Asian Journal of Physics Vol 31, Nos 11 & 12 (2022) 1095-1115

Dynamic holographic displays: a review

Sonali Chakrabarty, Bhargab Das and Raj Kumar
CSIR-Central Scientific Instruments Organization, Sector 30C, Chandigarh- 160 030, India

Dedicated to Professor Partha Banerjee for his enormous contributions to the advancement of research
and education in holography through his unique vision and outstanding dedication


Holography does not require any additional optics for reconstruction of the object wavefront, nor any eyewear is required to visualize the depth perception. It produces realistic 3D image with natural depth cues visible without any eye strain. However, implementation of dynamic holographic display or holographic TV system on commercial level is still a dream. In this article, we have researched how far the technology has come till date towards achieving a usable 3D dynamic display. We have reviewed the advancements that have taken place in different types of holographic methodologies. We also report some of the ongoing work at CSIR-CSIO Chandigarh, on dynamic holographic dynamic displays. © Anita Publications. All rights reserved.
Keywords: Photorefractive material, Electronic holography, Digital holography, Holographic television, Dynamic display.


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Shibata T, Kim J, Hoffman D M, Banks M s, Visual discomforts with stereoscopic displays: effects of viewing distance and direction of vergence-accommodation conflict, Proc SPIE, 7863(2011)78630P; doi. 10.1117/12.872347.
  2. Zou B, Liu Y, Guo M, Wang Y, EEG-based assessment of stereoscopic 3D visual fatigue caused by vergence-accommodation conflict, J Disp Technol, 11(2015)1076–1083.
  3. Kim D, Choi S, Sohn K, Effect of vergence-accommodation conflict and parallax difference on binocular fusion for random dot stereogram, IEEE Trans Circuits Syst Video Technol, 22(2012)811–816.
  4. Kim J, Shibata T, Hoffman D, Banks M, Assessing vergence-accommodation conflict as a source of discomfort in stereo displays, J Vision, 11(2011)324; doi.org/10.1167/11.11.324.
  5. Gabor D, A new microscopic principle, Nature, 161(1948)777–778.
  6. Gabor D, Microscopy by reconstructed wavefronts, Proc R Soc,197(1949)454–487.
  7. Gabor D, Microscopy by reconstructed wavefronts, Proc Phys Soc, 64(1951)449–469.
  8. Leith E N, Upatnieks J, Reconstructed wavefronts and communication theory, J Opt Soc Am, 52(1962)1123–1130.
  9. Leith E N, Upatnieks J, Wavefront reconstruction with diffused illumination and three-dimensional objects, J Opt Soc Am, 54(1964)1295–301.
  10. Close D H, Jacobson A D, Margerum J D, Brault R G, McClung F J, Hologram recording on photopolymer materials, Appl Phys Lett, 14(1969)159–160.
  11. Colburn W S, Haines K A, Volume hologram formation in photopolymer materials, Appl Opt, 10(1971)1636–1641.
  12. Booth B L, Photopolymer material for holography, Appl Opt, 11(1972)2994–2995.
  13. Booth B L, Photopolymer material for holography, Appl Opt, 14(1975)593–601.
  14. Bjelkhagen H I, Silver-halide recording materials: for holography and their processing, (Springer), 1993.
  15. Lin L H, Hologram formation in hardened dichromated gelatine films, Appl Opt, 8(1969)963–966.
  16. Shankoff T A, Phase holograms in dichrmated gelatine, Appl Opt, 7(1968)2101–2105.
  17. Sun J, Timurdogan E, Yaacobi A, Hosseini E S, Watts M R, Large-scale nanophotonic phased array, Nature, 493 (2013)195–199.
  18. Larouche S, Tsai Y J, Tyler T, Jokerst N M, Smith D R, Infrared metamaterial phase holograms, Nat Mater, 11 (2012)450–454.
  19. Ni X, Kildishev A V, Shalaev V M, Metasurface holograms for visible light, Nat Commun, 4(2013)2807; doi. .org/10.1038/ncomms3807.
  20. Huang L, Chen X, Mühlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K-W, Qiu C-W, Li J, Zentgraf T, Zhang S, Three-dimensional optical holography using a plasmonic metasurface, Nat Commun, 4(2013)2808; doi.org/10.1038/ncomms3808.
  21. Li X, Ren H, Chen X, Liu J, Li Q, Li C, Xue G, Jia J, Cao L, Sahu A, Hu B, Wang Y, Jin G, Gu M, A thermally photoreduced graphene oxides for three-dimensional holographic images, Nat Commun, 6(2015)6984; doi.org/10.1038/ncomms7984.
  22. Hilaire P S, Lucente M, Benton S A, Synthetic aperture holography: A novel approach to three dimensional displays, J Opt Soc Am A, 9(1972)1969–1978.
  23. Huebschman M L, Munjuluri B, Garner H R, Dynamic holographic 3-d image projection, Opt Express, 11 (2003)437–445.
  24. Blanche P A, Bablumian S, Voorakaranam R, Christenson C, Lin W, Gu T, Flores D, Wang P, Hsieh W.-Y, Kathaperumal M, Rachwal B, Siddiqui O, Thomas J, Norwood R A, Yamamoto M, Peyghambarian N, Holographic three-dimensional telepresence using large-area photorefractive polymer, Nature, 468(2010)80–83.
  25. Slinger C W, Cameron C D, Coomber S D, Miller R J, Payne D A, Smith A P, Smith M G, Stanley M, Watson P J, Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization, Proc SPIE, 5290(2004); doi.org/10.1117/12.526690.
  26. Hӓussler R, Schwerdtner A, Leister N, Large holographic displays as an alternative to stereoscopic displays, Proc SPIE, 6803(2008); doi.org/10.1117/12.766163.
  27. Sang X, Fan F C, Jiang C C, Choi S, Dou W, Yu C, Xu D, Demonstration of a large-size real-time full-color three-dimensional display, Opt Lett, 34(2009)3803–3805.
  28. Wakunami K, Hsieh P Y, Oi R, Senoh T, Sasaki H, Ichihashi Y, Okui M, Huang Y-P, Yamamoto K, Projection-type see-through holographic three-dimensional display, Nat Commun, 7(2016) 12954; doi.org/10.1038/ncomms12954.
  29. Jackin B J, Jorissen L, Oi R, Wu J Y, Wakunami K, Okui M, Ichihashi Y, Bekaert P, Huang Y P, Yamamoto K, Digitally designed holographic optical element for light field displays, Opt Lett, 43(2018)3738–3741.
  30. An J, Won K, Kim Y, Hong J Y, Kim H, Kim Y, Song H, Choi C, Kim Y, Seo J, Morozov A, Park H, Hong S, Hwang S, Kim K, Lee H-S, Slim-panel holographic video display, Nat Commun, 11(2020)5568; doi.org/10.1038/ s41467-020-19298-4.
  31. Yu H, Lee K, Park J, Park Y, Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields, Nat Photon, 11(2017)186–192.
  32. Shimobaba T, Kakue T, Ilto T, Review of fast algorithms and hardware implementations on computer holography, IEEE Trans Industr Inform, 12(2016)1611–1622.
  33. Paturzo M, Memmolo P, Finizio A, Näsänen R, Naughton T J, Ferraro P, Synthesis and display of dynamic holographic 3D scenes with real-world objects, Opt Express, 18(2010)8806–8815.
  34. Ostroverkhova O, Moerner W E, Organic photorefractives: mechanism, materials and applications, Chem Rev, 104 (2004)3267–3314.
  35. Ducharme S, Scott J C, Twieg R J, Moerner W E, Observation of the photorefractive effect in a polymer, Phys Rev Lett, 66(1991)1846–1849.
  36. Mecher E, F Gallego-Gómez F, Tillmann H, Hörhold H H, Hummelen J C, Meerholz K, Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination, Nature, 418(2002)959–964.
  37. Marder S R, Kippelen B, Jen A K Y, Peyghambarian N, Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications, Nature, 388 (1997)845–851.
  38. Meerholz K, Volodin B L, Kippelen B, Peyghambarian N, Photorefractive polymer with high optical gain and diffraction efficiency near 100%, Nature, 357(1994)479–500.
  39. Tay S, Thomas J, Eralp M, Li G, Norwood R A, Schülzgen A, Yamamoto M, Barlow S, Walker G A, Marder S R, Peyghambarian N, High-performance photorefractive polymer operating at 1550 nm with near-video-rate response time, Appl Phys Lett, 87(2005)171105; doi.org/10.1063/1.2117610.
  40. Eralp M, Thomas J, Tay S, Li G, Schülzgen A, Norwood R, Yamamoto M, Peyghambarian N, Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure, Appl Phys Lett, 89(2006)14105; doi.org/10.1063/1.2354037.
  41. Kippelen B, Blanche P A, Schülzgen A, Fuentes-Hernandez C, Ramos-Ortiz G, Wang J F, Peyghambarian N, Marder S R, Leclercq A, Beljonne D, Photorefractive Polymers with Non-Destructive Readout, Adv Funct Mater, 12 (2002)615–620.
  42. Hendrickx E, Herlocker J, Maldonado J, Marder S, Kippelen B, Persoons A, Peyghambarian N, Thermally stable high-gain photorefractive polymer composites based on a tri-functional chromophore, Appl Phys Lett, 72 (1998)1679–1681.
  43. Blanche P A, Ka J W, Peyghambarian N, Review of organic photorefractive materials and their use for updateable 3D display, Materials, 14(2021)5799; doi.org/10.3390/ma14195799.
  44. Tay S, Blanche P.-A, Voorakaranam R, Tunç A V, Lin W, Rokutanda S, Gu T, Flores D, Wang P, Li G, Hilaire P S, Thomas J, Norwood R A, Yamamoto M, Peyghambarian N, An updatable holographic three-dimensional display, Nature, 451(2007)694–698.
  45. Yamaguchi T, Miyamoto O, Yoshikawa H, Volume hologram printer to record the wavefront of three-dimensional objects, Opt Eng, 51(2012)075802; doi.org/10.1117/1.OE.51.7.075802.
  46. Kang H, Stoykova E, Yoshikawa H, Hong S, Kim Y, Comparison of System Properties for Wave-Front Holographic Printers. Fringe 2013, (Springer), (2013)851–854.
  47. Hoffman J, Fiess R, Stork W, Holographic wave front printing for fabrication of reflection holograms with arbitrary recording wave fronts, Proc SPIE, 11306(2020); doi.org/10.1117/12.2543482.
  48. Blanche P A, Tay S, Voorakaranam R, Saint-Hilaire P, Christenson C, Gu T, Lin W, Flores D, Wang P, Yamamoto M, Thomas J, Norwood R A, Peyghambarian N, An updatable holographic display for 3D visualization, J Display Technol, 4(2008)424–430.
  49. Christenson C W, Blanche P A, Tay S, Voorakaranam R, Gu T, Lin W, Wang P, Yamamoto M, Thomas J, Norwood R A, Peyghambarian N, Materials for an updatable holographic 3D display, J Display Technol, 6(2010)510–516.
  50. Blanche P A, Bablumian A, Voorakaranam R, Christenson C, Lin W, Gu T, Flores D, Wang P, Hsieh W -Y, Kathaperumal M, Rachwal B, Siddiqui O, Thomas J, Norwood R A, Yamamoto M, Peyghambarian N, Holographic three-dimensional telepresence using large-area photorefractive polymer, Nature, 468(2010)80–83.
  51. Stern A, Javidi B, Three-Dimensional Image Sensing, Visualization, and Processing Using Integral Imaging, Proc IEEE, 94(2006)591–607.
  52. Jang J S, Javidi B, Three-dimensional synthetic aperture integral imaging, Opt Lett, 27(2002)1144–1146.
  53. Jang J S, Javidi B, Three-dimensional integral imaging of micro-objects, Opt Lett, 29(2004)1230–1232.
  54. Kim Y, Hong K, Lee B, Recent researches based on integral imaging display method. In: 3D Research 1. (Springer), 2010, pp 17–27.
  55. Peyghambarian N, Blanche P A, Bablumyan A, Christenson C W, Norwood R A, Yamamoto M, Photorefractive polymers for holographic 3-D display, OPN, 22(2011)51–51.
  56. Jolly S, Bove V M (Jr), Direct optical fringe writing on diffraction specific coherent panoramagrams in photorefractive polymer for updatable three-dimensional holographic display, J Phys Conf Ser, 415(2013)012054; doi.10.1088/1742-6596/415/1/012054.
  57. Jolly S, Smalley D E, Barabas J, Bove V M (Jr), Direct fringe writing architecture for photorefractive polymer-based holographic plays: analysis and implementation, Opt Eng, 52(2013)055801; doi.org/10.1117/1.OE.52.5.055801.
  58. Kumar R, Holographic printers: a cost effective way to print computer generated holograms, Asian J Phys, 30(2021)1059–1070.
  59. Kamra K, Kumar A, Singh K, Novel optical photorefractive storage-retrieval system using speckle coding technique in beam-fanning geometry, J Mod Opt, 43(2009)365–371.
  60. Kumar A, Kamra K, Singh K, In-plane displacement measurement using objective speckles in photorefractive two-beam coupling: Effect of multiple exposures, Opt Commun, 149(1996)355–365.
  61. Tripathi R, Pati G S, Kumar A, Singh K, In-plane displacement measurement using a photorefractive speckle correlator, Opt Commun, 149(1998)355–365.
  62. Dharmsaktu K S, Kumar A, Triapathi R, Singh K, Measurement of vibration with Young’s fringe modulated speckle patterns in a photorefractive correlator, Opt Lasers Eng, 34 (2000)191–202.
  63. Roy A, Singh K, Spatially varying two beam coupling in photorefractive media in the presence of biasing incoherent illumination, J Opt, 21(1990)171; doi. 10.1088/0150-536X/21/4/003.
  64. Anand A, Narayanmurthy C S, Beamsplitter testing using the photorefractive effect, Opt Eng, 42(2003)608–612.
  65. Anand A, Narayanmurthy C S, Photorefractive dynamic holography using self-pumped phase conjugate beam, Pramana, 66(2006)521–537.
  66. Anand A, Narayanmurthy C S, Faraday rotation measurement with photorefractive Bi12TiO20, Opt Laser Technol, 34(2002)605–611.
  67. Anand A, Narayanmurthy C S, Collimation testing using two-wave mixing in photorefractive crystal, J Opt, 31(2002)169–179.
  68. Narayanmurthy C S, Fringe formation theory for real-time holographic interferometry using Bi12SiO20, Pramana, 44(1995)481–488.
  69. Kollin J S, Benton S A, Jepsen M L, Real-time display of 3-d computed holograms by scanning the image of an acousto-optic modulator, Proc SPIE, 1136(1989); doi.org/10.1117/12.961683.
  70. Hilaire P St, Benton S A, Lucente M, Jepsen M L, Kollin J, Yoshikawa H, Underkoffler J, Electronic display system for computational holography, Proc SPIE, 1212(1990); doi.org/10.1117/12.17980.
  71. Lee H W, The scophony television receiver, Nature, 142(1938)59–62.
  72. St-Hilaire P, Scalable optical architectures for electronic Holography, Ph D dissertation (MIT, Cambridge MA), 1994.
  73. St-Hilaire P, Benton S A, Lucente M, Sutter J D, Plesniak W J, Advances in Holographic Video, Proc SPIE, 1914 (1993); doi.org/10.1117/12.155020.
  74. Watlington J A, Lucente M, Sparrell C J, Bove V M Jr, Tamitani I, A hardware architecture for rapid generation of electro-holographic fringe patterns, Proc SPIE, 2406(1995); doi.org/10.1117/12.206216.
  75. Maeno K, Fukaya N, Nishikawa O, Sato K, Honda T, Electro-holographic display using 15mega pixels LCD, Proc SPIE, 2652(1996); doi.org/10.1117/12.236065.
  76. Stanley M, Bannister R B, . Cameron C D, Coomber S D, Cresswell I G, Hughes J R, Hui V, Jackson P O, Milham K A, Miller K J, Payne D A, Quarrel J, Scattergood D C, Smith A P, Smith M A G, Tipton D L, Watson P J, Webber P J, Slinger C W, 100 Mega-pixel computer generated holographic images from Active TilingTM– a dynamic and scalable electro-optic modulator system, Proc SPIE, 5005(2003); doi.org/10.1117/12.473866.
  77. http://www.television broadcast.com/article/79134.
  78. Sasaki H, Yamamoto K, Wakunami K, Ichihashi Y, Oi R, Senoh T, Large size three-dimensional video by electronic holography using multiple spatial light modulators, Sci Rep, 4 (2014)6177; d oi.org/10.1038/srep06177.
  79. Sato K, Sugita A, Morimoto M, Fujii K, Reconstruction of color images of high quality by a holographic display, Proc SPIE, 6136(2006); doi.org/10.1117/12.645715.
  80. Slinger C, Cameron C, Coomber S, Miller R, Payne D, Smith A, Smith M, Stanley M, Watson P, Recent developments in computer- generated holography: toward a practical electroholography system for interactive 3D visualisation, Proc SPIE, 5290(2004); doi.org/10.1117/12.526690.
  81. Smalley D E, Smithwick Q Y J, Bove V M (Jr), Holographic video display based on guided-wave acousto-optic devices, Proc SPIE, 6488(2007); doi.org/10.1117/12.700735.
  82. Tsai C S (ed). Guided-Wave Acousto-Optics. (Springer), 1990.
  83. Bove V M (Jr), Plesniak W J, Quentmeyer T, Barabas J, Real- time holographic video images with commodity PC hardware, Proc SPIE, 5664(2005); doi.org/10.1117/12.585888.
  84. Petz C, Magnor M, Fast hologram synthesis for 3D geometry models using graphics hardware, Proc SPIE, 5005(2003); doi.org/10.1117/12.476879.
  85. Shimobaba T, KakueT, Ito T, Review of fast algorithms and hardware implementations on computer holography, IEEE Trans Ind Inf, 12(2016)1611–1622.
  86. Lucente M E, Interactive computation of holograms using a look-up table, J Electron Imaging, 2(1993)28–34.
  87. Kim S C, Yoon J H, Kim E S, Fast generation of three-dimensional video holograms by combined use of data compression and lookup table techniques, Appl Opt, 47(2008)5986–5995.
  88. Shimobaba T, Masuda N, Ito T, Simple and fast calculation algorithm for computer-generated hologram withwavefront recording plane, Opt Lett, 34(2009)3133–3135.
  89. Matsushima K, Nakahara S, Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method, Appl Opt, .48-34(2009)H54–H63.
  90. Nishitsuji T, Shimobaba T, Kakue T, Masuda N, Ito T, Fast calculation of computer-generated hologramusing the circular symmetry of zone plates, Opt Express, 18(2010)19504–19509.
  91. Dong X B, Kim S C, Kim E S, MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects, Opt Express, 22(2014)8047–8067.
  92. Tsang P W M, Poon T C, Fast generation of digital holograms based on warping of the wavefront recording plane, Opt Express, 23(2015)7667–7673.
  93. Nishitsuji T, Shimobaba T, Kakue T, Ito T, Review of fast calculation techniques for computer-generated holograms with the point-light-source-based model, IEEE Trans Ind Inf, 13(2017)2447–2454.
  94. Gupta A, Bhanot P, Das B, Kumar R, Fast point-based CGH generation for holographic displays, Conference on Optics Photonics & Quantum Optics (COPaQ 2022) IIT Roorkee.
  95. Ito T, Yabe T, Okazaki M, Yanagi M, Special-purpose computer HORN-1 for reconstruction of virtual image in three dimensions, Comput Phys Commun, 82(1994)104–110.
  96. Ito T, Masuda N, Yoshimura K, Shiraki A, Shimobaba T, Sugie T, Special-purpose computer HORN-5 for a real-time electroholography, Opt Express, 13(2005)1923–1932.
  97. Ichihashi Y, Nakayama H, Ito T, Masuda N, Shimobaba T, Shiraki A, Sugie T, HORN-6 special-purpose clustered computing system for electroholography, Comput Phys Commun, 93(2009)13–20.
  98. Okada N, Hirai D, Ichihashi Y, Shiraki A, Kakue T, Shimobaba T, Masuda N, Ito T, Special-purpose computer HORN-7 with FPGA technology for phase modulation type electro-holography, Proc Int Display Workshops, 3(2012)1284–1287.
  99. Nishitsuji T, Yamamoto Y, Sugie T, Akamatsu T, Hirayama R, Nakayama H, Kakue T, Shimobaba T, Ito T, Special-purpose computer HORN-8 for phase-type electro-holographyy, Opt Express, 26(2018)26722–26733.
  100. Smalley D E, Smithwick Q Y, Bove V M (Jr), Barabas J, Jolly S, Anisotropic leaky-mode modulator for holographic video displays, Nature, 498(2013)313–317.
  101. SeeReal, http://www.seereal.com/.
  102. Klug M, Burnett T, Fancello A, Heath A, Gardner K, Connell S O, Newswanger C, A scalable, collaborative, interactive light-field display system, In SID Symposium Digest of Technical Papers, 44(2013)412–415.
  103. Chang C, Bang K, Wetzstein G, Lee B, Gao L, Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective, Optica, 7(2020)1563–1578.
  104. Stahl R, Jayapala M, Holographic displays and smart lenses, Opt Photon, 6(2011)39–42.
  105. Stahl R, Rochus V, Rottenberg X, Cosemans S, Haspeslagh L, Severi S, Der Plas G V, Lafruit G, Donnay S, Modular sub-wavelength diffractive light modulator for high-definition holographic displays, J Phys Conf Ser, 415(2013)012057; doi.10.1088/1742-6596/415/1/012057.
  106. Takaki Y, Matsumoto Y, Nakajima T, Color image generation for screen-scanning holographic display, Opt Express, 23(2015)26986–26998.
  107. Kronrod M A, Merzlyakov N S ,Yaroslavski L P, Reconstruction of holograms with a computer, Sov Phys–Tech Phys,17(1972)333–334.
  108. Yaroslavski L P, Merzlyakov N S, Methods of Digital Holography, (New York: Consultants Bureau), 1980.
  109. Schnars U, Jüptner W, Direct recording of holograms by a CCD-target and numerical reconstruction, Appl Opt, 33(1994)179–181.
  110. Poon T C, Jung P L, Introduction to Modern Digital Holography with MATLAB, (Cambridge University Press, Cambridge), 2014, pp 95–114.
  111. Sutkowski M, Kujawinska M, Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms, Opt Lasers Eng, 33(2000)191–201.
  112. Onural L, Yaraş F, Kang H, Digital holographic three-dimensional video displays, Proc IEEE, 99(2011)576–589.
  113. Kim H, Lim Y, Park G, Lee B, Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators, Opt Express, 16(2008)12372–12386.
  114. Kozacki T, Kujawińska M, Finke G, Hennelly B, Pandey N, Extended viewing angle holographic display system with tilted SLMs in a circular configuration, Appl Opt, 51(2012)1771–1780.
  115. Kozacki T, Finke G, Garbat P, Zaperty W, Kujawińska M, Wide angle holographic display system with spatiotemporal multiplexing, Opt Express, 20(2012)27473–27481.
  116. Kozacki T, Kujawińska M, Finke G, Zaperty W, Hennelly B, Holographic capture and display systems in circular configurations, J Disp Technol, 8(2012)225–232.
  117. Yaraş F, Kang H, Onural L, Circular holographic video display system, Opt Express, 19(2011)9147–9156.
  118. Kujawinska M, Kozacki T, Falldorf C, Meeser T, Hennelly B M, Garbat P, Zaperty W, Niemelä M, Finke G, Kowiel M, Naughton T, Multiwavefront digital holographic television, Opt Express, 22(2014)2324–2336.
  119. Zhang Y, Flexible camera calibration by viewing a plane from unknown orientations, Proc IEEE, 1(1999)666–673.
  120. Heikkila J, Silven O, A four-step camera calibration procedure with implicit image correction, Proc IEEE CVPR, (1997)1106–1112.
  121. Kumar R, Dwivedi G, Singh O, Portable digital holographic camera featuring enhanced field of view and reduced exposure time, Opt Lasers Eng, 137(2021)106359; doi.org/10.1016/j.optlaseng.2020.106359