Asian Journal of Physics Vol. 30 Nos 10 & 11 (2021) 1447-1455

Digital stroboscopic holography and digital image correlation in tympanic membrane measurement: a comparative study
P G G Muyshondt, P Livens and J J J Dirckx


Over the years, different optical measurement techniques have been developed to measure the vibration behavior of the tympanic membrane to gain insight into its acoustic functioning. In this study, digital stroboscopic holography and digital image correlation are used to measure full-field dynamic motion of the rabbit and human tympanic membrane under harmonic pressure variations. Full-field out-of-plane displacement magnitudes and phases of the membrane are depicted as a function of time, and the strengths and weaknesses of both the techniques are discussed. With the digital stroboscopic holography system, full-field time-resolved vibration measurements can be obtained with nanometer-scale precision in a frequency range from low quasi-static to acoustic frequencies (20 – 20,000 Hz). With the digital image correlation system, similar measurements can be done, but the intrinsic resolution of the holography setup discussed here is a factor 10 better. Additionally, the frequencies which can be measured using image correlation are lower, up to 1200 Hz, due to the fast drop off in vibration amplitude at higher frequencies. However, the range of displacements which can be measured using image correlation is much larger. While the upper bound for displacement measurement with holography is 5 µm, digital image correlation allows to measure displacements in the order of millimeters. When low amplitude displacements at high frequencies are to be investigated, holography is the better choice. If the vibration amplitudes are large and the frequency relatively low, image correlation is the better metrological approach. © Anita Publications. All rights reserved.
Keywords: Digital stroboscopic holography, Digital image correlation, Tympanic membrane.

Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserved


  1. Padurariu S, De Greef D, Jakobsen H, Nlandu Kamavuako E, Dirckx J J J, Gaihede M, Pressure buffering by the tympanic membrane. In vivo measurements of middle ear pressure fluctuations during elevator motion, Hear Res, 340(2016)113–120.
  2. Pilad P, Shtrikman S, Hillman P, Application of the Mössbauer method to ear vibrations, J Acoust Soc Am, 41(1967)1232–1236.
  3. Tonndorf J, Khanna S M, Submicroscopic displacement amplitudes of the tympanic membrane (cat) measured by laser interferometer, J Acoust Soc Am, 44(1968)1546–1554.
  4. Buunen T J F, Vlaming M S M G, Laser-Doppler velocity meter applied to tympanic membrane vibrations in cat, J Acoust Soc Am, 69(1981)744–750.
  5. Rosowski J J, Mehta R P, Merchant S N, Diagnostic utility of laser-Doppler vibrometry in conductive hearing loss with normal tympanic membrane, Otol Neurotol, 24(2003)165–175.
  6. Salih W H M, Soons J A M, Dirckx J J J, High resolution 3D translation measurements using point source X-ray stereoscopy, Meas Sci Technol, 22(2011)025502; doi:10.1088/0957-0233/22/2/025502.
  7. Aernouts J, Soons J A M, Dirckx J J J, Quantification of tympanic membrane elasticity parameters from in situ point indentation measurements: Validation and preliminary study, Hear Res, 263(2010)177–182.
  8. Van der Jeught S, Dirckx J J J, Real-time structured light-based otoscopy for quantitative measurement of eardrum deformation, J Biomed Opt, 22(2017)016008; doi.10.1117/1.JBO.22.1.016008.
  9. Tan H E I, Santa Maria P L, Wijesinghe P, Kennedy B F, Allardyce B J, Eikelboom R H, Atlas M D, Dilley R J, Optical coherence tomography of the tympanic membrane and middle ear: a review, Otolaryngol Head Neck Surg, 159(2018)424–438.
  10. Tonndorf J, Khanna S M, Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography, J Acoust Soc Am, 52(1972)1221; doi.0.1121/1.1913236.
  11. Rosowski J J, Cheng J T, Ravicz M E, Hulli N, del S Hernandez-Montes M, Harrington E, Furlong C, Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz, Hear Res, 253(2009)83–96.
  12. Furlong C, Rosowski J J, Hulli N, Ravicz M E, Preliminary analyses of tympanic-membrane motion from holographic measurements, Strain, 45(2009)301–309.
  13. del S Hernandez-Montes M, Furlong C, Rosowski J J, Hulli N, Harrington E, Cheng J T, Ravicz M E, Mendoza-Satoyo F M, Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes, J Biomed Opt, 14(2009)034023; doi:10.1117/1.3153898.
  14. Cheng J T, Aarnisalo A A, Harrington E, del S Hernandez-Montes M, Furlong C, Merchant S N, Rosowski J J, Motion of the surface of the human tympanic membrane measured with stroboscopic holography, Hear Res, 263(2010)66–77.
  15. De Greef D, Aernouts J, Aerts J, Cheng J T, Horwitz R, Rosowski J J, Dirckx J J J, Viscoelastic properties of the human tympanic membrane studied with stroboscopic holography and finite element modeling, Hear Res, 312(2014)69–80.
  16. Cheng J T, Hamade M, Merchant S N, Rosowski J J, Harrington E, Furlong C, Wave motion on the surface of the human tympanic membrane: Holographic measurement and modeling analysis, J Acoust Soc Am, 133(2013)918–937.
  17. del S Hernandez-Montes M, Santoyo F M, Perez Lopez C, Solis S M, Esquivel J, Digital holographic-interferometry applied to the study of tympanic membrane displacements, Opt Lasers Eng, 49(2011)698–702.
  18. Solis S M, Santoyo F M, del S Hernandez-Montes M, Measurements of the tympanic membrane with digital holographic interferometry, Proc SPIE, 8011(2011)80118A. doi:10.1117/12.903429.
  19. Solis S M, Santoyo F M, del S Hernandez-Montes M, 3D displacement measurements of the tympanic membrane with digital holographic interferometry, Opt Express, 20(2012)5613–5621.
  20. Solis S M, del S Hernandez-Montes M, Santoyo F M, Tympanic membrane contour measurement with two source positions in digital holographic interferometry, Biomed Opt Express, 3(2012)3203–3210.
  21. Khaleghi M, Furlong C, Ravicz M, Cheng J T, Rosowski J J, Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography, J Biomed Opt, 20(2015)051028; 10.1117/1.JBO.20.5.051028.
  22. Tang H, Psota P, Rosowski J J, Furlong C, Cheng J T, Analyses of the tympanic membrane impulse response measured with high-speed holography, Hear Res, 410(2021)108335; doi:10.1016/j.heares.2021.108335.
  23. Tang H, Razavi P, Pooladvand P, Psota P, Maftoon N, Rosowski J J, Furlong C, Cheng J T, High-speed holographic shape and full-field displacement measurements of the tympanic membrane in normal and experimentally simulated pathological ears, Appl Sci, 9(2019)2809; doi:10.3390/app9142809.
  24. Razavi P, Tang H, Rosowski, J J, Fulong C, Cheng J T, Combined high-speed holographic shape and full-field displacement measurements of tympanic membrane, J Biomed Opt, 24(2018)031008; doi:10.1117/1.JBO.24.3.031008.
  25. De Greef D, Soons, J A M, Dirckx J J J, Digital stroboscopic holography setup for deformation measurement at both quasi-static and acoustic frequencies, Int J Optomech, 8(2014)275–291.
  26. del S Hernandez-Montes M, Santoyo F M, Munoz S, Perez C, de la Torre M, Flores M, Alvarez L, Surface strain-field determination of tympanic membrane using 3D-digital holographic interferometry, Opt Lasers Eng, 71(2015)42–50.
  27. Livens P, Gladiné K, Dirckx J J J, Eardrum displacement and strain in the Tokay gecko (Gekko gecko) under quasi-static pressure loads, Hear Res, 387(2020)107877; doi:10.1016/j.heares.2019.107877.
  28. Razavi P, Tang H, Pooladvand K, Larson C, Frank E W, Perkoski J J, Roberge J Y, Walsh J C, Rosowski J J, Cheng J T, Furlong C, 3D high-speed digital image correlation (3D-HSDIC) to study damage of human eardrum under high-pressure loading. In: Grady M E, (ed). Mechanics of biological systems and materials & micro-and nanomechanics, volume 4. (Springer, Cham), 2020, p. 57-62. doi:10.1007/978-3-030-30013-5_10.
  29. Kreis T, Handbook of holographic interferometry: optical and digital methods. Wiley-VCH Verlag GmbH & Co. KGaA, 2005, p. 542. doi:10.1002/3527604154.
  30. Pan B, Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals. Meas Sci Technol, 29(2018)082001; doi:10.1088/1361-6501/aac55b.
  31. Pires F, Avril S, Livens P, Cordioli J A, Dirckx J, Material identification on thin shells using the virtual fields method, demonstrated on the human eardrum, J Biomech Eng, 144(2022)031004; doi:10.1115/1.4052381.