Asian Journal of Physics Vol 31, Nos 9 – 10 (2022) 927-937

Fluorescence-detected multidimensional electronic spectroscopy

Amitav Sahu,Vivek Nagendra Bhat, Sanjoy Patra and Vivek Tiwari
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-560 012, India


Multidimensional electronic spectroscopy (MES) is a state-of-the-art spectroscopic tool which provides two-dimensional (2D) contour map snapshots of ultrafast quantum dynamics with high temporal and spectral resolution. However, limited sensitivity of interferometric detection in the presence of scatter and lack of spatial resolution limits our understanding of several open questions, such as morphology dependence of exciton dissociation and photocurrent efficiency in photovoltaic thin films, and pure decoherence lifetimes on excited state coherences in photosynthetic proteins without ensemble averaging. We report a home-built fluorescence-detected MES (fMES) spectrometer based on a visible white-light continuum which overcomes the sensitivity and spatial resolution limitations of conventional MES. Our spectrometer is integrated with a confocal microscope to provide spatial resolution limited by the microscope objective. As a demonstration of sensitivity enhancement, we report high signal-to-noise ratio 2D coherence maps (CMs) which isolate vibrational coherences on the excited and ground electronic states of a laser dye based on the phase of vibrational quantum beats, at optical densities ~10× lower than what is typical for conventional MES approaches. © Anita Publications. All rights reserved.
Keywords: Coherences, Solvation, Fluorescence, Wavepackets, Femtosecond


Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve

References

  1. Jonas D M, Two-Dimensional Femtosecond Spectroscopy, Annu Rev Phys Chem, 54(2003)425–463.
  2. Jonas D M, Optical Analogs of 2D NMR. Science, 300(2003)1515–1517.
  3. Aue W P, Bartholdi E, Ernst R R, Two-dimensional spectroscopy. Application to nuclear magnetic resonance, J Chem Phys, 64(1976)2229–2246.
  4. Cao J, Cogdell R J, Coker D F, Duan H G, Hauer J, Kleinekathöfer U, Jansen T L C, Mančal T, Miller R J D, Ogilvie J P, Prokhorenko V I, Renger T, Tan H-S, Tempelaar R, Thorwart M, Thyrhaug E, Westenhoff S, Zigmantas D, Quantum biology revisited, Sci Adv, 6(2020); doi.10.1126/sciadv.aaz4888.
  5. Jonas D M, Vibrational and Nonadiabatic Coherence in 2D Electronic Spectroscopy, the Jahn–Teller Effect, and Energy Transfer, Annu Rev Phys Chem, 69(2018)327–352.
  6. Sio A D, Lienau C,Vibronic coupling inorganic semiconductors for photovoltaics, Phys ChemChem Phys, 19(2017)18813–18830.
  7. Zhou N, Ouyang Z, Yan L, McNamee M G, You W, Andrew M Moran A M, Elucidation of Quantum-Well-Specific Carrier Mobilitiesin Layered Perovskites, J Phys Chem Lett,12(2021)1116–1123.
  8. Jones A C, Kearns N M, Ho J-J, Flach J T, Zanni M T, Impact of non- equilibrium molecular packings on singlet fission in microcrystals observed using 2D white-light microscopy. Nat Chem, 12(2020)40–47.
  9. Dahlberg P D, Ting P-C, Massey S C, Allodi M A, Martin E C, Hunter C N, Engel G S, Mapping the ultrafast flow of harvested solar energy in living photosynthetic cells, Nat Commun, 8(2017)988–994.
  10. Mohapatra A A, Tiwari V, Patil S, Energy transfer in ternary blend organic solar cells: recent insights and future directions, Energy Environ Sci, 14(2021)302–319.
  11. Wagner W, Li C, Semmlow J, Warren S, Rapid phase-cycled two- dimensional optical spectroscopy in fluorescence and transmission mode, Opt Express,13(2005)3697–3706,
  12. Tiwari V, Multidimensional Electronic Spectroscopy in High-Definition-Combining Spectral,Temporal and Spatial Resolutions, J Chem Phys, 54(2021)230901; doi.org/10.1063/5.0052234.
  13. Draeger S, Roeding S, Brixner T. Rapid-scan coherent 2D fluorescence Opt Express, 25(2017)3259–3267.
  14. De A K, Monahan D, Dawlaty J M, Fleming G R, Two-dimensional fluorescence- detected coherent spectroscopy with absolute phasing by confocal imaging of a dynamic grating and 27-step phase-cycling, J Chem Phys, 140(2014)194201; doi.org/10.1063/1.4874697.
  15. Tekavec P F, Lott G A, Marcus A H, Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation, J Chem Phys,127(2007)214307–214327.
  16. Goetz S, Donghai Li, Kolb V, Pflaum J, Brixner T, Coherent two-dimensional fluorescence micro-spectroscopy, Opt Express, 26(2018)3915–3925.
  17. Tiwari V, Matutes Y A, Gardiner A T, Jansen T L C, Cogdell R J, Ogilvie J P, Spatially resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria, Nat Commun, 9(2018)4219; doi.org/10.1038/s41467-018-06619-x.
  18. Scherer N F, Carlson R J, Matro A, Du M, Ruggiero A J, Romero-Rochin V, Cina J A, Fleming G R, Rice S A, Fluorescence-detected wavepacket interferometry: Time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses, J Chem Phys, 95(1991)1487–1511.
  19. Cina J A, Wave-Packet Interferometry and Molecular State Reconstruction: spectroscopic Adventures on the Left-Hand Side of the Schrödinger Equation, Annu Rev Phys Chem, 59(2008)319–342.
  20. Zakerhamidi M S, Sorkhabi S G, Solvent effects on the molecular resonance structures and photo-physical properties of a group of oxazine dyes, J Lumin, 157(2015)220–228.
  21. Vogel M, Rettig W, Fiedeldei U, Baumgärtel H, Non-radiative deactivation via biradicaloid charge-transfer states in oxazine and thiazine dyes, Chem Phys Lett, 148(1988)347–352.
  22. Zhu R, Zou J, Wang Z, Chen H, Weng Y, Electronic State-Resolved Multimode-Coupled Vibrational Wavepackets in Oxazine 720 by Two-Dimensional Electronic Spectroscopy, J Phys Chem A, 124(2020)9333–9342.
  23. Kostjukov V V, Photoexcitation of oxazine170 dye in aqueous solution:TD-DFT study, J Mol Model, 27(2021)311; doi. org/10.1007/s00894-021-04931-w.
  24. Barclay M S, Huff J S, Pensack R D, Davis P H, Knowlton W B, Yurke B, Dean J C, Arpin P C, Turner D B, Characterizing Mode Anharmonicity and Huang–Rhys Factors Using Models of Femtosecond Coherence Spectra, J Phys Chem Lett, 13(2022)5413–5423.
  25. Hybl J D, Ferro A A, Jonas D M, Two-dimensional Fourier transform electronic spectroscopy, J Chem Phys, 115(2001)6606–6622.
  26. Whaley-Mayda L, Guha A, Penwell S B, Tokmakoff A, Fluorescence-encoded infrared vibrational spectroscopy with single-molecule sensitivity, J Am Chem Soc, 143(2021)3060–3064.
  27. Carbery W P, Pinto-Pacheco B, Buccella D, Turner D B, Resolving the fluorescence quenching mechanism of an oxazine dye using ultrabroadband two-dimensional electronic spectroscopy, J Phys Chem A,123(2019)5072–5080.
  28. Dobryakov A L, Kovalenko S A, Weigel A, Pérez-Lustres J L, Lange J, Müller A, Ernsting N P, Femtosecond pump/supercontinuum-probe spectroscopy: Optimized setup and signal analysis for single-shot spectral referencing, Rev Sci Instrum, 81(2010)113106; doi.org/10.1063/1.3492897.
  29. Bradler M, Baum P, Riedle E, Femtosecond continuum generation in bulk laserhost materials with sub-mJ pump pulses, Appl Phys B, 97(2009)561–574.
  30. Moses J, Huang S.-W, Hong K.-H, Mücke O D, Falcão-Filho E L, Benedick A, Ilday F O, Dergachev A, Bolger J A, Eggleton B J, Kärtner F X, Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier ptimizedperce pression, Opt Lett, 34(2009)1639–1641.