Asian Journal of Physics Vol 31, No 7 (2022) 663-675

Halo in extended depth of focus and bifocal intraocular lenses

F Vega, J A Azor and Maria S Millán
Departament d’Òptica i Optometria, Universitat Politècnica de Catalunya,
BARCELONA TECH. Terrassa, Spain

Dedicated to Prof Maria J Yzuel

This work aims to evaluate the size and intensity of the halos generated in distance vision by bifocal and extended depth of focus (EDOF) intraocular lenses (IOLs) as a function of pupil size, lens base power and lens addition. To this end, an EDOF-IOL (Tecnis® Symfony ZXR00) and three bifocal IOLs (Tecnis ® + 4.00 diopter (D) ZMB00, + 3.25 D ZLB00 and +2.75D ZKB00) of the same material and asphericity, were tested in-vitro in a model eye. The size and intensity of the halos formed in the distance focus were experimentally obtained and measured using image analysis. Geometrical optics was used to theoretically estimate the halo size. We obtained the following results: The experimental halo size in the distance focus agreed with the theoretical estimation and was directly proportional to the pupil size and lens add power, and inversely proportional to eye power (cornea plus IOL power). As for the halo intensity, the larger the halo size, the dimmer it was. The EDOF IOL, with the lowest add power, had the smallest size but brightest halo. Concerning the halo size, the worst conditions (i.e., largest halos) would occur with an IOL of reduced base power (as would be the case of highly myopic patients), large add power, and large pupil. However, the relative intensity of the halo decreases as its size increases. These results contribute to the better understanding of the physical factors (size and/or intensity) that may have an influence on subjective halo perception by patients implanted with such IOLs. © Anita Publications. All rights reserved.
Keywords: Cataract, Presbyopia compensation, Halos, Extended depth of focus, Intraocular lens, Diffractive multifocal lens.

Peer Review Information
Method: Single- anonymous; Screened for Plagiarism? Yes
Buy this Article in Print © Anita Publications. All rights reserve


  1. Calladine D, Evans J, Shah S, Leyland M, Multifocal versus monofocal intraocular lenses after cataract extraction, Cochrane Database Syst Rev, 9(2012) CD003169; doi.10.1002/14651858.CD003169.pub4.
  2. Hütz W W, Eckhardt H B, Röhrig B, Grolmus R, Intermediate vision and reading speed with array, Tecnis, and ReSTOR intraocular lenses, J Refract Surg, 24(2008)251‒256.
  3. Gil M A, Varón C, Cardona G, Vega F, Buil JA, Comparison of far and near contrast sensitivity in patients symmetrically implanted with multifocal and monofocal IOLs, Eur J Ophthalmol, 24(2013)44‒52.
  4. Belluci R, Multifocal intraocular lenses. Curr Opin Ophthalmol, 16(2005)33‒37.
  5. De Vries N E, Webers C A B, Touwslager W R H, Bauer N J C, de Brabander J, Berendschot T T, Nuijts M M A, Dissatisfaction after implantation of multifocal intraocular lenses. J Cataract Refract Surg, 37(2011)859‒865.
  6. Kamiya K, Hayashi K, Shimizu K, Negishi K, Sato M, Bissen-Miyajima H, Multifocal intraocular lens explantation: A case series of 50 eyes, Am J Ophthalmol, 158(2014)215‒220.
  7. Villa C, Gutiérrez R, Jiménez J R, González-Méijome J M, Night vision disturbances after successful LASIK surgery, Br J Ophthalmol, 91(2007)1031‒1037.
  8. Castro J J, Jiménez J R, Ortiz C, Alarcón A, Anera R G, New testing software for quantifying discrimination capacity in subjects with ocular pathologies, J Biomed Opt, 16(2011)015001;
  9. Kretz F T, Breyer D, Klabe K, Hagen P, Kaymak H, Koss M J, Gerl M, Muller M, Gerl R H, Auffarth G U, Clinical outcomes after implantation of a trifocal toric intraocular lens, J Refract Surg, 31(2015)504–510.
  10. Alba-Bueno F, Garzón N, Vega F, Poyales F, Millán M S, Patient-perceived and laboratory-measured halos associated with diffractive bifocal and trifocal intraocular lenses, Curr Eye Res, 43(2018)35‒42.
  11. Vega F, Alba-Bueno F, Millán M S, Varón C, Gil M A, Buil J A, Halo and through-focus performance of four diffractive multifocal intraocular lenses, Investig Opthalmol Vis Sci, 56(2015)3967‒3975.
  12. Kim M J, Zheleznyak L, Macrae S, Tchah H, Yoon G, Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system, J Cataract Refract Surg, 37(2011)1305‒1312.
  13. Weeber H A, Meijer S T, Piers P A, Extending the range of vision using diffractive intraocular lens technology, J Cataract Refract Surg, 41(2015)2746‒2754.
  14. Gatinel D, Loicq J, Clinically relevant optical properties of bifocal, trifocal, and extended depth of focus intraocular lenses, J Refract Surg, 32(2016)273‒280.
  15. Esteve-Taboada J J, Dominguez-Vicent A, Aguila-Carrasco A J D, Ferrer-Blasco T, Montes-Mico R, Effect of large apertures on the optical quality of three multifocal lenses, J Refract Surg, 31(2015)666–676.
  16. Pieh S, Lackner B, Hanselmayer G, Zöhrer R, Sticker M, Weghaupt H, Fercher A, Skorpik C, Halo size under distance and near conditions in refractive multifocal intraocular lenses, Br J Ophthalmol, 85(2001)816‒821.
  17. Alba-Bueno F, Vega F, Millán M S. Halos and multifocal intraocular lenses: Origin and interpretation, Arch la Soc Española Oftalmol (English Edn), 89(2014)397‒404.
  18. Yoo Y-S, Whang W-J, Byun Y-S, Piao J J, Kim D Y, Joo C-K, Yoon G, Through-focus optical bench performance of extended depth-of-focus and bifocal intraocular lenses compared to a monofocal lens, J Refract Surg, 34(2018)236‒243.
  19. Weeber H A. Multi-ring lens, systems and methods for extended depth of focus, U.S. Patent 2014/0168602 A1. Pub. Date: June 19, 2014.
  20. Weeber H A, Piers P A, Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration, J Refract Surg, 28(2012)48‒52.
  21. Millán M S, Vega F, Extended depth of focus intraocular lens: chromatic performance, Biomed Opt Express, 8(2017)4294‒4309.
  22. Vega F, Alba-Bueno F, Millan M S, Energy efficiency of a new trifocal intraocular lens, J Eur Opt Soc Rapid Publ, 9(2014)14002.
  23. Vega F, Alba-Bueno F, Millán M S, Energy distribution between distance and near images in apodized diffractive multifocal intraocular lenses, Invest Ophthalmol Vis Sci, 52(2011)5695‒5701.
  24. Cardona G, Vega F, Gil M A, Varón C, Buil J A, Millán M S, Visual acuity and image quality in 5 diffractive intraocular lenses, Eur J Ophthalmol, 28(2017)36‒41.
  25. International Organization for Standardization (ISO). ISO 11979-2:2014: Ophthalmic implants – Intraocular Lenses – Part 2: Optical Properties and Test Methods. Geneva; ISO:2014.
  26. Millán M S, Vega F, Ríos-López I, Polychromatic image performance of diffractive bifocal intraocular lenses: Longitudinal chromatic aberration and energy efficiency, Investig Ophthalmol Vis Sci, 57(2016)2021‒2028.
  27. Hayashi K, Ogawa S, Manabe S-I, Hirata A, Visual outcomes in eyes with a distance-dominant diffractive multifocal intraocular lens with low near addition power, Br J Ophthalmol, 99(2015)1466‒1470.
  28. Packer M, Chu Y R, Waltz K L, Donnenfeld E D, Wallace III R B, Featherstone K, Smith P, Bentow S S, Tarantino N, Evaluation of the aspheric Tecnis multifocal intraocular lens: One-year results from the first cohort of the Food and Drug Administration clinical trial, Am J Ophthalmol, 149(2010)577-584.e1.
  29. Ye P-P, Li X, Yao K, Visual outcome and optical quality after bilateral implantation of aspheric diffractive multifocal, aspheric monofocal and spherical monofocal intraocular lenses: a prospective comparison, Int J Ophthalmol, 6(2013)300‒306.
  30. Castignoles F, Flury M, Lepine T, Comparison of the efficiency, MTF and chromatic properties of four diffractive bifocal intraocular lens designs, Opt Express, 18(2010)5245‒5256.
  31. Meyers M, Albrecht R, Technique to eliminate scattered light in diffractive optical elements, U.S. Patent 5,801,889. Pub. Date: September 1, 1998.
  32. Moreno V, Román J F, Salgueiro J R. High efficiency diffractive lenses: Deduction of kinoform profile, Am J Phys, 65(1997)556‒562.
  33. Kretz F T A, Gerl M, Gerl R, Müller M, Auffarth G U, Clinical evaluation of a new pupil independent diffractive multifocal intraocular lens with a +2.75 D near addition: a European multicentre study, Br J Ophthalmol, 99(2015)1655–1659.
  34. Lubiński W, Gronkowska-Serafin J, Podborączyńska-Jodko K, Clinical outcomes after cataract surgery with implantation of the Tecnis ZMB00 multifocal intraocular lens, Med Sci Monit, 20(2014)1220‒1226.
  35. Kim J S, Jung J W, Lee J M, Seo K Y, Kim E K, Kim T I, Clinical outcomes following implantation of diffractive multifocal intraocular lenses with varying add powers, Am J Ophthalmol, 160(2015)702‒709.e1.
  36. Escandón-García S, Ribeiro F J, Mcalinden C, Queirós A, González-Méijome J M, Through-focus vision performance and light disturbances of 3 new intraocular lenses for presbyopia correction, J Ophthalmol, 2018; Jan 31;2018:6165493. doi: 10.1155/2018/6165493.
  37. Cochener B, Clinical outcomes of a new extended range of vision intraocular lens: International multicenter concerto study, J Cataract Refract Surg, 42(2016)1268‒1275.
  38. Bautista C P, González D C, Gómez A C, Bescos J A C, Evolution of visual performance in 250 eyes implanted with Tecnis ZM900 multifocal IOL, Eur J Ophthalmol, 19(2009)762‒768.
  39. Jung C K, Chung S K, Baek N H, Decentration and tilt: Silicone multifocal versus acrylic soft intraocular lenses, J Cataract Refract Surg, 26(2000)582‒585.
  40. Ortiz C, Esteve-Taboada J J, Belda-Salmerón L, Monsálvez-Romín D, Domínguez-Vicent A, Effect of decentration on the optical quality of two intraocular lenses, Optom Vis Sci, 93(2016)1552‒1559.
  41. Weeber H A, Cánovas C, Alarcón A, Piers P, Laboratory-measured MTF of IOLs and clinical performance, J Refract Surg, 32(2016)211–212.