteria for Bragg- regime diffraction by phase gratings, Opt Commun, 32(1980)14–18.
  62. Moharam M G, Gaylord T K, Magnusson R, Criteria for Raman-­Nath regime diffraction by phase gratings, Opt Commun, 32(1980)19–23.
  63. Russell P S J, Solymar L, Borrmann­-like anomalous effects in volume holography, Appl Phys, 22(1980)335–353.
  64. Montemezzani G, Zgonik M, Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries, Phys Rev E, 55(1997)1035; doi:10.1103/PhysRevE.55.1035.
  65. Neipp C, Pascual C, Beléndez A, Mixed phase- amplitude holographic gratings recorded in bleached silver halide materials, J Phys D: Appl Phys, 35(2002)957; doi:10.1088/0022­3727/35/10/303.
  66. Neipp C, Pascual I, Beléndez A, Experimental evidence of mixed gratings with a phase difference between the phase and amplitude grating in volume holograms, Opt Express, 10(2002)1374–1383.
  67. Ellabban M A, Bichler M, Fally M, Drevensek-Olenik I, Role of optical extinction in holographic polymer­ dispersed liquid crystals. In: Glogarova M, Muhoray P P, Copic M, (eds), Liquid Crystals and Applications in Optics, vol 6587, 65871J:1–65871J:8. SPIE Proc (2007); doi:10.1117/12.723361.
  68. Flauger P, Ellabban M A, Glavan G, Klepp J, Pruner C, Jenke T, Geltenbort T, Fally M, Light­ and neutron­ optical properties of holographic transmission gratings from polymer-­ionic liquid composites with submicron grating spacing, Polymers, 11(2019)1459; doi.10.3390/polym11091459.
  69. Neipp C, Alvarez M L, Gallego S, Ortuño M, Sheridan J T, Pascual I, Beléndez A, Angular responses of the first diffracted order in over-­modulated volume diffraction gratings, J Mod Opt, 51(2004)1149; doi.10.1080/09500340408230413.
  70. Neipp C, Pascual I, Beléndez A,Theoretical and experimental analysis of overmodulation effects in volume holograms recorded on BB-640 emulsions, J Opt A:­Pure Appl Opt, 3(2001)504; doi:10.1088/1464­4258/3/6/313.
  71. Neipp C, Pascual I, Beléndez A, Effects of overmodulation in fixation-free rehalogenating bleached holograms, Appl Opt, 40(2001)3402–3408.
  72. Gallego S, Ortuño M, Neipp C, García C, Beléndez A, Pascual I, Overmodulation effects in volume holograms recorded on photopolymers, Opt Commun, 215(2003)263–269.
  73. Neipp C, Alvarez M,Gallego S, Ortuño M, Pascual I, Beléndez A, Comparison between a thin matrix decomposition method and the rigorous coupled wave theory applied to volume diffraction gratings, Optik, 114(2003)529–534.
  74. Neipp C, Beléndez A, Gallego S, Ortuño M, Pascual I, Sheridan J, Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material, Opt Express, 11(2003)1835–1843.
  75. Ortuño M, Gallego S, Garćia C, Neipp C, Pascual I, Holographic characteristics of a 1-mm-thick photopolymer to be used in holographic memories, Appl Opt, 42(2003)7008–1012.
  76. Neipp C, Sheridan J T, Gallego S, Ortuño M, Márquez A, Pascual I, Beléndez A, Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/acrylamide photopolymer, Opt Commun, 233(2004)311–322.
  77. Neipp C, Thin and thick diffraction gratings: Thin matrix decomposition method, Optik, 115(2004)385–392.
  78. Gallego S, Ortuño M, Neipp C, Márquez A, Beléndez A, Pascual I, Kelly J, Sheridan J, Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers, Opt Express, 13(2005)1939–1947.
  79. Hernández A, Neipp C, Márquez A, Gallego S, Pascual I, Beléndez A, Grating matrix method to describe a volume transmission diffraction grating, Opt Commun, 266(2006)122–128.
  80. Gallego S, Neipp C, Estepa L A, Ortuño M, Márquez A, Francés J, Pascual I, Beléndez A,Volume holograms in photopolymers: Comparison between analytical and rigorous theories, Materials, 5(2012)1373–1388.