Asian Journal of Physics Vol. 30 Nos 10 & 11 (2021) 1429-1435

Digital holographic tomography of cylindrical objects with a conical mirror
Miguel León-Rodríguez, Amalia Martínez-García, Juan A Rayas, and Juan Antonio Pantoja-Mayo


Abstract

This paper presents a panoramic holographic reconstruction of a cylindrical object with a conical mirror. This panoramic holographic system has the advantage to obtain 3D information for 360 degrees view in one-shot. We use the phase-shifting method to determine the amplitude and phase simultaneously. This work demonstrates the feasibility of refocusing at different radii inside of the object. Amplitude and phase distributions are presented to validate the tomographic simulation results. These results give the confidence to implement the holographic system to study different quasi-cylindrical objects of importance in areas such as materials engineering and biological science. © Anita Publications. All rights reserved.
Keywords: Digital Holography, Panoramic imaging, Digital Tomography.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserved

References

  1. Kuś A, Dudek M, Kemper B, Kujawińska M, Vollmer A, Tomographic phase microscopy of living three- dimensional cell cultures, J Biomed Opt, 19(2014)0460091-0460098.
  2. Huang F, Klette R, Scheibe K (Eds), Panoramic Imaging: Sensor-Line Cameras and Laser Range-Finders, (New Jersey: John Willey and Sons), 2008.
  3. Valera-Calero J A, Ojedo-Martín C, Fernández-de-las-Peñas C, Cleland J A, Arias-Buría J L, Hervás-Pérez J P, Reliability and validity of panoramic ultrasound imaging for evaluating muscular quality and morphology: A systematic review, Ultrasound Med Biol, 47(2021)185-200.
  4. Lee P, Calvo C, Alfonso-Almazán J, Low-cost optical mapping systems for panoramic imaging of complex arrhythmias and drug-action in translational heart models, Sci Rep, 7(2017)1–14.
  5. Cao H-K, Lin S-F, Kim E-S, Accelerated generation of holographic videos of 3-D objects in rotational motion using a curved hologram-based rotational-motion compensation method, Opt Express, 26 (2018)21279–21300.
  6. Schreer O, Feldmann I, Weissig C, Kauff P, Schafer R, Ultrahigh-resolution panoramic imaging for format-agnostic video production, Proc IEEE, 101(2013)99–114.
  7. Chen C, Li W, Chang H, Chuang C, Chang T, 3-D modified Gerchberg–Saxton algorithm developed for panoramic computer-generated phase-only holographic display, J Opt Soc Am, 34(2017)42–48.
  8. Cheng Y-S, Su Y-T, Chen C-H, 360-degree viewable image-plane disk-type multiplex holography by one-step recording, Opt Express, 18(2010)14012–14023.
  9. Gledhill D (Ed), 3D Panoramic Imaging for Virtual Environment Construction, Doctoral thesis, University of Huddersfield, U K, 2009.
  10. Derrien S, Konolige K, Approximating a single viewpoint in panoramic imaging devices, Proc IEEE, 4(2000)3931–3938.
  11. Flores V H, Casaletto L, Genovese K, Martínez-García A, Montes A, Rayas J A, A panoramic fringe projection system, Opt Laser Eng, 58(2014)80–84.
  12. Krasnopevtsev EA, Panoramic interferometer with cylindrical hologram, Proc. SPIE 4900, Seventh International Symposium on Laser, SPIE Proc, (2002), pp 1314–1318.
  13. Schwenke H, Optical methods for dimensional metrology in production engineering, CIRP Ann Manuf Technol, 51(2002)685–699.
  14. Golubev M P, Pavlov A A, Pavlov AI-A, Panoramic optical method of heat-flow registration, Proc Goettingen, 157(2006)1–10.
  15. Gong Y, Seibel EJ, Three-dimensional measurement of small inner surface profiles using feature-based 3-D panoramic registration, Opt Eng, 56(2017)014108; doi.org/10.1117/1.OE.56.1.014108.
  16. Malet Y C, Sirat G, Conoscopic holography application: multipurpose rangefinders, J Opt, 3(1998)183-187.
  17. Álvarez I, Enguita JM, Frade M, Marina J, Ojea G, On-line metrology with conoscopic holography: Beyond triangulation, Sensors, 9(2009)7021–7037.
  18. Hocken R J, Pereira P H (Eds), Coordinate Measuring Machines and Systems, (Florida: CRC Press), 2016.
  19. Genovese K, Lee Y U, Lee A Y, Humphrey J D, An improved panoramic digital image correlation method for vascular strain analysis and material characterization, J Mech Beh Biomat, 27(2013)132–142.
  20. Albertazzi A (Jr), Viotti M R, Miggiorin R M, Dal-Pont A, Applications of a white light interferometer for wear measurement of cylinders, in Interferometry XIV: Applications. SPIE7064 (2008), p.1-3.
  21. Nasire U, Mehmet B U, Gultekin G, Hakan E, Extended photoacoustic transport model for characterization of red blood cell morphology in microchannel flow, Biomed Opt Express, 9(2018)2785-2809.
  22. Abegaz B W, Dick N T, Mahajan S M, Measurement and characterization of fluid flow profile using electrical capacitance tomography, Proc IEEE SOUTHEASTCON, (2014)1–8.
  23. Yamaguchi I, Zhang T, Phase-shifting digital holography, Opt Lett, 22(1997)1268–1270.
  24. Goodman J W (Ed), Introduction to Fourier Optics, (New York: McGraw-Hill), 1996.
  25. León-Rodríguez M, Rayas J A, Martínez-García A, Martínez-González A, Téllez-Quiñones A, Porras-Aguilar R, Panoramic reconstruction of quasi-cylindrical objects with digital holography and a conical mirror, Opt Lett, 46(2021)4749–4752.