Asian Journal of Physics Vol. 33, No 12 (2024) 783-792

Dynamic generation of cylindrical vector beams through a liquid crystal variable retarder and a q-plate

Edgar Medina-Segura1, Dayver Daza-Salgado1, J A Negrete-Espino2, and Carmelo Rosales-Guzmán1
1Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, 37150, León, Guanajuato, México
2División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 103,
Lomas del Campestre, 37150, León, Guanajuato, México

Dedicated to Prof (Dr) Daniel Malacara-Hernández


For the past two decades, complex light fields, nonseparable in their spatial and polarisation degrees of freedom, have attracted a great amount of interest across a wide variety of research fields. Hence, developing novel techniques for their generation has become a topic of late. In particular, techniques capable to generate vector beams in a dynamic way, that is, with the capability to change rapidly from one to another, are of great interest in various research fields. As such, in this manuscript, we put forwards a technique capable to generate dynamic cylindrical vector beams on the Higher-Order Poincaré Sphere by combining a liquid crystal variable retarder (LCVR) on a motorized rotation mount and a q-plate. First, we present the curve of retardance as a function of applied voltage for a LCVR. After that, we show experimental results for cylindrical vector beams which show a high quality, as determined by the Concurrence computed for each case. This technique is of great relevance for applications where the dynamic modulation of vector beams brings additional capabilities, for example, in optical communications or optical tweezers. © Anita Publications. All rights reserved.
Doi: 10.54955/AJP.33.12.2024.783-792
Keywords: Vector beams, Optical polarisation, q-plate, Wave-retarders.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Rubinsztein-Dunlop H, Forbes A, Berry M V, Dennis M R, Andrews D L, Mansuripur M, Denz C, Alpmann C, Banzer P, Bauer T, Roadmap on structured light, J Opt, 19(2017)013001; doi.org/10.1088/2040-8978/19/1/013001.
  2. Ndagano B, Perez-Garcia B, Roux F S, McLaren M, Rosales-Guzmán C, Zhang Y, Mouane O, Hernandez-Aranda R I, Konrad T, Forbes A, Characterizing quantum channels with non-separable states of classical light, Nat Phys, 13(2017)397–402.
  3. Rosales-Guzmán C, Ndagano B, Forbes A, A review of complex vector light fields and their applications, J Opt, 20(2018)123001; doi.org/10.1088/2040-8986/aaeb7d.
  4. Ndagano B, Nape I, Cox M A, Rosales-Guzmán C, Forbes A, Creation and detection of vector vortex modes for classical and quantum communication, J Light Technol, 36(2018)292–301.
  5. Hu X.-B, Liu C-X, Zhu Y-C, Chen R-P, Zhao B, Wu F-M, Rosales-Guzmán C, Inhomogeneous enantiomeric solution concentration measurement harnessing vectorial structured light, ACS Photonics, 11(2024)4533–4540.
  6. Hu X-B, Zhao B, Zhu Z.-H, Gao W, Rosales-Guzmán C, In situ detection of a cooperative target’s longitudinal and angular speed using structured light, Opt Lett, 44(2019)3070–3073.
  7. Bhebhe N, Williams P A C, Rosales-Guzmán C, Rodriguez-Fajardo V, Forbes A, A vector holographic optical trap, Sci Rep, 8(2018)17387; doi.org/10.1038/s41598-018-35889-0.
  8. Töppel F, Aiello A, Marquardt C, Giacobino E, Leuchs G, Classical entanglement in polarization metrology, New J Phys, 16(2014)073019; doi.org/10.1088/1367-2630/16/7/073019.
  9. Berg-Johansen S, Töppel F, Stiller B, Banzer P, Ornigotti M, Giacobino E, Leuchs G, Aiello A, Marquardt C, Classically entangled optical beams for high-speed kinematic sensing, Optica, 2(2015)864–868.
  10. Rosales-Guzmán C, Rodríguez-Fajardo V, A perspective on structured light’s applications, Appl Phys Lett, 125 (2024)200503; doi.org/10.1063/5.0236477.
  11. Rosales-Guzmán C, Forbes A, Structured light with spatial light modulators, (SPIE Press), 2024.
  12. Hu X.-B., Rosales-Guzmán C, Generation and characterization of complex vector modes with digital micromirror devices: a tutorial, J Opt, 24(2022)034001; doi.org/10.1088/2040-8986/ac4671.
  13. Scholes S, Kara R, Pinnell J, Rodríguez-Fajardo V, Forbes A, Structured light with digital micromirror devices: a guide to best practice, Opt Eng, 59(2019)1–12.
  14. Marrucci L, Manzo C, Paparo D, Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media, Phys Rev Lett, 96(2006)163905; doi.org/10.1103/PhysRevLett.96.163905.
  15. Rubano A, Cardano F, Piccirillo B, Marrucci L, Q-plate technology: a progress review, J Opt Soc Am B, 36(2019) D70–D87.
  16. Beth R A, Mechanical Detection and Measurement of the Angular Momentum of Light, Phys Rev, 50(1936) 115–125.
  17. Allen L, Beijersbergen M W, Spreeuw RJC, Woerdman J P, Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes, Phys Rev A, 45(1992)8185–8189.
  18. Milione G, Sztul H I, Nolan D A, Alfano R R, Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light, Phys Rev Lett, 107(2011)053601; doi.org/10.1103/PhysRevLett.107.053601.
  19. Saleh B E A, Teich M C, Fundamentals of Photonics, Chap 3 Beam Optics, (John Wiley & Sons, Inc.), 2019.
  20. Roxworthy B J, Toussaint K C, Optical trapping with π-phase cylindrical vector beams, New J Phys, 12(2010) 073012; doi.org/10.1088/1367-2630/12/7/073012.
  21. Goldstein D H, Polarized light, Chap. 6 Mueller Matrices for Polarizing Components, (CRC Press Taylor & Francis Group), 2010.
  22. López-Téllez J M, Bruce N C, Delgado-Aguillón J, Garduño-Mejía J, Avendaño-Alejo M, Experimental method to characterize the retardance function of optical variable retarders, Am J Phys, 83(2015)143–149.
  23. López-Téllez J M, Bruce N C, Rodríguez-Herrera O G, Characterization of optical polarization properties for liquid crystal-based retarders, Appl Opt, 55(2016)6025–6033.
  24. Thorlabs, LCR-1-VIS – Liquid Crystal Variable Retarder, Ø10.0 mm Clear Aperture, 450 – 650 nm, https://www.thorlabs.com/thorproduct.cfm?partnumber=LCR-1-VIS.
  25. Thorlabs, LCC25 – Liquid Crystal Controller, 0-25 VAC, Square Wave, 50% Duty Cycle, https://www.thorlabs.com/thorproduct.cfm?partnumber=LCC25.
  26. Singh K, Tabebordbar N, Forbes A, Dudley A, Digital stokes polarimetry and its application to structured light: tutorial, J Opt Soc Am A, 37(2020)C33–C44.
  27. Selyem A, Rosales-Guzmán C, Croke S, Forbes A, Franke-Arnold S, Basis-independent tomography and nonseparability witnesses of pure complex vectorial light fields by stokes projections, Phys Rev A, 100(2019) 063842; doi.org/10.1103/PhysRevA.100.063842.
  28. Otte E, Nape I, Rosales-Guzmán C, Denz C, Forbes A, Ndagano B, High-dimensional cryptography with spatial modes of light: tutorial, J Opt Soc Am B, 37(2020)A309–A323.
  29. Milione G, Lavery M P, Huang H, Ren Y, Xie G, Nguyen T A, Karimi E, Marrucci L, Nolan D A, Alfano R R, Willneral A E, 4×20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de) multiplexer, Opt Lett, 40(2015)1980–1983.
  30. Milione G, Nguyen T A, Leach J, Nolan D A, Alfano R R, Using the nonseparability of vector beams to encode information for optical communication, Opt Lett, 40(2015)4887–4890.